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Analytical and Numerical Studies of Oblique Wave Incidence
on Impedance-Matched Graded Interfaces

between RHM and LHM Media

Brage B. Svendsen*, Balwan Rana, and Mariana Dalarsson

Abstract—This paper presents analytical and numerical studies of electromagnetic wave propagation
through an interface between a regular right-handed material (RHM) and a left-handed metamaterial
(LHM). The interface is graded along the direction perpendicular to the boundary plane between the two
materials, chosen to be the x-direction. The permittivity ε(ω, x) and permeability µ(ω, x) are chosen to
vary according to hyperbolic tangent functions. We show that the field intensities for both TE- and TM-
cases satisfy the same differential equations, and we obtain remarkably simple exact analytical solutions
to Helmholtz’ equations for lossy media. The obtained exact analytical results for the field intensities
along the graded RHM-LHM composite confirm all the expected properties of RHM-LHM structures.
Finally, we perform a numerical study of the wave propagation over an impedance-matched graded
RHM-LHM interface, using the software COMSOL Multiphysics, and obtain an excellent agreement
between the numerical simulations and analytical results. The results obtained in the present paper
are not limited to any particular application, and are generally useful for all cases of wave propagation
over impedance-matched two- and three-dimensional interfaces between RHM and LHM media. The
advantage of the present method is that it can model smooth realistic material transitions, while at the
same time including the abrupt transition as a limiting case. Furthermore, unlike previously existing
solutions, the interface width is included as a parameter in the analytical solutions in a very simple way.
This enables the use of the interface width as an additional degree of freedom in the design of practical
RHM-LHM interfaces.

1. INTRODUCTION

In the last two decades, there has been an increasing theoretical and experimental interest in graded
RHM-LHM structures [1, 2] where permittivities and permeabilities are spatially varying according to
suitably chosen continuous functions. Spatially varying permittivities and permeabilities are useful in
a number of areas of scientific interest [3–6, 10–18, 22–24]. One such major area is transformation
optics [25], with unprecedented design flexibility allowing for creation of of novel devices, such as
light source collimators, waveguide adapters and waveguide crossings, useful in integrated photonic
chips and compatible with modern fabrication technology. The superior optical performance of the
abovementioned devices, along with their efficient integration with other components in an on-chip
photonic system, is numerically confirmed in [25]. Transformation optics-based components require
spatially-varying dielectric materials only, with no specific magnetic properties. This enables their use
in low-loss, broadband and integrated photonic applications.

Other applications of transformation optics include hyperlenses [4, 26], specialized anten-
nas [5, 6, 10–18], as well as subwavelength imaging [7, 9]. In [26], an ultracompact, robust, and efficient
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spot size converter with a gradient-index (GRIN) profile is discussed. The proposed GRIN-lens-assisted
spot size converter provides an unprecedented combination of reduced footprint and insertion losses,
as well as large bandwidth and tolerance to fabrication errors. In [4], a dielectric metamaterial-based
GRIN lens in the terahertz frequency range is studied, showing that GRIN metamaterials are suitable
for designing photonic components (metadevices) for applications at terahertz frequencies. In [6], a
flat transformation-optics high-gain GRIN-lens antenna with multiple polarizations and beam scanning
ability, useful for remote sensing and far-field imaging applications, is reported. Far-field subwavelength
imaging using phase-gradient metasurfaces is studied in [7], using the capability of metamaterials to
convert evanescent waves to propagating waves. Similar principles are used in [9] for far-field superlens-
ing inside biological media through a nanorod lens. In [10], a comprehensive survey of metamaterial
transmission-line based antennas is given, while in [11], a comprehensive survey of decoupling mecha-
nisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna
systems is given. More details on these applications can be found in [12–18].

A further area of interest is within waveguide applications [8, 22]. Particularly interesting are the
nanostructured waveguides which are expected to improve the performance of solar cells using a tunable
absorption spectrum [23].

Yet another area of interest is electromagnetic cloaking. The principles of transformation optics
with metamaterials are considered as key enablers for the possibility to manipulate surface waves, in
particular, towards the THz and optical regime. In [24], a surface wave cloak, using engineered GRIN
materials, has been experimentally demonstrated, showing the possibility of using nanocomposites
to control surface wave propagation. In [5], a compact high-performance lens antenna, based on
impedance-matching GRIN metamaterials is studied. The designed lens is composed of isotropic
but inhomogeneous metamaterials that can provide impedance matching with free space. A few
other examples of impedance-matched devices based on electromagnetic metamaterials can be found
in [19–21]. In conclusion, the interest in impedance-matched GRIN metamaterials is growing in many
applications, with an increasing need for general analytical and numerical studies of impedance-matched
metamaterial composites.

In this paper, we study electromagnetic wave propagation over an impedance-matched graded
RHM-LHM structure. A similar investigation was partly performed by one of the present authors
in [27] concerning the lossless case of oblique TE-wave incidence on an impedance matched graded
RHM-LHM interface. The special case of normal incidence on an impedance matched graded RHM-
LHM interface has been reported in [28]. A general approach to a non-impedance-matched graded
RHM-LHM interface has been presented in [29]. In [27], the analytical solution was derived in terms of
Gaussian hypergeometric functions. Gaussian hypergeometric functions are mathematically complex,
and solutions based on them are not always easy to visualize. Therefore, in an early study like [27], the
field patterns were not studied in detail and properly presented to highlight the important properties
of LHM-media.

In the present paper, the exact analytical solution from [27] is successfully reduced to a solution
involving elementary mathematical functions only, by means of a number of properties of Gaussian
hypergeometric functions [31]. Furthermore, the exact analytical solutions presented here are generalized
to a lossy case and to both TE- and TM-waves, where we show that the field intensities for TE-
and TM-cases satisfy the same differential equations. We thereby obtain remarkably simple exact
analytical solutions to Helmholtz’ equations in lossy cases with hyperbolic tangent permittivity and
permeability profiles. We provide three-dimensional graphical presentations of these solutions, and
discuss the obtained results from the point of view of well-known properties of LHM-media.

Last but not least, we perform a numerical study of the wave propagation over the impedance-
matched graded RHM-LHM interface, using the COMSOL software. An excellent agreement is obtained
between the numerical simulations and analytical results.

2. FIELD EQUATIONS WITH SOLUTIONS

In the present paper, we describe the RHM-LHM composite by its graded effective dielectric permittivity
ε(ω, x) and its effective magnetic permeability µ(ω, x). Such a description is normally justified for left-
handed metamaterials, since their ‘particles’ have subwavelength dimensions. We choose the geometry



Progress In Electromagnetics Research M, Vol. 107, 2022 133

of the problem such that the effective parameters change along one direction only (chosen to be the
x-axis). The plane of incidence is chosen to be x-y plane, such that the direction perpendicular to the
plane of incidence is the z-direction. As shown in [27] for a TE-wave, with an oblique incidence at angle
θ, the magnetic and electric field vectors are given respectively by

E(x, y) = −E(x, y)ẑ, H(x, y) = −H(x, y) sin θx̂+H(x, y) cos θŷ (1)

On the other hand, for a TM-wave, with an oblique incidence at angle θ, the magnetic and electric field
vectors are given respectively by

H(x, y) = H(x, y)ẑ, E(x, y) = −E(x, y) sin θx̂+ E(x, y) cos θŷ (2)

In both cases, the incident wave vector is k = k cos θx̂ + k sin θŷ, where k is the complex-valued wave
vector length in lossy media. It turns out that the electric field intensity E(x, y) and magnetic field
intensity H(x, y) satisfy the following differential equations
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For the lossy impedance-matched graded interface between a right-handed material (RHM) and a left-
handed material (LHM), it is convenient to define the permittivity and permeability functions, changing
according to a hyperbolic tangent function along the x-direction, as follows
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where x0 is the length parameter that defines the width of the graded transition region between the two
media, and εR(ω) and µR(ω) are the real parts of the relative permittivity and permeability, respectively.
The loss parameter β is the ratio between imaginary and real parts of the permittivity and permeability
functions defined in Eq. (4). This parameter is assumed to be equal and a good approximation constant
for the chosen dispersion model in the frequency range of interest. It is here useful to introduce the
wave-vector parameter k, whose square is defined by

k2 = ω2ε0µ0εR(ω)µR(ω) =
ω2

c2
εR(ω)µR(ω) (5)

The two differential equations (3) are solved by separation of variables, using E(x, y) = X(x)Y (y) and
H(x, y) = X(x)Y (y), respectively. Following [27], using E(x, y) = X(x)Y (y), we obtain
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The solution for Y (y) is a simple attenuated plane wave Y (y) = exp(±ikyy), where ky = k sin θ.
Using the procedure outlined in [27], the ordinary differential equation for X(x) is reduced to the
hypergeometric differential equation, with a solution proportional to a Gaussian hypergeometric function
2F1(a, b, c;u). Thus, in a lossless case, up to a multiplicative constant X0, the following solution was
obtained in [27]
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However, in the present study, we have generalized the solution for X(x) to include losses in the
structure. Further, using the properties of Gaussian hypergeometric functions [31], we have successfully
reduced the solution for X(x) to the one that involves elementary mathematical functions only. Thus,
the complete exact analytical solution for E(x, y) has the following simple form

E(x, y) = E0e
−βk(x cos θ+y sin θ) ·

[
cosh

(
x

x0

)]ikx0 cos θ

e−iky sin θ (8)
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where we introduce the notation E0 for the electric field strength at the origin (x, y) = (0, 0). The
solution for the magnetic field strength H(x, y) is proportional to the solution for the electric field
strength E(x, y), and has a fully analogous mathematical form

H(x, y) = H0e
−βk(x cos θ+y sin θ) ·

[
cosh

(
x

x0

)]ikx0 cos θ

e−iky sin θ (9)

where H0 is the magnetic field strength at (x, y) = (0, 0). In the two field solutions (8) and (9), the
dependency on the material parameters, defined by the frequency-dependent functions εR(ω) and µR(ω)
in Eq. (4), is not explicit. The material parameters enter the solutions (8) and (9) only implicitly via
the wave-vector parameter k, whose square is defined in Eq. (5) as a function of εR(ω) and µR(ω).

3. GRAPHICAL PRESENTATION OF THE ANALYTICAL RESULTS

We present the analytical electric field intensity pattern E(x, y) defined by Eq. (8) for the microwave
range of frequencies in Figure 1. The images included in Figure 1 have the following properties: the

(a)

(b)

(c)

(d)

Figure 1. Exact analytical electric field intensity pattern for E0 = 1V/m, kx0 = 0.2, x0 = 0.1m and
β = 0.05, with angles of incidence (a) θ = π/6 and (c) θ = π/4. The arrows indicate wave vector
directions for RHM (red) and LHM (blue). The 2D and 3D representations of incidence angle θ = π/6
are shown in (a)–(b), while the corresponding results for θ = π/4 are shown in (c)–(d).
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normalization amplitude at the origin E0 = 1V/m, the wave number k such that kx0 = 0.2, the
transition region length x0 = 0.1m, and the loss factor β = 0.05. The results display the wave
propagation between the RHM and LHM with the angle of incidence (a)–(b) θ = π/6 and (c)–(d)
θ = π/4. Figure 1 shows the 2D representation of the wave propagation in (a) and (c), while the 3D
representation of the wave propagation is shown in (b) and (d).

4. NUMERICAL MODEL AND RESULTS

The finite element method software COMSOL Multiphysics was used to model a lossy impedance-
matched graded interface between RHM and LHM media. A two-dimensional square geometry was
deployed with ports on opposing sides of the x-axis, backed by perfectly matched layers. The material
properties were described in agreement with the analytical functions (4), such that the wave excitation
occurred on the port located in the RHM and propagated towards the LHM at an angle θ. The top and
bottom boundaries were given periodic Floquet boundary conditions to simulate a domain stretching
infinitely in y-direction. As we already argued before, the field intensities for the TM and TE waves are
the same. It was therefore in principle possible to choose either of the two polarizations for the purposes

(a)

(b)

(c)

(d)

Figure 2. Numerically obtained electric field intensity pattern for E0 = 1, kx0 = 0.2, x0 = 0.1 m and
β = 0.05, with angles of incidence (a) θ = π/6 and (b) θ = π/4. Arrows indicate wave vector directions
for RHM (red) and LHM (blue). The 2D and 3D representations of incidence angle θ = π/6 are shown
in (a)–(b), while the corresponding results for θ = π/4 are shown in (c)–(d).
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of numerical simulation using COMSOL. In the simulations presented here, the TM-polarization was
used.

Thus, we here present the numerical electric field intensity pattern E(x, y) for a TM-wave in the
microwave range of frequencies in Figure 2. The field values are normalized with respect to its value at
the origin E(0, 0) so that E0 = 1. The wave number k is chosen such that kx0 = 0.2, the loss factor is
β = 0.05, and the angle of incidence is (a)–(b) θ = π/6 and (c)–(d) θ = π/4. Similarly as for Figure 1,
the bottom plots of Figure 2 visualize the 3D electric field wave pattern across the geometry.

The cross section of the electric field pattern shown in Figure 2 for constant y = π/2 is shown
in Figure 3, with otherwise the same parameters as the previous two figures. The function shown in
Figure 3 describes the wave propagation along the x-axis only for the angle θ = π/6.

Figure 3. Electric field pattern along y = π/2 with E0 = 1, kx0 = 0.2, x0 = 0.1m, β = 0.05 and
θ = π/6.

5. DISCUSSION

For normal incidence, when θ = 0, in the lossless case with β = 0, the result in Eq. (8) is reduced to
the previously obtained result in [30]

E(x) = E0

[
cosh

(
x

x0

)]ikx0

(10)

The result in Eq. (10) was validated by comparison of the exact analytical waveforms with the
corresponding waveforms obtained by simulation using COMSOL, in Figure 3 in [30].

In the impedance-matched case, as the one studied here and in [27, 28, 30], there is no reflection at
the interface between the two media. In the case of normal incidence, described by Eq. (10), it means
that the wave seemingly continues to propagate undisturbed over the boundary between the two media.
However, one important physical observation is the reversed sign of the wave vector in the left-handed
media, being a well-known property of LHM media. Thus, in the special case of normal incidence, the
wave continues to propagate over the boundary between two very different media, and only changes the
sign of the wave vector (direction of wave vector along the same straight line).

On the other hand, for oblique incidence, the wave vector k = k cos θx̂ + k sin θŷ has both x-
and y-components. And since the media change from RHM to LHM occurs only in the x-direction,
only the sign of the x-component of the wave vector is changed, while the sign of the y-component is
unchanged. Thus in Figures 1–3, we see that despite the impedance-matching and no wave reflection
at the boundary between the two materials, the incident electromagnetic wave does not continue along
the same path in the LHM medium.
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Wave refraction occurs at the boundary between the two materials, and the wave not only
propagates in the opposite direction from what is expected in RHM media, but also propagates along a
path that is a mirror image of the incident wave. This observation can be interpreted as an RHM-LHM
interface version of Snell’s law of refraction nt sin θt = ni sin θi, where nt = −ni is the negative refractive
index of the left-handed material while ni is the positive refractive index of the right-handed material.
Thus, sin θt = − sin θi which implies θt = −θi, in agreement with the behavior established in the present
analysis. This peculiar property of LHM media may have implications for some invisibility cloaking
designs.

It should be emphasized however that in the present treatment, we do not need to use any law of
refraction, or any boundary conditions. The solution of Maxwell’s equations for a stratified medium
consisting of an RHM-LHM composite reproduces the correct LHM media behavior without any a priori
assumptions. The stratified model includes also the case of abrupt transition, i.e., a sharp interface
between the two materials, as a special case when the width of transition region x0 approaches zero
(x0 → 0). Far from the boundary surface between the two media, the result in Eq. (8) with β = 0
reproduces the expected asymptotic plane-wave solutions for x → −∞

E(x, y) = E0e
−iαe−iki·x = E0e

−iαe−i(kx cos θ+ky sin θ) (11)

and for x → +∞
E(x, y) = E0e

−iαe−ikt·x = E0e
−iαe−i(−kx cos θ+ky sin θ) (12)

where ki and kt are complex wave vectors in RHM and LHM media, respectively, and α = kx0 ln 2 cos θ
is an unessential constant phase shift that can be included in a complex amplitude E0. These asymptotic
results reconfirm that the directions of two wave vectors in the two media are indeed in agreement with
the wave behavior displayed in Figures 1 and 3.

The numerical results obtained from simulation in COMSOL show an excellent agreement with
the analytical results presented in Section 3 above. If we examine Figures 2 and 3, there are slight
fluctuations of the propagating wave inside the medium. These phenomena are believed to originate
from the handling of the gradient transition phase between the RHM and LHM media by COMSOL.
Small amplitude deviations are observed in Figure 3 throughout the medium. These deviations are
related to the slight inaccuracy in the choice of the excitation power at the port, as well as to the finite
size in x-direction of the RHM-LHM composite as defined in COMSOL.

Finally, it is of interest to compare the present results to the results reported earlier in [29]
and [30]. In [29], the most general approach to unbounded non-impedance-matched graded RHM-
LHM composites was reported. In principle, it includes the results presented here as a special case.
However, as explained in the introduction, the general approach in [29] leads to analytical solutions
in terms of mathematically complex Gaussian hypergeometric functions. For practical purposes, it is
always valuable to reduce the complexity of analytical solutions, which can only be done in certain
special cases, like in the case of an unbounded impedance-matched RHM-LHM composite studied in
the present paper. For example, the new lossy field solution (8), involving elementary functions only,
represents an improvement in our understanding of the wave propagation phenomena in RHM-LHM
composites, compared to the previously obtained lossless solution E(x, y) = X(x)Y (y), with X(x)
defined by Eq. (7). Regarding the results reported in [30], they were limited to lossless media and
normal incidence only. LHMs are generally lossy, and it is of interest to extend our understanding to
lossy media. The present results are valid for oblique incidence of both TE- and TM-waves, and include
losses in the composite. This constitutes a qualitative improvement of our understanding of wave
propagation phenomena in unbound RHM-LHM composites. Last but not the least, in the present
paper, we perform a numerical study, make a structured presentation of both analytical and numerical
results, and discuss some important LHM-properties, none of which was done in [29] and [30].

6. CONCLUSIONS

We presented analytical and numerical studies of electromagnetic wave propagation over an infinite
RHM-LHM composite, graded along the direction perpendicular to the boundary plane between the
two materials. The permittivity ε(ω, x) and permeability µ(ω, x) varied according to hyperbolic tangent
functions along the x-direction. We showed that the electric and magnetic field intensities, for both the
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TE- and TM-case, satisfy the same Helmholtz’ equations for lossy media. We presented remarkably
simple exact analytical solutions for the field intensities, which confirm all the expected properties
of RHM-LHM structures. Finally, we performed a numerical study of the wave propagation over
an impedance-matched graded RHM-LHM interface, using the COMSOL Multiphysics software, and
obtained an excellent agreement between the numerical simulations and analytical results.
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