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Accurate and Efficient Evaluation of the Scattering by Bodies
of Revolution Based on the Magnetic Field Integral Equation

Fahimeh Sepehripour* and Martijn C. van Beurden

Abstract—The integrals arising in magnetic field integral equation (MFIE) can become highly singular,
rendering their numerical computation extremely challenging. Here, we propose a technique by which
the singular integrals of the MFIE can be accurately and efficiently evaluated. In this technique, the
corresponding integrals are separated into singular and regular parts. The regular parts are computed
using a very simple Fast Fourier transform, whereas the remaining singular parts are evaluated based
on two three-terms recurrence relations. The accuracy of the proposed method is demonstrated by
analyzing the scattering of various bodies with smooth or non-smooth geometries and comparing the
results with the literature.

1. INTRODUCTION

The analysis of scattering by perfectly electrically conducting (PEC) objects is an important problem in
electromagnetics. One branch of solution methods to characterize the electromagnetic scattering is based
on the electric field integral equation (EFIE) [1, 2]. In this method, the equivalence principle is employed
to obtain an integral representation for the electric fields inside or outside the object. This approach can
be applied to a large variety of structures with different shapes. In [3, 4], for instance, the applicability of
the EFIE approach for characterizing various kinds of PEC scatterers such as spheres and cylinders has
been demonstrated. Similarly, the scattering from other kinds of scatterers like cones [5, 6] and cubes [7]
has been recently investigated leveraging the EFIE technique. Despite these findings, this method is
accompanied by interior resonances that affect its accuracy when it comes to closed structures whose
size is larger than the wavelength [8, 9]. An alternative strategy to characterize the electromagnetic
scattering is based on the magnetic field integral equation (MFIE), where the equivalence principle is
applied to the magnetic field inside or outside of the object [10, 11]. Similar to the EFIE method, this
approach has also been investigated in a variety of reports in order to characterize the scattering by PEC
objects. In [12], for instance, the scattering from a PEC cube and a conducting octahedron has been
characterized by solving the associated magnetic field integral equations using the method of moments
(MoM). Likewise, in [13], the MFIE approach was employed to analyze the scattering of PEC spheres
with various sizes, and shown to provide an acceptable accuracy. Compared to the EFIE, the MFIE
approach provides one with better stability and conditioning, particularly for large structures [14].

For three-dimensional scatterers, a lot of computation time and effort are required to solve the
associated integral equations for both EFIE and MFIE cases. This computational burden can be
significantly mitigated when the scatterer has an axially symmetric body. Such kinds of bodies, called
bodies of revolutions (BOR) [5, 6, 15–20], allow one to reduce the computational requirement from a
two-dimensional manifold to an infinite sequence of one-dimensional manifold. This is accomplished by
decomposing the associated two-dimensional problem into a sequence of independent one-dimensional
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problems, one for each mode in the direction of rotational invariance, thus paving the way for the
accurate analysis of large objects with axial symmetry.

Currently, there are a lot of reports in the literature for scattering analysis of PEC BORs based on
the EFIE approach [21–25]. Yet, little exists on the computation of such kinds of problems based on
the MFIE [25–29]. In [25–27], the scattering by PEC spheres of various sizes have been analyzed based
on the MFIE approach. The computational efficiency of such kinds of scattering problems was then
increased in a more recent work [29], in which the associated computational burden was significantly
mitigated by reducing the number of basis functions. All of these papers, however, focus on a PEC
BOR with a smooth geometry, namely a sphere. On the other hand, there are also reports focusing on
PEC BORs with non-smooth boundaries. Reference [28] is a prominent example, where the scattering
of a PEC BOR with a non-smooth boundary, namely a PEC cylinder, has been studied using the MFIE
technique. However, the accuracy of the method was found not good enough for such kind of BOR with
non-smooth geometry. This is because, for non-smooth boundaries, the Green function in the integral
equations becomes hypersingular when the source and observation points coincide, thus rendering the
computation of the corresponding integrals difficult and often inaccurate. To overcome this vexing issue,
it is crucial to develop techniques by which the singularities of the corresponding integral equation can
be properly handled. While a singularity extraction method has already been proposed to address the
singularity problem of the EFIE [30], its extension to the case of MFIE has not been reported to our
knowledge.

Inspired by the method proposed in [30], we develop a singularity extraction technique for the MFIE
for a perfectly conducting BOR. In the proposed method, we decompose the associated integrals into
singular and regular parts in a way that the regular part is computed using the fast Fourier transform
(FFT). To evaluate the singular parts, we develop a recurrence relation in terms of the mode index.
Together, the efficient calculations of the regular and singular parts allow one to solve the associated
complicated integrals accurately. The accuracy of the proposed method is investigated by analyzing the
scattering from PEC bodies of revolution with smooth and non-smooth boundaries.

2. MAGNETIC FIELD INTEGRAL EQUATION FORMULATION

We start our analysis by considering the PEC BOR shown in Fig. 1(a). The BOR is assumed to be
embedded in free-space. The BOR is assumed to be axially symmetric with respect to the z-axis.
Leveraging this symmetry, one can define the BOR as a surface generated by a planar curve revolving
around the z-axis. This planar curve, called the generating curve, is illustrated in Fig. 1(b) and is
parameterized by σ, i.e., on the surface we have ρ(σ) and z(σ). An obliquely incident plane wave is
assumed to impinge on the surface of the BOR. The parameters of the incident field are schematically
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Figure 1. (a) Three dimensional sketch of the body of revolution (BOR). (b) Generating curve of the
BOR and the parameters of the incident field.
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shown in Fig. 1(b). The corresponding magnetic field integral equation can be derived from the
magnetic-field boundary condition across the surface of a PEC body, as, e.g., given in [17, 14, 25],
i.e.,

n̂ (r)×Hi (r) =

[
1− Ω0 (r)

4π

]
Js (r)− n̂ (r)× PV

(∫∫
Js

(
r′
)
×∇′G

(
r, r′

)
dr′

)
, (1)

in which Hi(r) is the incident magnetic field; Js(r) is the surface current density induced by the incident
field over the surface of the BOR; n̂(r) is the (outward) unit normal vector on the surface of the BOR;
Ω0(r) is the exterior solid angle of the surface at the observation point r; PV stands for the Cauchy
principal value; G(r, r′) is the free-space Green function, defined as [25]

G(r, r′) =
e−jkR

4πR
, (2)

where k = 2π/λ is the free-space wave number, with λ being the corresponding wavelength, and

R =
√
ρ2 + ρ′2 − 2ρρ′ cos(ϕ− ϕ′) + (z − z′)2. (3)

The primed and unprimed coordinates in the above equations correspond to the coordinates of the
source and observation points, respectively. By taking advantage of the rotational symmetry of the
BOR, the surface current density Js(r) can be expanded in a Fourier series, i.e.,

Js(r) = Jσ(σ, ϕ)uσ + Jϕ(σ, ϕ)uϕ =

∞∑
m=−∞

[
Jm
σ (σ)uσ + Jm

ϕ (σ)uϕ

]
ejmϕ. (4)

where Jm
σ and Jm

ϕ represent the modal surface current density coefficients in the uσ and uϕ directions,

respectively. By employing Eq. (4), the MFIE in Eq. (1) can be split into a set of coupled equations,
where the coupling appears between the two directions uσ (tangential to the generating curve) and uϕ

H i
σ = −

[
1− Ω0(r)

4π

]
Jϕ(σ, ϕ) +

1

4π
PV

(∫∫ [
Λσσ′Jσ(σ

′, ϕ′) + Λσϕ′Jϕ(σ
′, ϕ′)

]
GHdr

′
)
,

H i
ϕ =

[
1− Ω0(r)

4π

]
Jσ(σ, ϕ)−

1

4π
PV

(∫∫ [
Λϕσ′Jσ(σ

′, ϕ′) + Λϕϕ′Jϕ(σ
′, ϕ′)

]
GHdr

′
)
,

(5)

in which
Λij′ = ui ·

[
u′
j × (r− r′)

]
, (6)

where i and j can be either σ or ϕ, and

GH(σ, σ′, ϕ− ϕ′) = [1 + jkR]
e−jkR

R3
. (7)

Note that, for the sake of simplicity, we have suppressed the σ and ϕ dependency of GH in Eq. (5).
The integrands in Eq. (5) can be further simplified by noting that Λij′ is a function of ϕ − ϕ′, and
consequently a periodic convolution occurs along the ϕ direction. By integrating both sides of each

equation as
∫ 2π
0 (.)e−jm′ϕdϕ, one reaches a matrix equation, one for each Fourier mode m, of the form[

Zm
σσ Zm

σϕ − π

Zm
ϕσ + π Zm

ϕϕ

][
Jm
σ

Jm
ϕ

]
=

[
V m
σ

V m
ϕ

]
, (8)

in which we have assumed the exterior solid angle to be Ω0(r) = 2π, which holds for all observation
points except for isolated points at a corner. Note that the appearance of π on the anti-diagonal matrix
blocks is due to the term containing the solid angle and the fact that the integral over ϕ was not

normalized by 2π. Further, V m
σ,ϕ =

∫ 2π
0 H i

σ,ϕe
−jmϕdϕ. The corresponding (impedance) matrix elements
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are of the form

Zm
σσ = j

∫
σ′
ρ′
{
ρ′ sin ν cos ν ′ − ρ sin ν ′ cos ν − (z′ − z) sin ν sin ν ′

}
Smdσ

′,

Zm
σϕ =

∫
σ′
ρ′
{[

(ρ′ − ρ) cos ν − (z′ − z) sin ν
]
Cm + ρ′ cos νBm

}
dσ′,

Zm
ϕσ = −

∫
σ′
ρ′
{[

(ρ′ − ρ) cos ν ′ − (z′ − z) sin ν ′
]
Cm − ρ cos ν ′Bm

}
dσ′,

Zm
ϕϕ = −j

∫
σ′
ρ′(z′ − z)Smdσ

′.

(9)

where ν is the angle between the tangent to the generating curve uσ and the z-axis. This angle is
defined to be positive if uσ points away from the z-axis and negative if uσ points towards the z-axis.
In addition, we have

Bm(σ, σ′) = 2

∫ π

0
sin2(α/2) cos(mα)GH(α)dα,

Cm(σ, σ′) =

∫ π

0
cos(α) cos(mα)GH(α)dα,

Sm(σ, σ′) =

∫ π

0
sin(α) sin(mα)GH(α)dα.

(10)

where α = ϕ− ϕ′. The integrals Bm, Cm, and Sm can be rewritten as

Cm =
1

2
(Gm+1 +Gm−1),

Bm = Gm − 1

2
(Gm+1 +Gm−1),

Sm =
1

2
(Gm−1 −Gm+1),

(11)

in which Gm is what we call the MFIE modal Green function (MGF), defined as

Gm(σ, σ′) =

∫ π

0
cos(mα)GH(α)dα

=

∫ π

0
cos(mα)

[
1 + jkR(σ, σ′, α)

]e−jkR(σ,σ′,α)

R3(σ, σ′, α)
dα.

(12)

3. CONSTRUCTION OF THE RECURRENCE RELATION FOR THE MGF

3.1. Singularity Extraction Method

Here, we discuss how to evaluate the MFIE modal Green function numerically. If the source and
observation points coincide, the integral in Eq. (12) becomes highly singular and should be evaluated
more accurately. Furthermore, the MGF is a function of the Fourier-mode index m, implying that it
has to be computed for every single Fourier mode individually. This makes the computation of MGF
extremely challenging for large bodies, for which a large number of Fourier modes are required to be
considered to guarantee accuracy. Here, inspired by the method proposed in [30], we overcome this
issue. To this end, we rewrite the MGF in Eq. (12) as

Gm(ρ, ρ′, z, z′) =

∫ π

0
cos(mα)(1 + jkR)

(1− jkR)

R3
dα+

∫ π

0
cos(mα)(1 + jkR)

e−jkR − (1− jkR)

R3
dα

= G(1)
m +G(2)

m .
(13)
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Note that R is a function of the integration variable α. The second integral in Eq. (13) is a regular
integral (due to the term 1+jkR), which can be computed very efficiently for all modes m at once using
a Fast Fourier transform (FFT) [30]. Since the kernel is periodic and continuous, the associated FFT

converges exponentially [31]. G
(1)
m , on the other hand, is associated with the singular part of the MGF.

Let us focus on the evaluation of the singular part of the kernel G
(1)
m . After straightforward calculations,

G
(1)
m can be rewritten as

G(1)
m =

∫ π

0
cos(mα)

1 + k2R2

R3
dα =

∫ π

0

cos(mα)

R3
dα+ k2

∫ π

0

cos(mα)

R
dα. (14)

By defining a the traditional variable w (0 ≤ w ≤ 1) as

w =
4ρρ′

(ρ+ ρ′)2 + (z − z′)2
. (15)

we can rewrite Eq. (14) as

G(1)
m = (−1)m

√
w

ρρ′

[
1

4

w

ρρ′

∫ π/2

0

cos(2mα)

(1− w sin2 α)
3
2

dα+ k2
∫ π/2

0

cos(2mα)√
(1− w sin2 α)

dα

]

= (−1)m
√

w

ρρ′

[
1

4

w

ρρ′
I(3)m + k2I(1)m

]
.

(16)

The sequence of integrals I
(1)
m (w) and I

(3)
m (w) satisfy two different three-terms recurrence relations,

based on which we can evaluate them in O(M) steps whereM indicates the number of truncated modes
in Eq. (4) [30].

I
(1)
0 = K(

√
w),

I
(1)
1 =

2E(
√
w) + (w − 2)K(

√
w)

w
,

I
(1)
m+1 =

1

2m+ 1

[
4m

(w − 2)

w
I(1)m − (2m− 1)I

(1)
m−1

]
,

I
(1)
m−1 =

1

2m− 1

[
4m

(w − 2)

w
I(1)m − (2m+ 1)I

(1)
m+1

]
.

(17)

Likewise, the recurrence relation for I
(3)
m (w) is

I
(3)
0 (w) =

E(
√
w)

1− w
,

I
(3)
1 (w) =

E(
√
w)

1− w
− 2E(

√
w)

(1− w)w
+

2K(
√
w)

w
,

I
(3)
m+1 =

1

2m− 1

[
4m

(w − 2)

w
I(3)m − (2m+ 1)I

(3)
m−1

]
,

I
(3)
m−1 =

1

2m+ 1

[
4m

(w − 2)

w
I(3)m − (2m− 1)I

(3)
m+1

]
.

(18)

in which K(
√
w) and E(

√
w) are the first and second kind complete elliptic integrals, respectively [32].

The third relations in Eqs. (17) and and (18) are the forward recurrence relations, while the fourth
relations correspond to the backward case. It can be shown that, for w ≤ 0.99, the backward recurrence
relation is more accurate than the forward one. For w ≥ 0.99, on the other hand, the forward recurrence
relation is more efficient. To demonstrate this argument, we study the relative error of the forward and

backward recurrence relations of I
(3)
m (w) for different values of the parameter w. Fig. 2(a) shows the

relative error of the computation of I
(3)
m (w) using forward recurrence relation for different values of
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(a) (b)

Figure 2. Relative error of I
(3)
m (w), for different values of w, namely w = 0.2, 0.5, 0.7, 0.9, 0.99. (a)

Corresponding to the forward recurrence relation. (b) Corresponding to the backward recurrence
relation, as a function of ∆m.

w. As observed, when w approaches one, the corresponding relative error becomes very small. As a
result, for w close to one (w > 0.99), we used the forward recurrence relation given in the third line

of Eq. (18). Fig. 2(b) illustrates the relative error of I
(3)
m (w) corresponding to the backward recurrence

relation. Note that, in this figure, the value of m is fixed to m = 20. The x-axis in this figure represents

the starting point I
(3)
m+∆m(w) of the backward recurrence relation. As seen in this figure, for w close to

one, the starting point of the backward recurrence relation should be chosen far enough from the values
of m, which are of interest. As such, for w < 0.99, we use the backward recurrence relation provided

in the fourth line of Eq. (18). Note that while we based our analysis on I
(3)
m (w), similar results can be

achieved for I
(1)
m (w), as demonstrated in [30]. Note further that, for the results of these two figures, we

have employed Mathematica’s NIntegrate [33] method for numerical integration as a reference.

3.2. Singular Nature of the Integrals I
(1)
m (w) and I

(3)
m (w)

Thus far, we have investigated the recurrence relations corresponding to the singular part of the Green

function. Yet, the recurrence relations I
(1)
m (w) and I

(3)
m (w), themselves, are singular when w = 1, which

corresponds to the case where the source and observation points coincide. In particular, I
(1)
0 (w) and

I
(3)
1 (w) in Eqs. (17) and (18) are singular due to the presence of K(

√
w), which is the first kind elliptic

integral. Likewise, I
(3)
0 (w) exhibits a singularity due to 1− w in the denominator. Our next goal is to

extract the aforementioned singular parts of the recurrence relations. To this aim, we replace cos(2mα)
in Eq. (16) with its power series expansion of the multiple-angle cosine [22], i.e.,

cos(2mα) =

m∑
k=0

ψm,k(cosα)
2(m−k), (19)

where for m ∈ N\{0}, we have

ψm,k =
2m

2m− k

(
2m− k

k

)
(−1)k22(m−k)−1. (20)

By substituting Eq. (19) in Eq. (16), the terms for which the power of cos(α) is negative become singular
when w approaches one. We extract these terms according to the following equations

Ĩ(1)m (w) = I(1)m (w)− (−1)mK
(√
w
)
. (21)

Ĩ(3)m (w) = I(3)m (w)− (−1)m
[
E (

√
w)

1− w
− 2m2K

(√
w
)]
. (22)
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in which Ĩ
(1)
m (w) and Ĩ

(3)
m (w) are regular. The term K(

√
w) in Eqs. (21) and (22) can be represented

according to the following relations

K(
√
w) ≈ ln

(
16

1− w

)
= ln

(
16

((
ρ+ ρ′

)2
+

(
z − z′

)2))
− ln

((
ρ− ρ′

)2
+

(
z − z′

)2)
.

(23)

The first term in Eq. (23) is not singular except at the axis of the rotation. As such, it can be directly
computed. In order to calculate the second term in Eq. (23), we introduce new variables l and l′ as
below

ρ = ρp + l∆p sin νp,

ρ′ = ρp + l′∆p sin νp,

z = zp + l∆p cos νp,

z′ = zp + l′∆p cos νp.

(24)

in which zp and ρp correspond to the starting point of the segment p, and ∆p is associated with the
width of the segment p. νp is the angle between the z-axis and tangent to the generating curve. By
replacing the parameters defined in Eq. (24) into Eq. (23), one obtains∫ l2

l1

ln
∣∣l − l′

∣∣ dl′ = (l2 − l1)− (l2 − l) ln (l2 − l)− (l − l1) ln (l − l1) . (25)

which completes the process of extracting the singularity of the modal Green function. The block
diagram shown in Fig. 3 summarizes the procedure proposed to remove the singularity of the MGF
of the MFIE. To verify the correctness of the proposed method further, we computed the complete
integral Gm in Eq. (12), for m = 9, using the proposed approach and compared the result with the one
obtained from Mathematica’s NIntegate [33]. Fig. 4 presents the result for 0 ≤ w < 1, k = 2π, and
ρ = ρ′ = 0.25. In this figure, the absolute values of the real and imaginary parts of Gm are plotted in
panels (a) and (b), respectively. As can be observed, the results obtained in both ways agree very well
with a maximum absolute deviation of 1.7E− 10, thus providing further evidence for the correctness of
the proposed method. For validation purposes, it is worth mentioning that for the parameters specified
and for 0.06 < w < 1, the real part of Gm is positive, and the imaginary part of Gm is negative.

MGF
MFIE

Regular 
part

Singular
part

FFT

cos(m   )α

Output

R 
dα

cos(mα)
dα

R3

w<0.99

w>0.99

w<0.99

w>0.99

Backward 

Backward 

Forward 

Forward 

I(1)

I(3)

m

m

Figure 3. Conceptual block diagram of the proposed singularity extraction method.
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(a) (b)

Figure 4. Absolute values of the (a) real and (b) imaginary parts of Gm for m = 9. The results are
calculated based on the proposed method (solid black) and compared with Mathematica’s NIntegrate
method (dashed red).

4. NUMERICAL RESULTS

In order to solve the MFIE in Eq. (1) using MoM [34, 25], we expand the surface current density Js(r)
defined in Eq. (4) on a series of basis functions, as follows

Jm
σ (σ) =

∑
q

Iσqmf
σ
q (σ)

Jm
ϕ (σ) =

∑
q

Iϕqmf
ϕ
q (σ)

(26)

in which Iσqm and Iϕqm are the unknowns. fσq (σ) and f
ϕ
q (σ) are chosen to be piece-wise constant. Note

that in the ϕ direction, the current is expanded using a finite Fourier series that is truncated from −M
to M , enabling a reasonable computational time.

We employed the so-called Galerkin method [35] to solve Eq. (8). In order to verify the accuracy
of the proposed method, we analyze the scattering of electromagnetic plane waves by PEC objects with
different shapes using the MFIE and then compare the results with those obtained with the EFIE. To
this end, we investigate the scattering from a PEC sphere with radius 0.3λ in free space, in which λ is the
free-space wavelength. The PEC sphere is illuminated by a θ-polarized incident plane wave with angle of
incidence θi = π/4 and ϕi = 0. Figs. 5(a) and (b) represent the induced surface current, corresponding
tom = 1, in the tangential (Iσ = 2πρJσ(σ, ϕ), panel a) and ϕ direction (Iϕ = 2πρJϕ(σ, ϕ), panel b). The
black curves in these figures are obtained using the technique proposed here. The red lines, on the other
hand, correspond to the surface current calculated using the method proposed in [36] for the EFIE. It is
observed that the results match each other. We also investigated the currents over the BOR for another
distinctive mode (m = 2). The associated results are illustrated in Figs. 5(c) and (d). Interestingly, the
proposed technique also enables achieving accurate results for the case of higher-order modes. Figs. 6(a)
and (c) represent the calculated tangential surface current for two specific higher-order modes, namely
m = 9 andm = 10. Figs. 6(b) and (d) represent the associated surface currents in the ϕ direction for the
same modes. The results of these figures verify the accuracy of the proposed method for calculating the
surface currents of the higher-order modes as well. Once the currents of all modes have been calculated,
the associated total current can be readily obtained from Eq. (26). The corresponding tangential and
ϕ-directed total currents are plotted in Figs. 7(a) and (b), and compared with the EFIE.
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Iϕ/|H
i
| m=1m=1Iσ/|H

i
| Iσ/|H

i
| m=2 Iϕ/|H

i
| m=2

Re-EFIE Im-EFIE Re-MFIE Im-MFIE
(a) (b) (c) (d)

Figure 5. Surface currents (normalized to the incident magnetic field) obtained from the MFIE (black),
compared with the ones of the EFIE (red). The results are reported for a perfectly conducting sphere
of radius r = 0.3λ, for a θ-polarized incident field. (a), (b) Tangential and ϕ-directed current for the
mode m = 1. (c), (d) Same as (a) and (b) except that the results are reported for the mode m = 2.

Re-EFIE Im-EFIE Re-MFIE Im-MFIE

m=9Iσ/|H
i| m=9Iϕ/|H

i| Iσ/|H
i| m=10 m=10Iϕ/|H

i|

(a) (b) (c) (d)

Figure 6. Surface currents obtained from the MFIE (black), compared with the ones of the EFIE (red).
The results are reported for a conducting sphere possessing the radius of r = 0.3λ, for a θ-polarized
incident field. (a), (b) Tangential and ϕ-directed current for the mode m = 9. (c), (d) Same as (a) and
(b) except that the results are reported for the mode m = 10.

To characterize the proposed method for the case of bodies of revolutions possessing a non-smooth
geometry, we also investigate the scattering from a PEC cylinder. We assume the radius and height
of the PEC cylinder to be r = 0.25λ and h = 0.5λ, respectively. We further assume that the cylinder
is impinged by a θ-polarized incident plane wave with angles of incidence θi = π/4 and ϕi = 0. The
associated tangential and ϕ-directed currents are shown in Fig. 8 for m = 1 (panels (a) and (b)) and
m = 2 (panels (c) and (d)). It is observed that the results obtained using the proposed MFIE method
are in general in good agreement with that of the EFIE (the maximum absolute deviation is smaller
than 0.17). The tangential and ϕ directed currents of two higher-order modes (m = 9 and m = 10)
are plotted in Fig. 9. We note that, since the geometry of the BOR under investigation includes sharp
edges, the agreement between the EFIE and MFIE approaches is not perfect near the corners (which
correspond to 0.25 and 0.75 on the horizontal axis), especially for the currents in ϕ direction. To
illustrate this point better, the absolute deviation corresponding to the ϕ-directed currents is plotted
in Fig. 10 for m = 1, 2, 9, and 10. As observed, the deviation is larger close to the corners than the
currents on the other parts of generating curve. Yet, the singularity extraction method proposed here
provides much better accuracy than the situation when the singularity is not extracted and treated
separately. To illustrate this, Fig. 11 shows the current densities, corresponding to the case in Fig. 9,
when the singularity extraction method is not applied in the numerical computation. In the latter case,
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m=1

(a) (b)

Figure 7. Corresponding total current, obtained with the MFIE (black) and EFIE (red). The incident-
field parameters and the geometry of the sphere are the same as in Figs. 5 and 6. (a) Corresponding
total current in tangential direction in the plane ϕ = 0. (b) Corresponding total current in the ϕ
direction in the plane ϕ = π/2.

Re-EFIE Im-EFIE Re-MFIE Im-MFIE

Iσ/|H
i| m=1 Iϕ/|H

i| m=1 Iσ/|H
i| m=2 Iϕ/|H

i| m=2

(a) (b) (c) (d)

Figure 8. Surface currents obtained from the MFIE (black), compared with the ones of the EFIE
(red). The results are reported for a perfectly conducting cylinder with radius and height of r = 0.25λ,
and h = 0.5λ, for a θ-polarized incident field. (a), (b) Tangential and ϕ-directed current for the mode
m = 1. (c), (d) Same as (a) and (b) except that the results are reported for mode index m = 2.

as opposed to the singularity extraction approach, we computed the MGF integral purely numerically
based on the Gaussian quadrature method and at the singularity, i.e., when the source and observation
points coincide, the MGF is replaced by zero. By comparing Fig. 9 and Fig. 11, it can be clearly observed
that the current density exhibits much more overshoot than the EFIE result in case the singularity is
not extracted and properly handled. So far, we have verified the accuracy of the proposed method for
several representative lower and higher-order modes. It is however not yet clear how the total currents
calculated from the MFIE and EFIE compare to each other, which would demonstrate the accuracy
for all modes. By employing Eq. (4), one can readily obtain the associated total currents, which are
plotted in Figs. 12(a) and (b). In particular, the maximum relative deviation between the EFIE and

MFIE methods was calculated to be 7.5E − 3 and 8.5E − 2 for Iσtot and I
ϕ
tot, respectively. For further

assessment of the proposed method, we investigate the performance of the method for a well-known
case in the literature [22, 36], which is the scattering from a PEC circular cylinder with radius 2λ and
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Re-EFIE Im-EFIE Re-MFIE Im-MFIE

Iσ/|H
i| m=9 m=9Iϕ/|H

i| Iσ/|H
i| m=10 Iϕ/|H

i| m=10

(a) (b) (c) (d)

Figure 9. Surface currents obtained from the MFIE (black), compared with the ones of the EFIE
(red). The results are reported for a PEC cylinder with height and radius of r = 0.25λ, and r = 0.5λ,
for a θ-polarized incident field. (a), (b) Tangential and ϕ-directed current for the mode m = 9. (c), (d)
Same as (a) and (b) except that the results are reported for the mode m = 10.

(a) (b)

Figure 10. Absolute deviation between the ϕ-directed surface currents obtained via the MFIE and
EFIE. (a) For modes m = 1 and m = 2. (b) For modes m = 9 and m = 10.

Re-EFIE Im-EFIE Re-MFIE Im-MFIE

m=9Iσ/|H
i| Iϕ/|H

i| m=9 Iσ/|H
i| m=10 Iϕ/|H

i| m=10

(a) (b) (c) (d)

Figure 11. Surface currents obtained from the MFIE when no singularity extraction method is applied
in the numerical computation (black), compared with the ones of the EFIE (red). The results are
reported for a PEC cylinder with height and radius of r = 0.25λ, and r = 0.5λ, for a θ-polarized
incident field. (a), (b) Tangential and ϕ-directed current for the mode m = 9. (c) (d) Same as (a) and
(b) except that the results are reported for m = 10.
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height 2λ. The incident field in this case is a θ-polarized plane wave with θi = π/4. Fig. 13(a) indicates
the current in the tangential direction in the plane ϕ = 0 and compares it with the data reported in the
literature based on the EFIE [22]. The ϕ-directed current at ϕ = π/2 is presented in Fig. 13(b). It is
observed that the total currents calculated from the proposed MFIE method (black curves in Fig. 13)
match the ones obtained from the literature, based on the EFIE, corresponding to a maximum relative
error of 0.1 and 0.09 for the tangential and ϕ-directed currents, respectively.

So far we have focused our attention to the corresponding surface currents. Another good indicator

m=1

(a) (b)

Figure 12. Corresponding total current, obtained based on the MFIE (black) and EFIE (red). The
incident-field parameters and the geometry of the cylinder are the same as Fig. 8 and 9. (a) Total
current in the tangential direction in the plane ϕ = 0. (b) Total current in the ϕ direction in the plane
ϕ = π/2.

m=1

(a) (b)

Figure 13. Comparing the accuracy of our proposed method with the literature [22, 36]. The figure
shows the total current of a PEC cylinder with the radius of r = 2λ and the height of 2λ. (a) Tangential
total current in the plane ϕ = 0 (b) ϕ-directed total current in the plane ϕ = π/2.
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Figure 14. Bi-static RCS component σϕϕ of the PEC cylinder investigated in Fig. 13. Corresponding
σϕϕ calculated based on the proposed method (solid back curve) and compared to the literature [22]
(dotted red curve). The parameters of the incident field and the corresponding observation plane are
specified in the text.

by which the correctness of the proposed MFIE method can be verified is the bi-static radar cross-section
(RCS). Here, we provide one component of the 2×2 RCS matrix, namely the co-polarization component
σϕϕ for an incident plane wave polarized in the ϕ direction, corresponding to the PEC cylinder studied
in Fig. 13. Fig. 14 shows the corresponding σϕϕ in the observation plane ϕobs = 0, for a ϕ-polarized
incident plane wave with the incident angle of θin = π/4 and ϕin = 0. The results are calculated based
on the proposed MFIE technique (solid black curve), and compared to the literature [22] (dotted red
curve). The results of this figure provide further evidence for the correctness of the proposed method.

Finally, in Table 1, the maximum relative deviation between the EFIE and MFIE results, as well
as the corresponding computation times for solving matrix equations in Eq. (8) for Fourier modes
0 ≤ m ≤ 15, has been reported for all the geometries investigated in the paper. It should be noted
that, owing to the symmetry of Gm with respect to ±m in Eq. (12), Gm, and therefore also the matrix
elements in Eq. (9), for negative mode indices can be directly obtained from computed ones for the
positive mode indices. The computation was performed using MATLAB 2019b on a laptop with 16GB
of RAM and an Intel core i7-8850H processor.

Table 1. Computational characteristics of scattering of PEC BOR with different shapes and dimensions.

Object

Perimeter of

generating

curve

Corresponding

figure

EFIE method

time (sec)

0 ≤ m ≤ 15

MFIE method

time (sec)

0 ≤ m ≤ 15

Max

relative

deviation

sphere 0.3πλ 6 229 190 0.6E − 2

cylinder λ 11 234 186 8.5E − 2

cylinder 6λ 12 2949 2449 9.1E − 2

5. CONCLUSION

In conclusion, a method was proposed to characterize the electromagnetic scattering from perfectly
conducting bodies of revolution by means of the MFIE. The proposed method is based on efficiently
and accurately determining the modal Green function that appears in the MFIE. In the proposed
approach, the regular parts of the impedance matrix elements were computed using a fast Fourier
transform (FFT), whereas the associated singular parts were evaluated based on two simple recurrence
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relations, thus enabling an efficient computation for all modes of interest in one go. The accuracy of
the proposed method was demonstrated by analyzing the scattering from PEC BORs having smooth
and non-smooth geometries, and by comparing the results with a similar approach for the EFIE. The
proposed method, based on the MFIE, can be combined with its electric-field counterpart, allowing one
to get rid of interior resonances that occur when employing either of these integral equations separately.
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