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Design of Penta-Band Notched UWB MIMO Antenna for Diverse
Wireless Applications

Ramesh B. Sadineni1, * and Dinesha P. Gowda2

Abstract—In this manuscript, the realization of penta-band notches with the aid of an ultra-
wideband (UWB) multiple-input multiple-output (MIMO) antenna for diverse wireless applications is
demonstrated. A single port UWB antenna is utilized to construct the proposed MIMO antenna, which
comprises an altered patch loaded with three U-shape slots and an inverse U-shape slot on the feed line
followed by a C-shape stub adjacent to the feed line. These slots and C-shape stub are liable to generate
five notches at 3.4GHz (3.16–3.67GHz), 4GHz (3.88–4.10GHz), 4.6GHz (4.56–4.75GHz), 5.7GHz
(5.65–5.92GHz), and 7.8GHz (7.39–8.12GHz), respectively. These notches depreciate interference from
WiMAX, lower C-band, WLAN, and X-band (satellite communication) frequencies. Alternatively, the
reported antenna can also be utilized as a proximity radar (8–12GHz) in X-band. The proposed
antenna engraved on a Rogers RT/Duroid 5880 substrate having an overall size of 80 × 80 × 1.6mm3

or 0.8λ0 × 0.8λ0 × 0.016λ0 (λ0 is the free-space wavelength at lowest frequency 3GHz). Simulation
and experimentation have been performed to corroborate the performance of the reported antenna.
Results emphasize that the proposed MIMO antenna operates from 3GHz to 14GHz with measured
peak gain 4.8 dBi, radiation efficiency above 83%, and isolation less than −20 dB. Except at notches, the
computed envelope correlation coefficient (ECC) is less than 0.03; diversity gain (DG) is approximately
10; total active reflection coefficient (TARC) is less than −10 dB; channel capacity loss (CCL) less than
0.35 bps/Hz. These characteristics qualify it as a multifunctional antenna for wireless applications,
lowering the antenna count needed in compact wireless devices.

1. INTRODUCTION

For future communication, the Federal Communications Commission (FCC) issued ultra-wideband
(UWB) frequency that is unlicensed ranging from 3.1 to 10.6GHz in 2002. It was designed originally
for radar imaging, but it now permits users to have access to high-speed data transmission services [1].
Because an antenna is an important component of communication systems, researchers face a difficult
challenge in designing a suitable antenna layout. As a result, due to a variety of enchanting
characteristics such as small size, light weight, and fabrication flexibility, microstrip antennas have
piqued the interest of researchers [2]. UWB antennas, on the other hand, have grown in popularity
as a result of advantages such as high data sharing, high data transmission rate, and low power
consumption [3]. However, UWB antennas suffer from multi-path fading effects, which can be reduced
by using MIMO technology, which increases transmission capacity and diversity gain [4, 5]. This
method allows for the use of numerous antennas to simultaneously broadcast and receive radio signals.
Mutual coupling is predominant due to the close proximity between numerous antennas. Various
MIMO antennas for UWB applications are demonstrated in [6–8] to reduce interference caused by
close proximity of antenna elements and to increase isolation. However, within the defined UWB range,
various interfering bands such as WiMAX (3.3–3.8GHz), C-band (4–4.9GHz), WLAN (5.1–5.8GHz),
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as well as X-band satellite communication (7.7–8.4GHz) pose significant challenges for UWB MIMO
antennas [9–14]. These interfering bands have the potential to significantly reduce antenna performance.
As a result, a multi-band filtering antenna is required to reject the interfering bands. A crescent ring was
etched on two circular radiators in order to produce 5GHz notch frequency [15]. A UWB antenna which
operates in duple band (WiMAX/WLAN) is suggested for multiple-input-multiple-output/diversity
applications consisting of a square radiator embedded with a T-shape stub and two U-shape parasitic
strips adjacent to the feed line [16]. [17–19] show UWB MIMO antennas with two fold notch capabilities
with mutual coupling less than −10 dB. In [20–26], various miniaturized UWB MIMO antennas with
triple band notches and isolation less than −15 dB are reported. The notches were implemented using
slots and EBG structures. [27–34] exhibit quad notched band behaviour with low mutual coupling. A
novel miniaturized 4-slot antenna elements with a common rhombic slot for tri-notch characteristics is
reported in [35]. The isolation of −25 dB along with four notches with the aid of slots and EBG is
reported in [36]. A compact two port MIMO antenna which comprises two octagonal shape elements
with a stub on ground and a slot on patch to reject duple band frequencies is reported in [37] for the
rejection of most of the EM interference. By incorporating v-shape slots on pentagonal shape patch and
a hexagonal shape EBG next to the feed, dual notches are achieved in [38]. A CPW-fed 4-port MIMO
antenna which consists of TSESC patches for the elimination triple frequencies is introduced in [39]. A
compact multi-band antenna with isolation using square SRRs is detailed in [40].

The literature focuses on improving UWB MIMO antenna isolation and compactness only. Steady
gain along with more band notched features, on the other hand, necessitates further research. It is
essential to reject a significant number of bands in order to diminish interference to a negligible level.
In the literature, there were no MIMO antenna designs reported with penta-band notch behavior.
As a result, in this study we report a UWB MIMO antenna with penta-band notch behavior which
has excellent gain and isolation. The potential limitation of this study is bulkiness which should be
taken care of in further research. The manuscript is organized as follows. Implementation of the unit
element for the UWB-MIMO antenna is furnished in Section 2. Next, the implementation of UWB
MIMO antenna using the unit element with reflection coefficient analysis is described in Section 3. The
analysis of diversity performance metrics is described in Section 4. Section 5 concludes the article.

2. UWB UNIT ELEMENT ANTENNA CONFIGURATION

Figures 1(a) and 1(b) portray the layout of the proposed UWB unit antenna element structure. The
proposed design makes use of a modified microstrip patch with a defected ground plane, engraved on

(a) (b)

Figure 1. Layout of the UWB unit element antenna (units: mm). (a) Front-view, (b) back-view.
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a 1.6mm thick Rogers RT/Duroid 5880 substrate having relative permittivity (εr) 2.2 with overall size
of 40 × 40mm2 or 0.4λ0 × 0.4λ0. For wider impedance bandwidth, a tiny slot was etched over the
ground plane. Three U-shape slots are introduced over the surface of the antenna element and an
inverse U-shape slot on the feed line in order to impede the current distribution at 3.4GHz, 4GHz,
4.6GHz, and 5.7GHz. Apart from this, a C-shaped stub is introduced adjacent to the feed line for the
frequency notch at 7.8GHz. The following formulae are used to calculate the preliminary dimensions
of the proposed antenna structure [2].

The patch width (W ) has been calculated by
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The change in length because of fringing fields is calculated by
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The patch length (L) has been calculated by
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c
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√
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− 2∆L (4)

The feed line width Wf and length Lf are calculated by
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The ground plane width Wg and length Lg are calculated by Equations (7) and (8).

Wg =
0.32 ∗ c
fr
√
εeff

(7)

Lg =
0.28 ∗ c
fr
√
εeff

(8)

The substrate length and width are calculated by Equation (9) where Wsub = Lsub = 40mm

Wsub = Lsub = 6h+W (9)

Optimization and simulation of the reported structure are done using CST MW studio 2016. Figure 2(a)
depicts the fabricated antenna prototype, and Figure 2(b) depicts the simulated as well as measured S-
parameter (S11) in dB. The measured and simulated findings are very close to each other. The measured
reflection coefficient is less than −10 dB across the entire operating band. Fabrication tolerance is
responsible for the gap between simulated and measured results.

3. MIMO ANTENNA CONFIGURATION

The unit element that accomplishes the broad band operation was used to design two port and
quadruple-port UWB-MIMO antennas. Figure 3(a) depicts a MIMO antenna in which the two antenna
elements are arranged in a linear configuration with edge-to-edge spacing 0.2λ0. The suggested
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(a) (b)

Figure 2. (a) Constructed unit-element antenna. (b) Reflection coefficient |S11| versus frequency.

(a) (b)

Figure 3. 2-element UWB-MIMO linear antenna. (a) Layout, (b) reflection coefficient versus frequency.

UWB MIMO antenna is imprinted over a Rogers RT/Duroid 5880 substrate having an overall size
of 40×82×1.6mm3 or 0.4λ0×0.82λ0×0.016λ0. Figure 3(b) shows the scattering parameters that were
simulated and tested. Because the antenna elements are similar, only the S-parameters S11 and S12 of
port1 (M1) are examined. The collinear antenna operates between 3GHz and 14GHz, with notches at
3.4GHz, 4GHz, 4.6GHz, 5.7GHz, and 7.8GHz according to the S11 specifications of the antenna. The
two element coupling is determined by the S12 characteristics of the collinear antenna. In the whole
working bandwidth, isolation is less than −18 dB, with particularly strong isolation at 3.4GHz, 4GHz,
4.6GHz, 5.7GHz, and 7.8GHz.

Figure 4(a) shows the MIMO antenna in which antenna elements M1 and M2 face each other (180◦).
The illustrated antenna is 40× 80× 1.6mm3 or 0.4λ0× 0.8λ0× 0.016λ0 in size and was lithographed on
a Rogers RT/Duroid 5880 substrate. S11 and S12 parameter (port1) characteristics are demonstrated
in Figure 4(b). It has notches at 3.4GHz, 4GHz, 4.6GHz, 5.7GHz, and 7.8GHz, and operates from
3GHz to 14GHz. There is less than −20 dB isolation between the antenna elements M1 and M2.

The elements M1 and M2 are arranged orthogonal to each other to minimize the coupling
between MIMO elements even further, as shown in Figure 5(a). The antenna is 40 × 80 × 1.6mm3
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(a) (b)

Figure 4. 2-element UWB-MIMO antenna. (a) Layout, (b) reflection coefficient versus frequency.

(a) (b)

Figure 5. 2-element orthogonal UWB-MIMO antenna. (a) Layout, (b) reflection coefficient versus
frequency.

or 0.4λ0×0.8λ0×0.016λ0 in size and is built on a Rogers RT/Duroid 5880 substrate. Figure 5(b) shows
the MIMO antenna S-parameters for port1 (M1) excitation. It has five notches at 3.4GHz, 4GHz,
4.6GHz, 5.7GHz, and 7.8GHz, and the coupling effect is less than −30 dB at lower frequencies and less
than −20 dB for higher frequencies.

Therefore, by orienting antenna elements orthogonal to each other, mutual coupling is diminished.
For gain enhancement and greater isolation, it is proposed to use a four port MIMO system with
orthogonal antenna components, as shown in Figure 6(a). To lessen the coupling between elements, the
MIMO model uses a split ground plane. As the MIMO antenna does not have a common ground, the
antenna’s reliability is lowered because its behaviour can differ between devices.

To address it, split ground planes of four MIMO antenna components are connected unitedly using
0.5mm wide connecting strips to form a common ground which is depicted in Figure 6(b). Figure 6(c)
depicts the top and bottom views of the reported antenna system. The measured as well as simulated
reflection coefficients S11, S12, S13, and S14 of the antenna reported, for port1 excitation are depicted in
Figure 6(d). The reported antenna attained a broad impedance bandwidth (S11 < −10 dB) of 11GHz
from 3GHz to 14GHz with penta-band notch characteristics at 3.4GHz, 4GHz, 4.6GHz, 5.7GHz, and
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(a) (b)

(c) (d)

(e)

Figure 6. Suggested MIMO antenna with (a) split ground plane, (b) connected ground plane, (c)
photograph of the prototype model top-view, (d) bottom-view, (e) scattering parameters of the reported
4-element UWB MIMO antenna.

7.8GHz. Over the full operational range, the average isolation of proposed antenna is more than −20 dB.
The observed and modeled scattering parameter characteristics correspond well in all circumstances,
demonstrating that the reported four port orthogonal UWB-MIMO antenna is appropriate for UWB
applications.

4. PARAMETRIC ANALYSIS

The critical parameters of the band-notch antenna are center frequency as well as bandwidth of the
rejection band. To explore the effects of numerous parameters over the performance of the antenna, a
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comprehensive parametric study has been conducted by tuning only one parameter keeping all others
constant. For simplicity, only the length of the slots is varied.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Simulated S11 plot for (a) various lengths of outer slot, (b) various lengths of middle slot,
(c) various lengths of inner slot, (d) various lengths of slot on feed line, (e) variation of gap from the
edge of ground plane, (f) change in lengths of C-shape stub.
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Figure 7(a) depicts the effect of the length variation of the outer slot. It can be observed that when
the length of the outer slot (L1) increases the peak of the notch shifts towards lower frequency band. In
order to have notch at 3.4GHz, the optimized parameter of the outer slot is chosen to be L1 = 12mm.
Furthermore, when the length of the middle slot is increased from 10 to 12mm, the second notch peak
shifts from 4.2GHz to 3.8GHz. For having notch frequency at 4GHz, the optimized length of middle
slot is chosen to be 11mm which is depicted in Figure 7(b). Figure 7(c) reveals the outcome of varying
the length of inner slot. It shows that as the length increases from 9 to 11mm, the third notch band
moves towards lower frequency region. With respect to having notch frequency at 4.6GHz, the length
of the inner slot is chosen to be L3 = 10mm. The outcome of varying the length of the slot on feed line
is demonstrated in Figure 7(d). It shows that as the length increases from 5 to 8mm the X-band notch
frequency moves towards lower frequency band. Furthermore, Figure 7(e) depicts the consequence of
varying the gap between the bottom edge of c-shape stub and ground plane. It could be observed
that by intensifying the gap from 0.5 to 2mm the antenna does not show much variation apart from
having more negative peak for the fourth notch band. Consequently when the horizontal section length
of c-shape stub varies from 4 to 6mm, the center frequency of the notch band shifts from 6.2GHz to
4.6GHz. Thus, the optimized value of the gap and horizontal section length of stub are chosen to be
1mm and 5mm.

5. RESULT ANALYSIS

5.1. Surface Current Density

Figure 8 depicts surface current density of the suggested MIMO antenna at indentation frequencies
(3.4GHz, 4.6GHz, 5.7GHz, 7.8GHz) and the frequency at which antenna radiates (8.5GHz), used

Current fflow around the

bands

e slot at notch

(a) (b) (c)

(d) (e)

Figure 8. Surface current distribution (a) 3.4GHz, (b) 4.6GHz, (c) 5.7GHz, (d) 7.8GHz, (e) 8.5GHz.
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to better understand the phenomenon underlying the penta band-stop performance. As depicted in
Figure 7, the surface current is concentrated more at the outer U-shaped slot for 3.4GHz (WiMAX
band rejection), at inner slot for 4.6GHz (c-band rejection), at C-shaped stub for 5.7GHz (WLAN
band rejection), and at inverse U-shaped slot for 7.8GHz (X-band downlink rejection). Furthermore, at
notches the large current distributions surrounding stub/slots counteract near field radiation, resulting
in high energy reverting back to the input port and hence notched behavior being realized. Because
the created opposing currents cancel each other out, the resultant radiation is comparatively lower at
notch frequencies as depicted in Figure 8. Furthermore, except for the band-notch, the surface current
spreads equally throughout the antenna across the whole frequency passband. As a result, the suggested
4-element MIMO antenna offers better diversity properties.

5.2. Radiation Patterns

Figure 9 illustrates the simulated as well as measured co-pol and cross-pol radiation characteristics of
the designed MIMO antenna at frequencies 4.4GHz and 8.5GHz. A difference higher than 10 dB can be
observed between co-pol and cross-pol characteristics. The steady working of the designed antenna may
be noticed among the co-polar and cross-polar pattern curves (in the E- and H-planes). The E-plane

(a)

(b)

(c)

(d)

Figure 9. Radiation patterns at (a) 4.4GHz (E-plane), (b) 4.4GHz (H-plane), (c) 8.5GHz (E-plane),
(d) 8.5GHz (H-plane).
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Figure 10. Simulated and measured peak gain
variation over the whole impedance bandwidth.

Figure 11. Simulated and measured Radiation
efficiency variation over the whole impedance
bandwidth.

co-polar patterns exhibited semi-omnidirectional behaviour, whereas the H-plane co-polar patterns
exhibited omnidirectional activity. The consistency of simulated and experimental outcomes certifies the
design’s accuracy. The variations among simulated an measured co-pol and cross-pol radiation patterns
are within acceptable range. Figure 10 shows gain comparison plots between simulated and measured
values of the suggested UWB-MIMO antenna. At lower frequencies, gain is less and is enhanced as
the frequency advances. Gain, on the other hand, diminishes dramatically at notch frequencies. In
the UWB, a peak gain of 4.8 dBi is attained. As a result, the suggested 4-element MIMO antenna has
good notched band performance. For port1 (M1) excitation, Figure 11 shows simulated and observed
radiation efficiency values. The suggested UWB-MIMO antenna has the typical efficiency of above 83%.
In contrast, it falls under 45% at notch frequencies.

5.3. MIMO Performance Metrics

5.3.1. Envelope Correlation Coefficient (ECC)

The envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient
(TARC), and channel capacity loss (CCL) are critical parameters for validating UWB-MIMO antenna
capability and performance. To portray the mutual coupling between different antenna elements ECC
is used. ECC should be lower so as to achieve greater diversity among UWB-MIMO antenna elements.

ECC =

∣∣∣∣∣∣
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(10)

ECC of a MIMO antenna can be computed using radiation patterns, as shown in Equation (10) [12, 28].
To achieve fine diversity, the ECC of any MIMO antenna ought to be under 0.5. Figure 12 shows
that simulated and measured ECCs are below 0.03 across the whole UWB range, excluding rejection
frequencies. At notch frequencies, the measured ECC is also lower than 0.05. Consequently, the
suggested MIMO antenna does have a good diversity with less ECC values.
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Figure 12. Envelope correlation coefficient
between MIMO antenna elements.

Figure 13. Diversity gain between MIMO
antenna elements.

5.3.2. Diversity Gain (DG)

Diversity gain is an important performance parameter of any UWB-MIMO antenna given in
Equation (11)

DG = 10
√

1− ECC2 (11)

Figure 13 shows DG of the suggested UWB-MIMO antenna. Diversity gain is greater than 9.9 dBi
across the whole impedance spectrum excluding five notches. It exhibits that the suggested design has
smaller ECC and superior DG.

5.3.3. Total Active Reflection Coefficient (TARC)

TARC is stated as the ratio of square root of the total reflected power to the total incident power
and apparent return loss of the overall MIMO antenna system [28]. The optimal operating band of
UWB-MIMO antenna system is determined by TARC curves. Using Equation (12) TARC values can
be calculated as

TARC =

√
4∑

I=1

|bi|2√
4∑

I=1

|ai|2
(12)

5.3.4. Channel Capacity Loss (CCL)

In general, the UWB-MIMO antenna channel capacity elevates undeviatingly with multiple antenna
elements deployed. However, owing to the existence of inter dependence between the MIMO channels,
it also involves certain losses. In MIMO channel systems, the correlation between elements causes
capacity loss. As a result, the CCL is a critical metric for determining the MIMO systems channel
capacity. The CCL value for MIMO systems should be less than 0.4 bps/Hz. Figure 14 depicts the
total active reflection coefficient (TARC) characteristics as well as channel capacity loss (CCL) of the
suggested four element MIMO antenna.

This shows that excluding notch frequencies, CCL and TARC values are less than 0.35 bps/Hz and
−10 dB, respectively across the functional bandwidth. It exemplified that the antenna performs well
enough in terms of diversity. To highlight the quintessence of the proposed research, a comparison of
numerous parameters of the proposed study with already existing antennas is listed in Table 1.
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Figure 14. TARC and CCL versus frequency for the UWB-MIMO antenna.

Table 1. Performance comparison: Suggested UWB-MIMO antenna with contemporary existing
antenna models.

Ref.

Area λ2
0

(calculated at

lower frequency)

Operating Band

(GHz)

No. of

Notch

bands

Gain

(dBi)

Isolation

(dB)
ECC TARC CCL

[6] 0.095 2.9–10.6 NA 6.5 > 15 < 0.2 NA < 0.4

[12] 0.096 3.1–11 1 5 > 20 < 0.02 < −10 < 0.35

[21] 0.134 3.1–10.6 1 5.2 > 20 < 0.02 NA < 0.4

[22] 0.196 2.5–11 3 6 > 15 < 0.02 NA NA

[8] 0.17 3.1–11 NA 4 > 20 < 0.01 NA < 0.4

[9] 0.122 3.0–12.0 1 NA > 20 < 0.3 NA NA

[10] 0.09 2.0–10.6 1 4 > 17 < 0.01 NA < 0.4

[30] 0.16 2.7–12 1 5.5 > 17 < 0.03 NA NA

[32] 0.16 2.7–12 1 6 > 17 NA NA NA

Proposed 0.64 3–14 5 4.8 > 20 < 0.02 < −13 < 0.3

6. CONCLUSION

A penta-band notched ultra-wideband MIMO antenna with diverse wireless applications has been
efficaciously modeled and simulated. The suggested four port UWB MIMO antenna exhibits a large
functional bandwidth covering from 3 to 14GHz and is suitable to oppose five intrusive frequencies
(3.4GHz, 4GHz, 4.6GHz, 5.7GHz, and 7.8GHz respectively). With these notches WiMAX, C-band,
WLAN, and X-band interference can be filtered out. The diversity performance metrics are evaluated by
amending single port antenna into a four port UWB-MIMO antenna. A few of the antenna performance
attributes investigated include reflection coefficient, current distribution on antenna surface, far-field
radiation patterns, ECC, DG, TARC, and CCL. In the operational band, radiation efficiency higher
than 83% excluding notches, with a peak gain of 4.8 dBi, is achieved. The design features excellent
isolation less than −20 dB, ECC less than 0.03, diversity gain of approximately 10, TARC less than
−10 dB, and CCL less than 0.35 bps/Hz. As a result, the suggested four-element UWB-MIMO antenna
is affirmed as a feasible candidate for a variety of wireless applications.
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