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Abstract—We presented a miniaturized defected ground structure-based millimeter-wave (MMW)
contemporary MIMO antenna for 5G smart applications devices. The proposed MIMO antenna offers
many advantages including high gain, compactness, planar geometry, wide impedance bandwidth,
and reduced mutual coupling effects performance. The top layer of the proposed four-port MIMO
antenna design comprises 1× 2 rectangular patch array structures, with each placed at the middle of a
20× 20mm2 substrate of material (RO4350B) having thickness of 0.76mm and loss tangent of 0.0037.
For miniaturization and better performance, both the ground layer and radiating patches are defected
with slots of a rectangular shape while an E-shaped slot is placed at the center of the ground plane. The
operating impedance bandwidth of the proposed antenna ranges from 26.4 to 30.9GHz incorporating
the dominant portion of the mm-wave band. The proposed MIMO antenna is also characterized by the
fundamental MIMO performance metrics such as Envelope Correlation Coefficient (ECC) which is less
than 0.12 for any two-element array that encounters the mandatory standard of < 0.5, high Diversity
gain (DG) reaching its ideal value of 10 as well as minimum isolation of −19 dB with a total efficiency
of 85% at 28GHz. These characteristics make the proposed compact four-port MIMO antenna one of
the best candidates to be used in 5G portable devices.

1. INTRODUCTION

The foremost goal of the Internet of Things (IoT) is to flawlessly link new industries as well as new user
experience with boosted functioning and reasonable prices with good efficiency [1]. The evolution of
5G (fifth generation) will introduce a route for very intelligent IoT technologies on a big scale [2]. The
reason behind this latest achievement in the field of wireless technology is the 5G mobile communications
evolution that leads the society to a stage of connectivity at an abundant rate and radio of significant
capacity, having a reduced latency level. The 5G is expected to grab a maximum data rate of 20Gbps
alongside an improved networking capacity by introducing the latest portion of the spectrum known
as the millimeter-wave (mm-wave) band from 30–300GHz [3]. However, these millimeter-waves suffer
from various constraints, comprising free-space loss, high atmospheric losses, and bigger manufactured
cost [4]. Intriguingly, at 28GHz with some other mm-wave bands, the propagation losses are very low
as compared to others in this portion of the whole mm-wave spectrum [5]. The real-world execution
of 5G systems is conditional on the efficient configuration of design analysis of the 5G antennas as
these are the fundamental elements of all communication systems [6]. Furthermore, 5G mm-wave
antennas are intended to have high efficiency and gain performance values as well as operate for larger
bandwidths by improving SNR and data rate. Due to the many benefits of design simplicity and planar
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structure, considerable research has been dedicated to mm-wave wireless communications by utilizing
printed antennas [7, 8]. Furthermore, these printed mm-wave antennas present the main feature of 5G
technology to increase the capacity of the 5G network and reliability because these antennas simplify
the MIMO configuration design with low structure complexity [9]. The reduction of size and mutual
coupling in the MIMO antenna system are the key challenging factors to be considered while a MIMO
antenna is designed for 5G Devices. By using decoupling structures such as defected ground structures,
neutralization lines, and diversity techniques, significant improvement of isolation can be obtained [8].
Various researchers have reported MIMO antennas for 5G applications working at 28GHz band ranging
from 26 to 30GHz [10–20]. A quad-element patch antenna through defected ground structure technique
with MIMO layout is presented for high gain and wideband application in [13]. Similarly, [14] utilizes an
H-shaped patch eight-element MIMO antenna for broad-band mm-wave 5G communication. Moreover,
a dipole antenna is developed in [10] with an array metamaterial structure for obtaining high gain in
the edge-fire direction. A patch antenna loaded with a superstrate is designed in [11] for increasing gain
as well as the operating bandwidth. Due to the existence of a physical gap between the superstrate
and the radiator, these kinds of antennas suffer from high profile and mechanical problems. Also, a
microstrip patch antenna with dual-band operation at 28 and 38GHz is developed and presented in [17].
Although a reasonable gain of 12.3 dBi is achieved at both desired operating frequency bands, it has a
very narrow bandwidth of less than 1GHz. An antenna based on EBG is designed in [18] which operates
at mm-wave bandwidth of 0.8GHz. To prevent conductor losses of metallic radiators, antennas having
dielectric resonators are used in the design of mm-wave antennas as well [15, 16].

To accomplish the discussion, most of the antennas mentioned above are affected by the problem
of either operating limited bandwidth portion or minimum isolation which makes them less suitable for
broadband 5G mm-wave applications. Furthermore, large volumes and high-profile antennas are also not
appropriate for incorporating into compact 5G handheld applications devices. After a comprehensive
review of the outstanding works contributed for the same 5G mm-wave smart application devices, we
can conclude that the design of a compact mm-wave antenna and its MIMO configuration having high
isolation, wide operating mm-wave bandwidth, and high diversity gain with an uncomplicated geometry
is quite challenging.

In this work, a compact 5G mm-wave antenna along with its four-element MIMO configuration is
illustrated for 5G smart devices. The proposed four-port MIMO antenna is distinguished by ECC of
reasonable value, wide operating bandwidth, high diversity gain performance, high isolation, and very
compact size suitable for forthcoming 5G handheld devices.

The arrangement of this paper is in the following manner. Section 2 deals with antenna design
including design of single element antenna, two element array antenna, and proposed MIMO antenna.
Section 3 deals with simulated results in terms of reflection coefficients and parametric analysis for patch
length and width. Section 4 gives the simulated and measured results of the proposed four port MIMO
antenna. Section 5 provides the antenna performance in terms of ECC and diversity gain, followed by
a conclusion section.

2. ANTENNA EVOLUTION AND THEORETICAL ANALYSIS

2.1. Design of Single Element Patch Antenna

At the first stage, a modified ordinary patch antenna of rectangular shape with a copper ground layer
clothing of 0.0035mm thickness is etched on the top side of substrate RO4350B material as shown in
Figure 1. The relative permittivity, thickness, and loss tangent of this material used for this design
are 3.66, 0.76mm, and 0.0037, respectively. To obtain the operating frequency of 28GHz, standard
equations of rectangular patch antenna are used to design a reference antenna as [19]:

Wp =
Co

2fc

√
2

εr + 1
(1)

where Wp represents the patch width, C the speed of light, fc the central frequency, and γr the relative
permittivity of the utilized substrate. The length of the corresponding patch is given as:

Lp =
Co

2fc
√
εreff

(2)
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(a) (b)

Figure 1. Layout of modified conventional rectangular patch antenna. (a) Front view. (b) Back view
with defected ground structure. Optimized parameters for this case: Ws = Ls = 10mm, Wp = 3.78mm,
Lp = 2.64mm, wf1 = 1.6mm, Lf1 = 1.6mm, Lf2 = 1.5mm, wf2 = 0.42mm, L = 2.4mm, c = 0.2mm,
S = 1mm, r = 0.2mm, R = 0.5mm, w = wg = 1.25mm, Lg = 2.5mm, d = 0.5mm.

where Lp represents the patch length, and γreff is the effective relative permittivity of the substrate
which can be calculated as [20]:

εreff =
εr + 1

2
+

εr − 1

2

(
1 +

12h

wf

)−0.5

(3)

Eqs. (1)–(3) are used to calculate the length and width of the corresponding patch antenna termed as
the reference antenna. This reference antenna is too bulky, and we have utilized a defected ground
structure to properly utilize the electrical length of the proposed structure. This is the main reason
that DGS structures have considerably reduced the antenna size in comparison to the basic equations
of the patch antenna discussed in Eqs. (1)–(3).

Initially, the modified patch antenna with slots of different dimensions is simulated which has a
narrow operating bandwidth consisting of two parts. At the second stage, a rectangular slot is etched
at the backside of the main feedline from the ground layer which changes the effective inductance and
capacitance of the whole patch antenna with an increase in bandwidth. This two-element array was
used later in a four-port MIMO configuration with a substrate dimension of 20× 20× 0.76mm3.

2.2. Design of Two Element Array Antenna

The second stage includes the design of a dual-element array with a balanced feeding network having
the same modified rectangular patch to obtain the wideband operation as well as high gain performance
as shown in Figure 2. This two-element array is then simulated with and without a defected ground
structure. It is found that the antenna now operates for larger bandwidth and enhanced reflection
coefficient for 28GHz frequency in comparison to single element antenna. This is because DGS enhances
the electrical length of the antenna which in turn increases the impedance bandwidth.

3. SIMULATION AND PARAMETRIC ANALYSIS

CST Microwave Studio Suite was used to perform the numerical analysis from single element antenna
to 4-port MIMO configuration. Different antenna performance parameters such as reflection and
transmission coefficients, gain, efficiency, and radiation pattern have competed for all cases in this
section. In Figure 3, the simulated reflection coefficient graphs of single element patch antenna are
depicted. It can be observed that the operating bandwidth, in this case, consists of two bands 27.1–
28.7GHz and 29.6–31.2GHz with a maximum reflection coefficient of −15 dB and at 28GHz. After
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(a) (b)

Figure 2. Configuration of two element array antenna. (a) Front view. (b) Back view with defected
ground structure. Optimized parameters values: Ws = Ls = 10mm, wf1 = 1.6mm, Lf1 = 1mm,
Lf2 = 1.5mm, wf2 = 0.42mm, d1 = 3.32mm, d2 = 1mm, d3 = 1.13mm, wg = 1.25mm, Lg = 4.5mm,
d = 0.5mm.

Figure 3. Simulated S-parameters comparison for the conventional modified rectangular patch antenna
with and without defected ground structure.

simulation, the operating impedance bandwidth for the same modified patch antenna increases ranging
from 27 to 31.3GHz as a single portion with a maximum reflection coefficient of −18 dB and maximum
gain of 6.8 dBi at 28GHz frequency as illustrated in Figure 3. It also shows the simulated reflection
coefficient of the modified single element rectangular patch antenna in both scenarios.

Figure 4 demonstrates the reflection coefficient of the simulated two element array antenna. The
reflection coefficient is −32 dB with an operating bandwidth of 3.9GHz (30.7–26.8) without DGS.
When a DGS is inserted in the structure, −40 dB reflection coefficient is achieved with enhancement
in bandwidth (4.2GHz) and gain (7.3 dBi) at 28GHz compared to the preceding single element patch
antenna.

A defected ground structure of rectangular shape used in the antenna design process of this
work is considered for attaining a smaller resonance without disturbing the size of the antenna. The
consequences of this DGS on the reflection coefficient, resonating frequency, and bandwidth performance
are described in this section. Figure 5(a) illustrates the reflection coefficient of the two-element array
antenna for various values of Lg (length of the slots etched from the ground plane). It can be observed
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Figure 4. Simulated S-parameters comparison for the proposed two-element array antenna with and
without defected ground structure.

(a)

(b)

Figure 5. Parametric analysis of the reflection coefficient at different values for DGS in two-element
array antenna. (a) Length, Lg; (b) Width, Wg.

that decreasing the value of Lg causes a two-portion smaller bandwidth with minimum reflection
coefficient than larger values 4.5–5mm. Similarly, the effects of different wg values (width of the
ground slot) are illustrated in Figure 5(b). It can be seen from Figure 5 that for Lg = 4.5mm and
wg = 1.25mm, a maximum reflection coefficient of −40 dB is achieved for 28GHz frequency with a
wideband characteristic.
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4. FOUR-PORT MIMO ANTENNA

In this section, we demonstrate a proposed four port MIMO antenna. In the previous section, we
designed a two-element array antenna, and following the same concept, we extended it to a four-port
MIMO antenna configuration shown in Figure 6. The overall size of the proposed four-port MIMO
antenna is 20 × 20 × 0.76mm3 with four rectangular shape DGSs at the backside of each feedline and
an E-shaped DGS at the midpoint having equal distance from previously presented DGS of the ground
plane to reduce the mutual coupling effects. Each two-element array antenna used is placed at the
middle position of the substrate material exhibiting good MIMO performances for this positioning. The
simulated reflection coefficient of the MIMO antenna is shown in Figure 7.

(a) (b)

Figure 6. Geometrical configuration of the proposed four port MIMO antenna based on DGS. (a)
Front view; (b) Back view.

(a) (b)

Figure 7. (a) Simulated Reflection coefficient of 4-Port MIMO Antenna system with DGS. (b) MIMO
Antenna system’s Reflection Coefficient evaluation of simulated and calculated results.
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5. RESULTS AND DISCUSSION OF MIMO ANTENNA

5.1. S-Parameter Analysis of MIMO Configuration

This section deals with the analysis of the S-parameter analysis. Figure 8 shows the analysis of reflection
coefficients (S11, S22, S33, S44) while Figure 9 shows transmission coefficients (S11, S22, S33, S44) for the
four-port MIMO configuration based on the same single-port two-element array antenna as a building
block discussed in the previous section. The operating bandwidth curve of the 4-port (4 × 4) MIMO
antenna configuration ranges from 26.4 to 30.9GHz. The impedance bandwidth achieved is 4.9GHz
with the highest gain of 9.6 dBi at 28GHz frequency while maximum reflection coefficient (S11) is equal
to −55 dB. The surface current distribution of the proposed antenna is also provided in Figure 8 for
more clarity. Figure 9 shows the transmission coefficient curve for a 4-port MIMO antenna system. It
is observed from the transmission coefficient curve that there is the lowest isolation of −19 dB between
Ant1 and Ant3, and a similar behavior is observed between Ant4 and Ant1. In addition, good isolation
is attained for the other antenna pairs 1 and 2, 3 and 4, 4 and 2, 1 and 3. An E-shaped defected ground
structure (DGS) is integrated at the ground layer of the 4-port MIMO antenna system to further
decrease the effects of mutual coupling.

(a) (b)

(c) (d)

Figure 8. Surface current distributions of the proposed antenna at 28GHz. (a) Antenna 1 is excited;
(b) Antenna 2 is excited; (c) Antenna 3 is excited; (d) Antenna 4 is excited.

5.2. MIMO Performance Parameters

The performance of a MIMO antenna system can be determined from MIMO performance metrics such
as Envelope Correlation Coefficient (ECC) and Diversity Gain (DG) discussed below.
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Figure 9. MIMO Antenna system’s Transmission Coefficient evaluation of simulated and calculated
results.

5.2.1. Envelope Correlation Coefficient (ECC)

ECC shows the mutual coupling effects, and the lower the value of ECC is, the lower the mutual
coupling will be (good ports isolation). Figure 10 shows the ECC curve in which its value for the
proposed MIMO antenna system is nearly equal to 0.0012 (< 0.5, standard value) for the operating
26.4–30.9GHz bandwidth. The equation utilized for the calculation of ECC is given as [21]:

ρeij =

∣∣∣S∗
iiSij + S∗

jiSjj

∣∣∣2(
1− |Sii|2 − S2

ij

)(
1− |Sji|2 − S2

jj

) (4)

Figure 10. Simulated and calculated ECC curve of the proposed MIMO system.

5.2.2. Diversity Gain (DG)

The decrease in transmission power after diversity schemes are applied is shown by diversity gain (DG).
The DG curve for the planned MIMO antenna system is shown in Figure 11 in which the DG value
obtained is nearly equal to 9.4 dB for Ant1 and Ant2, Ant2 and Ant3, and other pairs in the operating
bandwidth. The diversity gain is calculated based on the equation as [22]:

DG = 10
√

1− |Peij |2 (5)
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Figure 11. Simulated and measured DG curve of the proposed MIMO antenna.

Figure 12. Simulated and measured maximum gain over the frequency curve of the planned MIMO
antenna.

Figure 13. Fabricated prototype of the proposed MIMO antenna.
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The measurement arrangement using a network analyzer and far-field anechoic chamber of the
proposed MIMO antenna is shown in Figures 14(a) and (b). The simulated and measured radiation
patterns of the proposed antenna taken at Y Z and XZ planes are shown in Figures 15(a) and (b),
respectively. The proposed antenna exhibits overall good performance for both simulated and measured
radiation performances.

6. COMPARISON WITH RECENT STATE OF THE ART ANTENNAS

The corresponding simulated gain at a desired frequency band is shown in Figure 12 which is also
correlated with the measured response. Also, the fabricated prototype of the proposed antenna is
shown in Figure 13. The comparison of the proposed antenna with recent state of the art is tabulated
in the form of Table 1. The proposed antenna is superior to the recent state of the arts in terms of
bandwidth, gain, ECC, DG, and more specifically the size.

(a) (b)

Figure 14. Snapshots taken during measurement; (a) Radiation pattern measurement; (b) S-
parameters measurement.

(a) (b)

Figure 15. Radiation pattern of the proposed antenna at 28GHz; (a) Simulated vs. Measured at
Y Z-plane; (b) Simulated vs. Measured at XZ-plane.
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Table 1. Comparison with recent state of the art antennas (N/A means not applicable).

Ref.
Freq.

(GHz)
Size

No. of

Ports

Bandwidth

(GHz)

Gain

(dB/dBi)
ECC

DG

(dB)

[12] 28 30× 35× 0.76mm3 Four 4.1 8.4 dBi < 0.01 > 9.91

[23] 28 19× 19× 7.608mm3 Four 8.1 14.2 dBi N/A N/A

[24] 28 20× 20× 0.25mm3 Two 0.87 8 dBi 0.11 9.9

[25] 28 68× 130× 0.50mm3 Four 1.0 12 dBi N/A N/A

[26] 24 15× 19× 0.25mm3 Two 0.8 6.1 dBi 0.23 9.7

This

work
28 20× 20× 0.76mm3 Four 4.9 9.6 dBi 0.23 9.4

7. CONCLUSION

In this work, we present a compact size 4-port MIMO antenna with defective ground structures for 5G
mm-wave applications. Each port is composed of a 1×2 antenna array arrangement having an equaling
parallel branch feeding network. Defected ground structures of rectangular and E shapes are used to
enhance the MIMO performance as well as to reduce mutual coupling effects in 20 × 20mm2 compact
dimensions. The operating frequency band for the proposed MIMO system ranges from 26.4.0 to
30.9GHz having a bandwidth of 3.47 and retaining a maximum gain of 9.6 dBi at 28GHz. Similarly, the
MIMO performance analyses of ECC and DG were also computed and found to be inside an essentially
standard range. The miniaturized size of the proposed radiator will make it the best candidate to be
used for inevitable 5G mm-wave applications.
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