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Frequency Diverse ISAR Two-Dimensional Imaging Method
and Resolution Analysis

Xiu-Ping Li1, Ke-Fei Liao1, *, and Bo Wen2

Abstract—Aiming at the shortcomings of complex broadband transmitter/receiver systems and
inflexible bandwidth control in the existing inverse synthetic aperture radar (ISAR) imaging systems,
in this paper, a novel two-dimensional imaging method based on frequency diverse ISAR (FDISAR)
is proposed by combining frequency diversity technique with inverse synthetic aperture technique. In
the imaging process, FDISAR is different from the stepped-frequency ISAR, which needs to transmit
the same burst at different observation moments. Once the bandwidth is determined, the bandwidth of
the subsequent burst synthesis cannot be changed, which reduces the flexibility of the radar system. In
this method, single-frequency signals of different frequencies are transmitted to the target at different
observation times, and the wideband signals are synthesized using the frequencies at different observation
times to obtain the resolution capability in the range direction. In addition, the relative motion synthetic
aperture of the target and radar is used to obtain the azimuth resolution capability, and finally the two-
dimensional imaging capability of the moving target is formed. Specifically, we established an ISAR
imaging model based on frequency diversity to synthesize a broadband signal and used an improved
backward projection algorithm (BP) to complete the two-dimensional imaging of the target. On this
basis, the influence of the transmission signal frequency selection on the imaging quality is analyzed, and
the half-power resolution in range and azimuth directions is derived. Furthermore, in order to eliminate
side lobes and improve imaging quality, we combined compressive sensing (CS) theory with a BP
imaging algorithm based on compressed sensing to obtain high-quality target 2D images. Simulation
and actual measurement results show that FDISAR can achieve two-dimensional imaging of moving
multi-scattering point targets. The application of this method is of great significance for reducing the
complexity of the ISAR imaging system and improving the flexibility of the system’s control bandwidth
resources.

1. INTRODUCTION

Inverse synthetic aperture radar imaging technology can carry out long-distance two-dimensional
imaging of air targets in all weather, and is an extremely important technical means in modern
battlefield defense systems [1–4]. In order to obtain high resolution in the range direction, ISAR
imaging system usually transmits broadband chirp signal [5–8] or stepped-frequency signal [9, 10]. A
series of imaging algorithms have been proposed for radar systems that transmit broadband chirp
signals. Common imaging methods include range-Doppler algorithm [11], range instantaneous Doppler
algorithm [12–14], super-resolution ISAR imaging algorithm [15], and ISAR imaging algorithm based on
compressed sensing [16, 17]. However, these imaging algorithms proposed for radar systems with chirp
signal modality can only improve the range resolution by increasing the transmitted signal bandwidth,
which increases the complexity and cost of the radar system’s transmitter and receiver [18]. At the

Received 12 October 2021, Accepted 28 December 2021, Scheduled 4 January 2022
* Corresponding author: Kefei Liao (kefeiliao@guet.edu.cn).
1 School of Information and Communications, Guilin University of Electronic Technology, Guilin 541004, China. 2 The 54th Research
Institute of China Electronics Technology Group, Shijiazhuang 050000, China.



186 Li, Liao, and Wen

same time, ISAR imaging technology is often applied to phased array radar systems. When the phased
array transmits broadband signals, it will cause antenna beam pointing deviation and time dispersion
effect, which needs to be solved by adopting a real-time delay phase shifter at each unit or sub-array
level of the array [19], which will increase the hardware requirements of the system.

Compared with the radar system of chirp modality, the radar imaging system of stepped-frequency
system has lower hardware requirements for high-resolution imaging, low instantaneous receiving
bandwidth, and low AD sampling rate. These advantages make it of high engineering and practical value.
A series of imaging algorithms have also been proposed for this system [20–22]. The intelligentization of
radar, cognitive imaging, intelligent task planning, intelligent management, and optimized scheduling of
radar resources all put forward higher requirements for the flexibility of resource control [23]. However,
once the frequency step length of the stepped-frequency system radar and the number of sub-pulses in the
burst are determined, the bandwidth and number of sub-pulses emitted cannot be adjusted during the
imaging process, which makes it difficult to meet the imaging quality requirements of different targets.
Therefore, the establishment of a set of flexible bandwidth control and low hardware requirements of the
radar signal system, and under the system to propose the corresponding imaging methods to improve
the intelligence of the radar imaging system is of great significance.

The frequency diverse array (FDA) technology can combine the single frequency signal emitted
by a single array element to synthesize the broadband signal [24, 25]. Applying the idea of frequency
diversity to ISAR, the frequency diversity in space is transformed into the frequency diversity in time
to form a new FDISAR system. In this system, the radar only needs to transmit a single frequency
signal at each observation time. The broadband signal is synthesized by superposing the echo signals of
different frequencies emitted at different observation moments, and synthetic aperture is generated by
combining the relative motion between the target and the radar, finally forming the two-dimensional
resolution capability of the target. The advantages of this technology are mainly as follows:

A. it does not need to transmit broadband signals, which will reduce the requirements of radar
transmitter and receiver;

B. it can flexibly adjust the signal bandwidth by increasing or decreasing the number of transmitted
signal frequencies, which is conducive to resource allocation according to target characteristics and
improves the intelligence of radar system [23].

This paper will study the imaging method of FDISAR, the influence of frequency selection on
imaging quality, and the derivation of resolution.

This paper is organized as follows. The signal model of FDISAR imaging is presented in Section 2.
The improved backward projection algorithm, periodic analysis of imaging results, and resolution
derivation are given in Section 3. In addition, in order to further improve the imaging quality, a
BP imaging algorithm based on compressed sensing is proposed. Simulated and measured data-based
experimental results are analyzed in Section 4. The conclusion is given in Section 5.

2. SIGNAL MODEL

This article is mainly aimed at the target of smooth motion, that is, the target can be regarded as a
uniform linear motion during the imaging process. Therefore, the geometric relationship between the
target and radar during the FDISAR imaging process is shown in Fig. 1.

It can be seen from the signal model that unlike the stepped frequency signal ISAR system,
the FDISAR system transmits narrowband signals f1, f2...fn of different frequencies at different times
t1, t2...tn, and does not repeat these narrowband signals. Therefore, FDISAR has the flexibility to adjust
the bandwidth by transmitting narrowband signals of different frequencies. Through the algorithm
synthesis in the later stage, the broadband observation effect can be obtained.

For the convenience of analysis, the target’s motion model is decomposed into translational and
rotational components. FDISAR imaging geometry diagram is shown in Fig. 2.

At the initial moment, the origins of the target moving coordinate axis x-y and the fixed coordinate
axis v-u are the same point, and the angle between the coordinate axes is θ0. The relationship between
the target motion coordinate axis and the fixed coordinate axis can be rewritten as:[

u

v

]
=

[
cos [θ (t)] sin [θ (t)]

− sin [θ (t)] cos [θ (t)]

] [
y

x

]
+

[
0

d (t)

]
(1)
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Figure 1. Geometric diagram of target and radar
during imaging.

Figure 2. FDISAR imaging geometry diagram.

where θ(t) = θ0+ωt is the angle that the target has turned during the imaging process; ω is the speed at
which the target rotates; d(t) = Vrt is the distance that the target moves radially. The radar transmits
single-frequency signals to the target at a certain time interval (TPRI of pulse repetition interval). The
frequency of the radar at the time of tn = nTPRI is fn = f0 + f(n), n = 1, 2, ...N , f0 is the starting
frequency, and f(n) is the signal frequency increment. Assuming that in the imaging process, the target
is always in the radar beam, and there is no multiple scattering and no effect on polarization, then the
echo signal received is as:

sr (t, tn) =

∫
x

∫
y

I (x, y) st (t− 2R (tn) /c) dxdy (2)

where I(x, y) is the scattering point function of the target; c is the speed of light; R(tn) =√
(R0 + v(tn))2 + (u(tn))2 is the distance from the target to the radar; v(tn) and u(tn) can be

represented by Equation (1). In the case of high frequency, the target can be regarded as a scattering
point model, and the scattering point intensity of the target is assumed to be 1. At time tn, the
radar’s transmitted signal is st(tn, t) = rect(t/τ) exp(j2πfnt), and τ is the pulse width. After mixing
the received echo signal with exp(j2πfnt), the echo signal can be expressed as:

sr (tn) =

I∑
i=1

exp

(
−j2πfn

2Ri (tn)

c

)
(3)

where I is the number of scattering points, and Ri(tn) is the distance from the ith scattering point to
the radar at time tn.

3. BACKWARD PROJECTION ALGORITHM

Firstly, an improved backward projection algorithm based on two-dimensional coherent accumulation
after phase compensation is introduced. Then the effect of linear frequency increment and random
frequency multiplication increment on image quality is analyzed. In addition, the expression of half-
power resolution is derived. Finally, BP imaging algorithm based on compressed sensing is proposed to
improve the image quality.

The BP algorithm presented in this section is different from the traditional BP algorithm in that it
does not need pulse compression, but directly obtains the coherence at the scattering point of the echo
signal through phase compensation, and then carries out phase-coherent accumulation to obtain the
two-dimensional image of the target. Since this paper is aimed at the target of smooth movement, it is
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easy to obtain the target’s movement trajectory, which ensures that the grid divided at each moment
is completely matched.

3.1. Imaging Method

The BP algorithm in this paper is improved on the basis of the traditional BP algorithm and directly
performs coherent accumulation on signals of different frequencies without distance compression. After
the radar emits pulses, the grid is divided at a certain interval in the imaging area, and it is assumed
that the grid divided at each moment exactly matches the target. By calculating the distance of each
grid node from the radar, a phase compensation matrix with different distance histories is constructed.
The schematic diagram of the grid division of the imaging area is shown in Fig. 3.

Figure 3. Schematic diagram of imaging area grid division.

Where, ∆y is the spacing of grid division in the y-axis direction; ∆x is the spacing of grid division
in the x-axis direction; Nt is the total number of grid division in the y-axis direction; Nr is the total
number of grid division in the x-axis direction; R1,1 is the distance between grid node (1, 1) and the

radar, and the phase compensation term on this node as: ej2πf
2R1,1

c . Then the phase compensation
matrix on the whole grid at time tn can be expressed as:

Θtn =


ej2πfn

2R1,1(tn)

c ej2πfn
2R1,2(tn)

c · · · ej2πfn
2R1,Nt(tn)

c

ej2πfn
2R2,1(tn)

c ej2πfn
2R2,2(tn)

c · · · ej2πfn
2R2,Nt(tn)

c

...
...

. . .
...

ej2πfn
2RNr,1(tn)

c ej2πfn
2RNr,2(tn)

c · · · ej2πfn
2RNr,Nt(tn)

c


Nr×Nt

(4)

where the distance between grid node (nr, nt) and the radar is Rnr,nt(tn)=
√

(R0+vnr(tn))2+(unt(tn))2.
According to Equation (1), vnr(tn) and unt(tn) can be obtained as follows:[

unt (tn)

vnr (tn)

]
=

[
cos [θ (tn)] sin [θ (tn)]

− sin [θ (tn)] cos [θ (tn)]

]
·
[

(nt− ([Nt/2])) ·∆y

(nr − ([Nr/2])) ·∆x

]
+

[
0

d (tn)

]
(5)

where [·] in [Nt/2] and [Nr/2] represents the down round operation. Echo matrix Etn = sr(tn) ·Θtn is
obtained by multiplying the echo signal at tn time with the corresponding phase compensation matrix.
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Then, the echo matrix of N times observation is added to realize the coherent accumulation of both
distance direction and azimuth direction at the same time. Finally, the target two-dimensional image
can be expressed as:

S =

∣∣∣∣∣
N∑

n=1

Etn

∣∣∣∣∣ (6)

3.2. Periodic Analysis of Imaging Results

This section mainly analyzes the effect of linear frequency increment and random frequency
multiplication increment on imaging results. The phase compensation is carried out for the echo signal of
any scattering point i falling on the grid node in Fig. 3. Then the result of phase-coherent accumulation
of echo data after N times of phase compensation can be expressed as:

SR (nr, nt) =
N∑

n=1

exp

(
j2πfn

(
2
Rnr,nt (tn)−Ri (tn)

c

))
(7)

Suppose that the initial angle between coordinate axes is θ0 = 0. In general, the angle that the target
turns relative to the radar during the imaging process satisfies: ωt < 5◦. Then the angle can be regarded
as a small corner,

Ri (tn) ≈ R0 + xi − yi · ωtn + Vrtn (8)

Rnr,nt (tn) ≈ R0 + xnr − ynt · ωtn + Vrtn (9)

where xnr = (nr− ([Nr/2])) ·∆x, ynt = (nt− ([Nt/2])) ·∆y, ωtn = n ·∆θ. ∆θ = TPRI ·ω is the rotation
angle of the target within a transmitting signal interval (ω is a constant), and then Equation (7) can
be simplified as:

SR (nr, nt) =

N∑
n=1

exp

(
j2πfn

(
2
xnr − xi + (yi − ynt)n ·∆θ

c

))

= exp(j2πη)
N∑

n=1

exp

(
j2π

2

c
(f0 (yi − ynt)n ·∆θ+f (n) (xnr − xi) + f (n) (yi − ynt)n ·∆θ)

)
(10)

where η = 2f0(xnr − xi)/c, in general, f0 ≫ f(n), 1 ≫ ωtn = n · ∆θ. Then the third term
f(n)(yi − ynt)n ·∆θ of the exponential in the above formula can be ignored. If the frequency increment
is f(n) = n ·∆f , ∆f is frequency offset. Then, Equation (10) can be regarded as an geometric sequence,
so that the two-dimensional imaging result of scattering point (xi, yi) can be obtained as follows:

S (nr, nt) =

∣∣∣∣∣∣∣∣
sin

{
Nπ

(
2

c
(f0 ·∆θ (yi − ynt) + ∆f (xnr − xi))

)}
sin

{
π

(
2

c
(f0 ·∆θ (yi − ynt) + ∆f (xnr − xi))

)}
∣∣∣∣∣∣∣∣ (11)

The above equation is similar to the “sinc” function. Therefore, when 2 · (f0 ·∆θ ·∆ỹ+∆f ·∆x̃)/c = k,
k = 0, 1, 2, ..., the maximum value of coherent accumulation is obtained in Equation (11), where
∆ỹ = yi − ynt, ∆x̃ = xnr − xi. When k is a fixed value, 2 · (f0 ·∆θ ·∆ỹ+∆f ·∆x̃)/c = k is a line, that
is, the two-dimensional imaging result of the scattered point (xi, yi) is a line. However, k = 0, 1, 2, ...,
so multiple lines may appear in the imaging region. Therefore, linear frequency increment will result
in false scattering points and periodicity of imaging results, so that effective imaging results cannot be
obtained. The two-dimensional imaging results of a single scattering point located at the center of the
imaging scene are shown in Fig. 4.

Figure 4(a) is the imaging result of removing the third exponential item n ·∆fn(yi − ynt)n ·∆θ in
Equation (10), and Fig. 4(b) is the imaging result containing n ·∆fn(yi − ynt)n ·∆θ. It can be seen from
Fig. 4(a) that the imaging of linear frequency increment signal will cause false scattering points and
make the imaging results periodic on the x-axis and y-axis. In the case of removing n ·∆f ·∆ỹ · n ·∆θ,
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(a) (b)

Figure 4. Imaging results of the target with constant frequency increment. (a) Remove the
n ·∆f ·∆ỹ · n ·∆θ. (b) Contains the n ·∆f ·∆ỹ · n ·∆θ.

when ∆ỹ = 0, Equation (10) is the sum of a complex exponential signal that constitutes a harmonic
relationship, and its fundamental frequency is 2∆f/c. When ∆x̃ = 0, Equation (10) is also the sum of
a complex exponential signal that constitutes a harmonic relationship, and its fundamental frequency
is 2f0 ·∆θ/c. Therefore, the periods of Equation (10) on the x-axis and y-axis are:

Tx =
c

2 ·∆f
(12a)

Ty =
c

2f0 ·∆θ
(12b)

It can be seen from Fig. 4(b) that compared with Fig. 4(a), the energy on the line is dispersed, greatly
reducing the false scattering points. This is because the n ·∆fn(yi − ynt)n ·∆θ term is related to n, so
that in the process of phase-coherent accumulation, the phase-coherent property of data at positions
other than the real scattering points on the line will drift. On the other hand, when ∆x̃ = 0, due to the
existence of n ·∆fn(yi − ynt)n ·∆θ term, Equation (10) is no longer the sum of a complex exponential
signal that constitutes a harmonic relationship. Therefore, the period of Equation (10) is the minimum

value divisible into all complex exponential signal periods 1/
⌢

kn, where
⌢

kn = 2(nf0 ·∆θ+n2∆f ·∆θ)/c.
Then the period of Equation (10) on the y-axis can be written as:

⌢

T y =
c

2 ·∆θ ⟨F1, F2, ...FN ⟩
(13)

where Fn = nf0+n2·∆f , ⟨·⟩ is the operation of taking the greatest common divisor. Because f0 ≫ N ·∆f ,

⟨F1, F2, ...FN ⟩ ≪ f0, and then
⌢

T y ≫ Ty. As can be seen from Fig. 4(b), the periodicity of the target
image on the y-axis cannot be seen at the same scene size, which, to some extent, expands the no blur
imaging range of the radar in the y-axis direction. The periodicity on the x-axis is the same as described
earlier.

If f(n) is the increment of random multiplication frequency, f(n) = hn ·∆f , where hn is a random
positive integer. Therefore, Equation (10) can no longer form a geometric sequence. Only if ∆ỹ = 0,
∆x̃ = 0, the coherent accumulation can be obtained at each observation time, thus obtaining the
maximum value of the function, so no false scattering point will be generated. However, this random
frequency multiplication increment does not change its periodicity. The period on the x-axis is still
Equation (12a), and the period on the y-axis is still Equation (13). From the above analysis, it can
be seen that the increment of random multiplication frequency can eliminate the false scattering points
and increase the periodicity on the y-axis to some extent. Therefore, it is more reasonable to choose
random multiplication frequency increment as the base band signal of FDISAR imaging system.
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3.3. Resolution Analysis of Random Multiplication Frequency Increment

In this paper, we introduce the boundary of the half-power resolution in the x-axis direction and y-
axis direction, and model and analyze the half-power resolution of the scattering point imaging model
(Equation (10)) by referring to the literature [26]. After ignoring the n · ∆fn(yi − ynt)n · ∆θ term,
Equation (10) can be abbreviated as:

SR (∆x̃,∆ỹ) = exp (j2πγ)

N∑
n=1

exp

(
j2π

2

c
(f0 ·∆ỹ · n ·∆θ + f (n) ·∆x̃)

)
(14)

In the case of other parameters being the same, the combination f = [f(1), f(2), ...f(N)] of frequency
increments transmitted at different times affects the boundary of the half-power resolution. Then the
half-power resolution boundary can be expressed as:

|SR (∆x̃B,∆ỹB; f)|2 = N2/2 (15)

where (∆x̃B,∆ỹB) is the point at which the power of SR(∆x̃,∆ỹ) is reduced to half. The general
equation that the half-power resolution boundary is an ellipse is derived as:

S = |SR (∆x̃B,∆ỹB; f)|2 = N2/2

=

∣∣∣∣∣
N∑

n=1

exp

(
j2π

2

c
(n · f0 ·∆ỹB ·∆θ + f (n) ·∆x̃B)

)∣∣∣∣∣
2

=

∣∣∣∣∣
N∑

n=1

ejzn

∣∣∣∣∣
2

(16)

where zn = Af(n) +Bn, A = 4π ·∆x̃B/c, B = 4πf0 ·∆θ ·∆ỹB/c. According to Euler’s formula, it can
be rewritten as:∣∣∣∣∣

N∑
n=1

ejzn

∣∣∣∣∣
2

=
N∑

n=1

cos zn

N∑
m=1

cos zm +
N∑

n=1

sin zn

N∑
m=1

sin zm =
N∑

n=1

N∑
m=1

cos (zn − zm) (17)

By second-order Taylor expansion, Equation (17) can be simplified to:∣∣∣∣∣
N∑

n=1

ejzn

∣∣∣∣∣
2

=
N∑

n=1

N∑
m=1

cos (zn − zm) ≈
N∑

n=1

N∑
m=1

[
1− 1

2
(zn − zm)2

]
= N2/2 (18)

Equation (18) can be written as:
N∑

n=1

N∑
m=1

(zn − zm)2 = N2 (19)

Finally, the formula of the half-power resolution described by the general elliptic equation can be
achieved as:

N∑
n=1

N∑
m=1

(zn − zm)2 =

N∑
n=1

N∑
m=1

A2 [f (n)− f (m)]2 + 2AB [f (n)− f (m)] (n−m) +B2 (n−m)2

= a (f) (∆x̃B)
2 + b (f) ·∆x̃B ·∆ỹB + C (f) · (∆ỹB)

2 = N2 (20)

where a(f) = (4π/c)2(
N∑

n=1

N∑
m=1

[f(n)− f(m)]2), b(f) = 2(4π/c)2 · f0 ·∆θ · [
N∑

n=1

N∑
m=1

[f(n)− f(m)](n−m)],

C(f) = (4πf0 ·∆θ/c)2[N2(N2 − 1)/6]. The derivation process of the ellipse general form of the above
half-power resolution is similar to that in literature [26]. As can be seen from Equation (20), when a(f),
b(f) and C(f) are all non-zero elements, the half power resolution is an oblique ellipse. The schematic
diagram of the half-power resolution boundary is shown in Fig. 5.

In order to obtain the resolution in the x-axis and y-axis directions, we need to further derive the
long axis, short axis, and inclined angle of the oblique ellipse, and the specific process can be described
as:

a (f) (∆x̃B)
2 + b (f) ·∆x̃B ·∆ỹB + c (f) · (∆ỹB)

2 −N2 = 0 (21)
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(a) (b)

Figure 5. Half power resolution boundary diagram. (a) Half-power resolution boundary 3D schematic
diagram. (b) Half-power resolution boundary 2D schematic diagram.

The coordinate transformation formula in Fig. 5(b) can be written as:[
∆ỹB
∆x̃B

]
=

[
cosφ − sinφ

sinφ cosφ

] [
k

l

]
(22)

Substitute Equation (22) into Equation (21), then:

Ãl2 + B̃lk + C̃k2 + F̃ = 0 (23)

where Ã = a(f) cos2 φ−b(f) sinφ cosφ+c(f) sin2 φ, B̃ = 2(a(f)− c(f)) sinφ cosφ+b(f)(cos2 φ− sin2 φ),

C̃ = a(f) sin2 φ + b(f) sinφ cosφ + c(f) cos2 φ, F̃ = −N2. After the coordinate transformation, the

inclined angle of the oblique ellipse equation under the kol coordinate axis will be zero, that is B̃ = 0,
then:

B̃ = 2 (c (f)− a (f)) sinφ cosφ+ b (f)
(
cos2 φ− sin2 φ

)
= 0 (24)

Equation (24) is simplified as:

cot (2φ) =
a (f)− c (f)

b (f)
(25)

Then the inclined angle can be expressed as:

φ =



0 for b (f) = 0 and a (f) < c (f)
1

2
π for b (f) = 0 and a (f) > c (f)

1

2
cot−1

(
a (f)− c (f)

b (f)

)
for b (f) ̸= 0 and a (f) < c (f)

π

2
+

1

2
cot−1

(
a (f)− c (f)

b (f)

)
for b (f) ̸= 0 and a (f) > c (f)

(26)

Equation (23) can be further written as:

Ãl2 + C̃k2 + F̃ = 0 (27)

Then the square of the semi-long axis and the semi-short axis of the ellipse can be written as:

a2 =
−2N2√

[a (f)− c (f)]2 + b2 (f)− [a (f) + c (f)]
(28a)

b2 =
−2N2

−
√

[a (f)− c (f)]2 + b2 (f)− [a (f) + c (f)]
(28b)
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We choose twice the maximum projection value of the half power resolution boundary on the ∆x̃-axis as
the resolution in the x-axis direction, and choose twice the maximum projection value on the ∆ỹ-axis as
the resolution in the y-axis direction. Then the resolutions in the x-axis direction and y-axis direction
can be described as:

ρx = 2 ·max
(√

a2 |sinφ| ,
√
b2 |cosφ|

)
(29a)

ρy = 2 ·max
(√

a2 |cosφ| ,
√
b2 |sinφ|

)
(29b)

3.4. BP Hybrid Imaging Algorithm Based on Compressed Sensing

When the radar transmits the increment of random multiplication frequency signal, the energy on the
straight line in Fig. 4(a) except the real target point will be distributed randomly in the entire imaging
area. In the case of a certain number of emitted pulses, the energy intensity of this random distribution
will increase with the increase of the number of scattering points of the target, which will eventually affect
the image quality. In order to improve the image quality, a BP hybrid algorithm based on compressed
sensing is proposed based on the theory of compressed sensing. The compression perception theory
shows that as long as the signal in a transform domain is sparse or compressible, an observation matrix
that is not coherent with the sparse transform matrix can be used to project high-dimensional signals
into a low-dimensional space. Finally, by solving an optimization problem, the original signal can be
reconstructed from a small amount of projection information with high probability [27, 28]. During the
imaging process, the energy of the target echo signal is only determined by a few scattering centers [29],
which makes it possible to realize the BP hybrid imaging algorithm based on compressed sensing.

From the above analysis, it can be seen that the echo signal with the increment of random
multiplication frequency is periodic. Therefore, in order to achieve blur-free imaging range imaging, the
frequency offset of the transmitted signal should meet the following requirements:

∆f̄ ≤ c

2 · Lmax
(30)

where Lmax is the maximum blur-free imaging distance in the X-axis direction. The echo after mixing is
written in the form of a vector Sr = [sr(t1), sr(t2), ...sr(tN )]. The frequency increment of the transmitted
signal at time tn is fn = hn · ∆f̄ , where hn is a random positive integer between 1 and N . The data
processing diagram of the improved BP imaging algorithm is shown in Fig. 6.

Finding a sparse transformation matrix makes the projection of the echo signal sequence Sr on it
sparse, which is one of the keys of the imaging algorithm based on compressed sensing. The result of the
improved BP imaging algorithm is sparse. Therefore, it is essential to write “Data processing” in Fig. 6

Figure 6. Schematic diagram of data processing for improved BP imaging algorithm.
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in the form of matrix multiplication to find the sparse transformation basis. According to Equation (6),
the two-dimensional image of the target can be written as:

S =

∣∣∣∣∣
N∑

n=1

[sr (tn) ·Θtn ]

∣∣∣∣∣ (31)

We straighten the two-dimensional image matrix and phase compensation matrix, then Equation (31)
can be rewritten as:

γÑ×1 = ΨÑ×N · Sr (32)

where γÑ×1 = S (:), Ñ = Nr ·Nt, ΨÑ×N (:, n) = Θtn (:), (ΨÑ×N )H ·ΨÑ×N ≈ EN×N , (·)H represents
the conjugate transpose, and EN×N is a single matrix, the specific derivation process as:

[Θt1 (:) ,Θt2 (:) , ...ΘtN (:)]H [Θt1 (:) ,Θt2 (:) , ...ΘtN (:)] = Ē (33)

Then the element of matrix Ē at position (n, k) can be written as:

Ē (n, k) = [Θtn (:)]
H Θtk (:) =

∑∑
e−j2πfn

2Rnr,nt(tn)

c ej2πfk
2Rkr,kt(tk)

c (34)

Substitute Equation (9) into Equation (34) as:

Ē (n, k) =
∑∑

e−j2πfn
2(R0+xnr−ynt·n·∆θ+Vrtn)

c ej2πfk
2(R0+xkr−ykt·k·∆θ+Vrtk)

c (35)

Since formula (35) is the sum of the multiplication of the corresponding elements of the conjugate
transpose of the phase compensation matrix at the time of tn and the phase compensation matrix at
the time of tk, more specifically, it is the inner product of the phase compensation term at the grid
point corresponding to the time of tn and time of tk. Therefore, there is xnr = xkr, ynr = ykr in the
above equation, so Equation (35) can be abbreviated as:

Ē (n, k) =

Nr∑
nr=1

Nt∑
nt=1

ej2π
2fk(R0+xnr−ynt·k·∆θ+Vrtk)−2fn(R0+xnr−ynt·n·∆θ+Vrtn)

c

=

Nr∑
nr=1

Nt∑
nt=1

ej2π
2fk(xnr−ynt·k·∆θ)−2fn(xnr−ynt·n·∆θ)

c ej2π
2fk(R0+Vrtk)−2fn(R0+Vrtn)

c

= β

Nr∑
nr=1

Nt∑
nt=1

ej4π
(fk−fn)xnr+(fn·n·∆θ−fk·k·∆θ)ynt

c

= β

Nr∑
nr=1

Nt∑
nt=1

ej
4π(fk−fn)

c
xnrej

4π(fn·n·∆θ−fk·k·∆θ)
c

ynt (36)

where β = ej2π
2fk(R0+Vrtk)−2fn(R0+Vrtn)

c is constant term. Because of xnr = −(Nr/2) · ∆x + nr · ∆x,
ynt = −(Nt/2) ·∆y + nt ·∆y, Equation (45) can be written as:

Ē (n, k) = β

Nr/2∑
nr=−Nr/2

Nr/2∑
nt=−Nt/2

ej
4π(fk−fn)·∆x

c
nrej

4π(fn·n·∆θ−fk·k·∆θ)·∆y

c
nt

= β

Nr/2∑
nr=−Nr/2

ej
4π(fk−fn)·∆x

c
nr

Nr/2∑
nt=−Nt/2

ej
4π(fn·n·∆θ−fk·k·∆θ)·∆y

c
nt

= β

Nr/2∑
nr=−Nr/2

ej2πµ·nr
Nr/2∑

nt=−Nt/2

ej2πν·nt (37)
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where µ = 2(fk−fn)·∆x
c and ν = 2(fn·n·∆θ−fk·k·∆θ)·∆y

c is constant. Equation (37) is the product of the
respective sums of two proportional sequences, which can be further simplified to:

∣∣Ē (n, k)
∣∣ =

∣∣∣∣∣∣
Nr/2∑

nr=−Nr/2

ej2πµ·nr
Nt/2∑

nt=−Nt/2

ej2πν·nt

∣∣∣∣∣∣ =
∣∣∣∣sin (πNrµ)

sin (πµ)

∣∣∣∣ · ∣∣∣∣sin (πNtν)

sin (πν)

∣∣∣∣ (38)

The zero position of the | sin(πNrµ) sin(πµ)| term in Equation (47) is as:

Nrµ =
2 (fk − fn) ·∆x ·Nr

c
= ±D (39)

where D is any positive integer. That is:

|fk − fn| = D
c

2∆x ·Nr
(40)

Therefore, we assume that the selected ∆f is satisfied as:

∆f = D
c

2∆x ·Nr
(41)

This will ensure that in the case of k ̸= n, |Ē(n, k)| is close to zero. There are:∣∣Ē (n, k)
∣∣ = {

Ñ for k = n

σ, σ ≪ Ñ for k ̸= n
(42)

So there is 1
Ñ
|Ē| ≈ E, where E is the identity matrix. Then Equation (32) can be written as:

Sr =
1

Ñ

(
ΨÑ×N

)H
γÑ×1 (43)

It can be seen from Equation (43) that the echo signal Sr can be sparsely represented by (ΨÑ×N )H/Ñ .

Therefore, let (ΨÑ×N )H/Ñ be a sparse transformation matrix and be written as: Ψ̃Ñ×N =

(ΨÑ×N )H/Ñ . In addition, we designed an M ×N observation matrix ΨM×N as:

ϕ (m,n) =

{
1, {(m,n) |sqe (m) = n}
0, else

(44)

where M ≥ c1K ln(N); K is the number of non-zero elements in γÑ×1; c1 is a constant between 0.5 and
2; sqe is a sequence composed of M numbers randomly selected from the set [1, N ] without repeating. It

can be easily proved that ΦM×N and Ψ̃N×Ñ are incoherent [30]. Therefore, the target two-dimensional
image γÑ×1 can be reconstructed by optimizing the following formula:

γ = min ∥γ∥1 ,
s.t. Y = ΦM×NΨ̃N×ÑγÑ×1

(45)

where Y = ΦM×NSr. Since ΦM×N and Ψ̃N×Ñ are incoherent, so satisfying the RIP condition, a good
optimization result can be obtained through the orthogonal matching pursuit algorithm (OMP) [31].

4. EXPERIMENTAL RESULT

In order to verify the effectiveness of the frequency diverse ISAR two-dimensional imaging method, we
perform experiments with simulated and raw data.
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4.1. Experiments Using the Simulated Signal

Suppose that the target is located in the center of the scene, and the target is observed for 401
times at the same time interval of the radar. The initial frequency of the radar transmission signal
is f0 = 10GHz; the frequency offset is ∆f = 1.5MHz; and the frequency increment is in the form of
random frequency multiplication: f(n) = f̃(n) is the increment of random multiplication frequency,

where f̃ = Rand([0,∆f, 2 ·∆f, ...400∆f ]), Rand(·) represent the positions of randomly scrambled
sequence elements. During the imaging process, the angle of the target relative to the radar is 10◦,
and the distance between the radar and the center of the target is R0 = 6km. The imaging area
is divided into grids with a size of 100 × 100; the grid spacing in the y-axis direction is ρy; the grid
spacing in the x-axis direction is ρx; the grid center is (50, 50). Now set the five scattering points
in (50, 50), (50, 30), (50, 70), (30, 50), (70, 50), assuming that the target scattering coefficient is 1. The
target imaging effect is shown in Fig. 7.

According to Equation (29), the spacing between adjacent cells in the x-axis direction in Fig. 7 is
0.194m, and the spacing between adjacent cells in the y-axis direction is 0.067m. The imaging results
of the increment of random multiplication frequency are shown in Fig. 7(b), from which it can be seen

(a) (b)

Figure 7. Comparison of target imaging effects. (a) Multi-scattering target scene graph. (b) Target
imaging results the increment of random multiplication frequency.

(a) (b)
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(c) (d)

(e) (f)

Figure 8. Comparison of three-dimensional imaging results. (a) In the case of a signal-to-noise ratio of
15 dB, three-dimensional imaging results of the increment of random multiplication frequency. (b) In the
case of a signal-to-noise ratio of 15 dB, three-dimensional imaging results of BP hybrid imaging based
on compressed sensing. (c) In the case of a signal-to-noise ratio of 10 dB, three-dimensional imaging
results of the increment of random multiplication frequency. (d) In the case of a signal-to-noise ratio
of 10 dB, three-dimensional imaging results of BP hybrid imaging based on compressed sensing. (e) In
the case of a signal-to-noise ratio of 5 dB, three-dimensional imaging results of the increment of random
multiplication frequency. (f) In the case of a signal-to-noise ratio of 5 dB, three-dimensional imaging
results of BP hybrid imaging based on compressed sensing.

that the real relative position of the target is obtained, and there is no false scattering point. From
the above imaging simulation results, it can be seen that the improved BP imaging algorithm based
on FDISAR proposed in this paper can complete two-dimensional imaging of multi-scattering moving
targets. However, it can be seen from Fig. 8(a) that although the increment of random multiplication
frequency eliminates the false scattering points and obtains the real relative position of the target, it also
generates some side lobe. This phenomenon will be more serious with the increase of scattering points
when the number of transmitting pulses is certain. For this reason, we propose a BP hybrid imaging
algorithm based on compressed sensing. The imaging results are shown in Fig. 8(b), from which we
can see that the algorithm can well reconstruct the two-dimensional image of the target, reduce the
influence of the side lobe, and improve the imaging quality.
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4.2. Experiments Using the Measured Data

In order to further verify the proposed system and imaging algorithm, we used a single-transmission and
single-reception radar to implement imaging experiments. The transceiver antenna is 1.6m away from
the target center. During the imaging process, the angle of the target relative to the radar is 10◦. The
radar transmits 101 pulse signals to the target at equal intervals. The starting frequency of the radar
transmission signal is f0 = 10GHz; the frequency offset is ∆f = 20MHz; the frequency increment f(n)
is frequency values randomly selected from the set [0,∆f, 2∆f, ...24∆f ]. The target optical diagram
and the schematic diagram of the experimental system are shown in Fig. 9.

1

2

o
3

x

y

(a)

(b)

Figure 9. Schematic diagram of target optical photo and test system. (a) Schematic diagram of the
test system. (b) Optical photo of target.

The target consists of three metal balls, and the target can rotate around the vertical axis. Taking
the intersection point of the connection line of the three balls in Fig. 9(a) as the origin of the coordinate
axis, the three balls are placed at the positions of: ball 1 (−0.50, 0), ball 2 (0,−0.20), and ball 3 (0.13, 0),
respectively. Calculate the resolutions in the x-axis direction and y-axis direction as 0.2406m, 0.0663m
respectively by Equation (29), and divide the cells according to the resolution. Using the proposed
imaging algorithm, the imaging results of the target are shown in Fig. 10.

It can be seen from Fig. 10(b) that the position of the origin of the coordinate axis is (11, 11).
The first ball on the left is ball 1, which is two cells away from the origin of the coordinate, that is, a
distance of 0.4812m. The first ball at the top is 3 cells from ball 2 and the origin of the coordinate,
that is, 0.1989m apart. The first ball at the bottom is the distance between ball 3 and the origin of
the coordinates, that is, 0.1326m. This is basically consistent with the position where the three balls
are placed, which further verifies that the FDISAR improved BP imaging algorithm proposed in this
paper can achieve blur-free imaging of moving scattering point targets, but it can be seen from Fig. 9
that there are certain side lobes. We have further verified the effectiveness of the BP hybrid algorithm
based on compressed sensing. We randomly selected 70 values from the echo data Sr according to the
observation matrix of Equation (44). The reconstruction results obtained are shown in Fig. 11.

Compared with Fig. 10, Fig. 11 obtained a clearer two-dimensional image of the target, reduced the
side lobe, and correctly reconstructed the relative position of the target, which verified the effectiveness
of the algorithm.
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(a) (b)

Figure 10. Measured imaging results. (a) 3D image of target imaging result. (b) 2D image of target
imaging result.

(a) (b)

Figure 11. CS-measured imaging results. (a) Three-dimensional display of CS-target imaging results.
(b) Two-dimensional display of CS-target imaging results.

5. CONCLUSION

In this paper, an improved BP imaging algorithm based on frequency diversity ISAR is proposed, which
combines the idea of frequency diversity and inverse synthetic aperture. The method can transmit signals
of different frequencies to the target at different times to synthesize broadband signals and generate
synthetic aperture through the relative motion between the target and the radar, finally obtaining
the two-dimensional imaging capability of the target. On this basis, the analysis shows that a constant
frequency increment will result in the generation of false scattering points, and the increment of random
multiplication frequency can eliminate the effect of false points and obtain a two-dimensional imaging
result without blurring the target. However, the increment of random multiplication frequency causes
the energy other than the real target point to be randomly dispersed in the entire imaging area, causing
a certain degree of side lobe rise in the imaging result, which affects the imaging quality. In response to
this situation, we combined the improved BP imaging algorithm with the theory of compressed sensing
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to propose a BP hybrid imaging algorithm based on compressed sensing, and finally obtained a high-
quality target 2D image, reducing the impact of imaging side lobes and improving imaging quality.
In the simulation and actual measurement experiments, the effectiveness of the imaging method of
the FDISAR imaging system proposed in this paper is verified. Because FDISAR does not need to
transmit broadband signals, and the bandwidth can be flexibly adjusted during the imaging process,
the application of this method is of great significance for reducing the complexity and cost of the ISAR
imaging system and improving the flexibility of the system’s control bandwidth resources.
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