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Performance Prediction of Directed Energy Weapons

Graham V. Weinberg*

Abstract—Directed energy weapons provide a number of useful functions for the modern fighting force,
and hence it is useful to produce a framework in which such a weapon’s performance can be predicted.
Towards this objective this paper introduces a new stochastic model to determine the number of targets
defeated by a directed energy weapon over a given time interval. The key to this is to introduce a
general queueing model, where arrivals are modelled by a renewal process, and the service time of a
target being affected by the weapon is related to its probability of defeat. The queue is assumed to have
an infinite capacity, and it is shown how the waiting time of detected threats can be modelled by an
auxiliary delay process. A random variable counting the number of targets processed by the queue is
then defined. Several functions constructed from this random variable will be investigated in order to
identify a suitable metric for assessing performance. In order to facilitate this an example where a high
energy laser is used for threat defeat is examined to investigate the utility of the identified performance
metrics. As will become apparent, the modelling framework has considerable utility due to the fact that
it can be used for performance prediction of any weapon system where an arrival process of threats and
corresponding probability of defeat can be specified.

1. INTRODUCTION

Directed energy weapons (DEWs) are an emerging disruptive technology that has utility for a number
of important military applications [1, 2]. These applications include disruption of airborne threats, such
as unmanned aerial vehicles and missiles, as well precision strikes against remote targets. The two main
categories of DEWs are high energy lasers (HELs) and high power radio frequency (HPRF) effectors.
HEL DEWs have shown potential for ground-based air defence against airborne threats as mentioned
above [3, 4], while HPRF DEWs can also be used for similar applications [5, 6]. While a HEL DEW must
be coordinated with a tactical radar in order to direct its beam at the threat for a sufficient dwell time,
an HPRF DEW has the advantage that it can deliver a wider beam of energy to provide instantaneous
regional defence. However, there are tradeoffs in the latter which can be clarified through the differences
between these two DEWs. The main difference between HEL and HPRF DEWs results from the way
in which energy is concentrated onto a target, and the effect that it is attempting to induce. A HEL
DEW focuses a narrow beam of energy onto a target in order to deliver a thermal disruption to it.
However, the beam is attenuated by a number of environmental factors which can result in jittering and
distortion of the beam. The consequence of this is that in certain environmental situations the HEL
beam may diverge from its target or not deliver sufficient power to cause thermal disruption [7, 8].

HPRF DEWs operate at larger wavelengths than HEL DEWs, and consequently require much
larger resonators or antennae to deliver energy onto a target. HPRF DEWs aim to disrupt a target by
disabling its electronics, through the delivery of pulsed power which can cause coupling into the target’s
internal systems. However, in order to deliver sufficiently high powered pulsed energy onto a target,
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the size and weight of the resultant effector make it difficult to deploy except in fixed locations or by
reducing its output power to make the resultant effector more portable [9, 10].

Due to the importance of DEWs it is useful to produce a framework in which their performance can
be analysed in ideal situations. Hence the purpose of the current paper is to develop this capability by
introducing a novel approach for performance prediction. This objective will be achieved by introducing
a queueing theory model for performance analysis of DEWs. This interpretation views the DEW effector
as the queue server, and detected threats are viewed as customers allocated to the queue. The time
taken for a threat to enter service is modelled by the customer’s delay in the queue. Arrivals to the
queue are interpreted as realisations of a general renewal process. The output of the queue can be
used to count the number of threats the DEW has defeated by a given time. This then permits the
determination of measures of effectiveness of a DEW relative to its operational characteristics and the
scenario in which it is functioning.

The general results derived will then be applied to a HEL DEW with parameters sourced from the
open literature, to illustrate how DEW performance prediction can be quantified using this approach. It
is worth remarking that the general methods can also be applied to HPRF DEWs; a suitable reference
which contains a relevant expression for the probability of HPRF DEW defeat of a target can be found
in [11]. Additionally, the framework developed can also be applied to any situation where a weapon
system faces a series of targets, provided that a suitable expression for the arrival process and probability
of defeat can be stipulated.

2. THE QUEUEING THEORY MODEL

A useful reference on the theory of queues is [12], from which some of the development has been
motivated. The queueing model has what is referred to as a G/G/1 structure, with an arbitrary renewal
process governing the arrivals of threats into the system, and with a service distribution determined
from the probability of disruption of the particle by the DEW effector. When a threat arrives it is
either served immediately, or it experiences a delay. In the case where a series of threats are detected
simultaneously they will be passed into the queue in an arbitrary order and then will be processed
individually. Once threats are placed in the queue they remain there until they are served, and the
queueing discipline is first come first served. It is also assumed that the queue has an infinite capacity,
although in practice only a finite number of threats will be present. One important consideration is that
while a threat is in the queue its distance, in terms of the physical combat space relative to the effector,
will reduce with time, and so by the time it enters service this must be taken into consideration.

Figure 1 provides an illustration of the combat scene under consideration. Here it is assumed that
the HEL DEW is deployed on a land-based platform and is facing a series of threats. In Figure 1 the
effector is denoted as E and is located at the origin of the Cartesian coordinate system. There are five
threats (V1, V2, . . . , V5), where the index denotes the order in which the respective threat has arrived.
Figure 2 provides an illustration of the queueing theory model adopted for this analysis.

Suppose that the arrival of threats into the system is through a renewal process with interarrival
times given by {Xj , j ∈ IN := {1, 2, . . .}}, which consists of non-negative independent and identically
distributed random variables. Then time of arrival of the nth threat is given by

Sn =

n∑
i=1

Xi (1)

for n ∈ IN. Consequently, the random variable defined by N(t) = supn∈IN{Sn ≤ t} counts the number
of arrivals by time t. Examples of renewal processes include the Poisson, where the interarrival times
are exponentially distributed [13].

Suppose that the service time of particle n is Yn, and that Dn is the delay or waiting time of
the nth particle in the queue. This particle spends a time Dn + Yn while in the queue, and the next
particle arrives at an interarrival time of Xn+1 after particle n. Hence the delay that this new particle
experiences is

Dn+1 =

{
Dn + Yn −Xn+1 if Dn + Yn ≥ Xn+1

0 otherwise,
(2)
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Figure 1. An illustration of the combat scene, where a series of threats arrive sequentially and then
are targeted by an effector. The threats are denoted Vj where the index indicates its order in terms of
arrival. The effector is labelled E and is shown at the origin. Once threats have been detected it can
be assumed that their position relative to E is known, as well as their relative speed.
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Figure 2. The process viewed as a queueing theory model. Threats arrive into the system, at a rate
of µ, and then are placed into the queue, in a first come first serve protocol. Once a threat has been
served it is considered a part of the output process. The latter counts the number of threats defeated
by a given time.

(see [12]). Based upon Eq. (2) it follows that

Dn+1 = max{0, Dn + Yn −Xn+1} (3)

for n ≥ 1 and D1 := 0 since the first particle to arrive will not experience a delay but is immediately
served. One can in principle solve Eq. (3) recursively. However, this is not required in the current
context.

Observe that the random variable Sn+Dn+Yn is the time at which the nth threat exits the queue,
relative to time beginning at zero. Hence the random variable

M(t) = sup
n∈IN

{Sn +Dn + Yn ≤ t} (4)

counts the number of threats that have passed through the queue by time t. Therefore, in specific
numerical examples, if one has a priori knowledge of the number of threats that the DEW is facing,
then Eq. (4) can be used to assess the performance of the DEW in defeating the threats before they
would arrive at their target (the DEW’s host platform) in the case that they are not intercepted.
Consequently it is important to determine a metric, based upon Eq. (4), which permits performance
analysis to be undertaken.

Note that if M(t) ≥ m, for some m ∈ IN, then this will imply that Sm +Dm + Ym ≤ t. Similarly,
if the latter holds then this will also imply that the former is also valid. Hence these two events are
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equivalent, and it follows that

IP(M(t) ≥ m) = IP(Sm +Dm + Ym ≤ t). (5)

It follows that Eq. (5) can be used to determine the complementary distribution function of M(t)
by evaluating its right hand side. The way in which this can be evaluated is to apply a Monte Carlo
simulation [14], since it will be analytically complicated to evaluate Eq. (5) directly. However, simulation
of the random variables Sm, Dm and Ym is manageable.

In order to derive the point probabilities of M(t) observe that

IP(M(t) ≥ m)− IP(M(t) ≥ m+ 1) = IP(M(t) = m) (6)

and Monte Carlo estimation of Eq. (5) can then be applied to Eq. (6).
It is also possible to compute the mean number of threats defeated as a function of time, by utilising

Eq. (6). Hence one can consider

IE(M(t)) =

∞∑
m=1

mIP(M(t) = m). (7)

The three functions (5), (6), and (7) can therefore be utilised as metrics to assess a given DEW’s
performance. These three metrics will hence be examined in the numerical example to follow.

As an aside, it is worth noting that this model developed for performance prediction is under ideal
situations. Hence in practice, a mismatch in modelling assumptions will necessarily introduce modelling
errors. In addition to this, it is assumed that the DEW platform is not subjected to other effectors
which may have an impact on performance.

Prior to considering a specific DEW some comments on the evaluation of these metrics, through
simulation of their components, are merited. The renewal process can be simulated through assumptions
imposed on the interarrival times. Service times can be simulated through an equivalence of it to
the probability of disruption of a particle as follows. Suppose that the probability that particle j is
eliminated by the server (or DEW effector) by time t is ϕj(t). Then the probability that Yj exceeds t is
equivalent to the probability that the particle is not processed by queue server by time t. Hence it can
be shown that

IP(Yj > t) = 1− ϕj(t). (8)

Consequently Eq. (8) characterises the time it takes for the queue server to process the threat in the
queue. Additionally, this expression is in a suitable form to simulate the service times by using the
inverse cumulative distribution function transform method [15]. The delays can also be simulated from
the interarrival times and service times through Eq. (3).

The next section will illustrate the application of the queueing model to performance prediction of
a HEL DEW.

3. EXAMPLE OF PERFORMANCE ANALYSIS

The context for the example considered is a land-based armoured fighting vehicle with a HEL DEW,
facing a series of homogeneous threats, as in the studies reported in [11, 16]. Here it is assumed that a
series of 10 threats are fired toward the DEW’s platform, and that each threat travels at a constant speed
of 50metres per second. From a radar perspective, it is assumed that the threats have a small radar
cross section (0.1metre square at X-band: see [16]). Once a threat appears (in terms of being detected
by the host platform) it is assumed that it will take 120 seconds to reach its target if not intercepted
and destroyed. The arrival of these threats is modeled as a Poisson process with a given mean rate of
arrivals, to be clarified in the two cases considered. The HEL DEW’s operational parameters have been
selected by consideration of parameters for HELs available in the open literature. The HEL is assumed
to have a power level of P0 = 30 kW with a duty cycle of C = 0.5. Laser propagation factors have been
selected from Tables 1 and 2 of [17]. The laser wavelength is λ = 1.045µm; the mechanical jitter angle
of the laser beam is θJ = 1; the intrinsic laser beam quality is M2 = 4; r0 is the transverse coherence
length associated with turbulence which is given by

r0 = 0.184

(
λ2

c2nR(t)

) 3
5

, (9)
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where c2n characterises the strength of turbulence and has been selected to be c2n = 10−15, and R(t) is the
range to the target from the DEW platform. The initial laser spot size is R0 = 0.1m, and the coefficient
γ representing atmospheric extinction due to both absorption and scattering, has been selected to be
γ = 2× 10−3 + 1.2× 10−1 km−1.

A model for HEL DEW effects, in terms of the probability of disruption of a target, has been
developed in [16], based upon these HEL characteristics. It assumes that the HEL dwell time can be
modelled by a truncated exponential distribution with parameter µτ and that the target has an average
illumination area parameter µσ. The target vulnerability threshold is assumed to be U , which is the
point above which the power density on the target causes a thermal effect.

The threats are assumed to travel at a constant speed toward the effector’s platform, so the distance
between the latter and the threat is a linear function. Specifically, for a speed of v metres per second
and assuming that the threat takes T seconds to reach its target if not intercepted, the distance of the
threat from the effector is given by R(x) = ν(T − x), for x ≤ T . Based upon [16], the probability of
HEL DEW disruption of the target can be shown to be

ϕ(t) =
µτ

1− e−µτ t

∫ t

0
e−µτ se

−µσ
U

κP0C
ν2(T−t)(T−t+s)

s ds. (10)

where κ = 1.8330× 10−5.
Throughout the following it will be assumed that µτ = 1/3 and µσ = ((1.0452)/9) × 10−7, with

U = 10. The selection for µτ is based upon an average HEL DEW dwell time of 3 seconds, while the
choice for µσ is motivated upon a result in [16] which produces a relationship between the laser and
radar wavelengths and a normal to the target’s surface area (see [16] for clarification of this). These
parameters, as well as the other HEL characteristics described above, can be applied to Eq. (10) directly.

Probabilities associated with the queueing process have been estimated using Monte Carlo
simulation with 5000 runs. Since it is assumed that the arrival process is Poisson, the interarrival
times are generated by simulating exponential random variables with rate µ, and then applying these to
Eq. (1) to generate the arrival times of threats. The service times of threats in the queue are simulated
by applying Eq. (10) to Eq. (8) and applying the inverse cumulative distribution simulation technique
referred to previously. Delays of threats in queues are simulated by appeal to Eq. (3), observing that
D1 = 0. Once a threat enters service it is necessary to adjust the function R(x) = ν(T − x) utilised in
Eq. (10). Note that threat j is detected at time Sj , is traveling at ν metres per second and would take
T seconds to strike its intended target if not intercepted. This threat enters service at time Sj + Dj ,
and at time Sj the distance of threat to effector is νT , and at time Sj + T it is zero. Hence it follows
that the distance between the effector and this threat is ν(Sj + T − t) at time t. Based upon this when
the threat enters service it is at a distance of ν(T −Dj) m from the effector. Consequently, relative to
the effector, the distance to the threat is ν(T −Dj− t) m, and the latter can then be applied to Eq. (10)
to produce the appropriate probability of disruption.

Tangible examples are now considered. The first example assumes that the interarrival times have
a mean rate of unity. Figure 3 plots the probability that M(t) exceeds m, where m ∈ {1, 2, . . . , 10}.
Hence it is plotting the probability that at least m threats are defeated as a function of time. Figure 4
plots the three cases m ∈ {1, 5, 10} for clarity. Clearly the probability that at least one threat is defeated
exceeds all the other cases, while m = 10 corresponds to all threats defeated. By time 140 seconds all
the threats have almost certainly been defeated.

Figure 5 provides a plot of the point probabilities that M(t) = m for the three cases in Figure 4.
The figure provides an interesting perspective of the situation. The two cases m = 1 and m = 5 show
that as time evolves, it is not likely that only a particular number of threats are defeated and that as
time continues these probabilities will unsurprisingly limit to zero. This is because as time increases it
is likely that more threats are defeated. The limiting case (where m = 10) will have the largest point
probability over time because it is more likely that all the threats are defeated. From a performance
prediction perspective, this plot is not extremely useful and is only included to provide an example of
point probabilities for this analysis.

Figure 6 is for the case where the mean arrival rate has been increased to 10 per second, and
Figure 7 shows the three cases (m = 1, m = 5, and m = 10). Due to the increase in the arrival rate the
main difference in this case is that it generally takes longer to eliminate the threats.
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Performance Prediction: Complementary Distribution Function

Figure 3. Plots of IP(M(t) ≥ m) where m ∈ {1, 2, . . . , 10}. The left most curve is for the case where
m = 1 while the right most curve corresponds to m = 10. Figure 4 provides clarification of this (curves
not labelled for brevity). This plot is for the situation where the arrival process has a mean arrival rate
of unity.
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Performance Prediction: Complementary Distribution Function

m = 1

m = 5

m = 10

Figure 4. A subplot based upon Figure 3 of IP(M(t) ≥ m) for the three cases m = 1, 5 and 10.

From the perspective of performance prediction comparisons, the two cases considered above can
be compared through a pairwise comparison of Figures 3 and 6, or through Figures 4 and 7. However, it
would be more useful if the results of each case could be compressed to allow comparison more readily.
In order to achieve this aim, one can plot the mean of the number of threats defeated as a function of
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Performance Prediction: Point Probabilities
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Figure 5. Plots of the point probabilities IP(M(t) = m) for the three cases where m = 1, 5 and 10.
The process arrival rate is unity.

0 50 100 150 200 250 300 350 400

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Performance Prediction: Complementary Distribution Function

Figure 6. A plot of the complementary cumulative distribution function IP(M(t) ≥ m) over the same
range of m as for Figure 3 except with a mean arrival rate of 10.

time. This then compresses the results for an example to a single performance curve. Figure 8 plots this
mean for the two examples considered above (Example 1 is for an arrival rate of unity, while Example 2
is for an arrival rate of 10). One can see that the mean number of threats defeated will decrease as the
arrival rate increases, which is plausible. Hence one can utilise the mean number of threats defeated as
a suitable DEW performance metric.
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m = 1

m = 5

m = 10

Figure 7. Subplot of Figure 6 over a smaller subset of m.
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Example 1

Example 2

Figure 8. A plot of the mean number of threats defeated, as a function of time, for the two examples
considered. This enables an easier comparison between the two different cases, where the key difference
is the threat rate of arrivals. This also suggests that the mean number of threats defeated can be used
as a performance metric. Example 1 has a mean arrival rate of unity, while Example 2 is for 10 arrivals
per second.

The plot in Figure 8 illustrates how one can apply the methodology to undertake performance
analysis and prediction of different HEL DEWs operating in the same setting. In the current case it
was shown how the arrival rate can affect the rate at which threats are defeated. This approach can also
be used to analyse other factors, both from the threat perspective and DEW operational characteristics.
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4. CONCLUSIONS AND FURTHER WORK

The purpose of this study was to develop a framework in which DEW performance prediction can be
undertaken. This was based upon interpreting the problem from a queueing theory perspective. The
key to this was to interpret the DEW effector as a queue server, and detected threats as customers
in the queue. It was shown how the number of threats defeated by a given time could be related to
functions of the queue.

It is worth observing that the novel framework is general and can be applied to performance
prediction of any weapon system where the arrivals can be modelled by a renewal process and provided
that an expression for the probability of defeat is available. The model itself has been developed with
land-based DEW applications. However, it can be applied to both airborne and maritime systems.

Analysis of the outputs of the queue indicated that a suitable way in which to undertake
performance predictions was to analyse the mean number of threats defeated as a function of time.
This was illustrated using a land-based application, where the arrival rate of threats was varied through
two examples. This methodology can be applied to assess a DEW’s operational effectiveness in a given
scenario by allowing variation of its parameter sets and plotting the corresponding mean number of
threats defeated.

This approach can be seen to extend quite readily to the case where there are a number of DEW
effectors, facing a series of threats. Once threats are detected they can then be allocated to what is
determined to be the most appropriate effector (queue) where it will await until it is eliminated. Thus
this is suggesting that a network of queues approach could be used to model the case where there is
more than one DEW effector. The construction of this novel framework will permit the performance
prediction of a wide range of weapon systems used across the defence forces. This weapon performance
prediction capability will form the basis for future research.
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