
Progress In Electromagnetics Research M, Vol. 107, 193–204, 2022

An Approximate Closed-Form Solution of Compensating for Beam
Pointing Error with Uniform Linear Arrays

Shuaizhao Li1, 2, Zhongjun Yu1, 2, *, Qiang Zhang1, 2,
Chengxiang Hao1, 2, and Ning Cui1, 2

Abstract—In phased array systems, beam pointing accuracy is one of the major issues for its great
effect on radar communication. Regardless of the initial excitation error and the inherent mutual
coupling between antenna elements, the anisotropy of antenna element’s radiation pattern is the main
reason for beam pointing error. In this paper, we propose a closed-form solution of compensating for
beam pointing error with uniform linear arrays. It gives a theoretical explanation how beam pointing
deviates from the desired angle when scanning angle and the number of elements vary. Then a numerical
simulation validates the effectiveness of the proposed theory. Finally, an experiment with an X-band
phased array verifies that the closed-form solution can be applied to practical phased array systems in
the presence of mutual coupling.

1. INTRODUCTION

Phased arrays are widely utilized for military and civil use, including precise guidance and strike [1], the
5th Generation (5G) communication [2], automotive radar of unmanned vehicle [3], etc., which benefits
from their abilities of beamforming, nulling, and beam steering. Accurate beam pointing is especially
required for all these applications. However, there are three factors leading to beam pointing error.

The first is the amplitude and phase error between antenna elements. In practical phased array
systems, the characteristic of components (including transmit/receive (T/R) module, power divider,
etc.) might vary with each other, resulting in initial excitation amplitude and phase deviation. More
uncertainty arises with temperature drift, device ageing, and the quantization error of phase shifts. Thus,
phased array systems must get calibrated before operation. There has been great work to counter this
problem, including rotating-element electric-field vector (REV) calibration method [4] and its improved
versions [5–7], near-field measurement system-based method [8, 9], phase-toggling method [10, 11], and
mutual coupling-based calibration [12, 13].

The second is the inherent mutual coupling between elements. Mutual coupling influences the
performance of the antenna array by varying its element impedance, reflection coefficients, and overall
antenna pattern, leading to beam pointing error. Many researches have been done to overcome this
issue with algorithmic method [14] or by declining the coupling coefficients between antenna elements
structurally, like electromagnetic bandgap (EBG) [15], defected ground structure (DGS) [16], the
metamaterials [17], and decoupling network [18].

The last is the anisotropy of the radiation pattern of the antenna element. Even assuming that
the two problems mentioned above do not exist, this factor still theoretically causes beam pointing
deviation especially at a wide scan angle. To simplify the array synthesis issues, we tend to assume the
radiation pattern of the antenna element to be isotropic. However, for practical scanning phased arrays,
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the maxima of the single element’s radiated field and of the array factor are not both directed toward
the desired scanning angle [19], causing beam pointing deviation. As far as we investigate, there have
been few researches to figure out this problem. Phase synthesis for every channel utilizing optimization
algorithm [20] can be a solution to obtain desired beam direction. However, it is impractical for beam
control system because it consumes too much time and hardware resource. We give an approximate
closed-form solution to compensate beam pointing error firstly with uniform linear arrays (ULAs). It
is a simple but useful way to directly calculate the phase distribution of every channel. This on-line
compensation solution can be applied to the practical beam control system normally with progressive
phase distribution.

The outline of this paper is as follows. First, the analytical solution of compensating for beam
pointing deviation with ULAs is derived in Section 2. In Section 3, to validate the compensation theory,
a numerical simulation with a ULA without considering mutual coupling is carried out when beam
pointing direction and the number of antenna elements are changed. Then in Section 4, to guarantee
that the compensation theory is valid for practical phased array systems, experiments of an 11-element
X-band ULA simulated with high-frequency structure simulator (HFSS) and measured in a microwave
anechoic chamber are separately conducted. Finally, some conclusions are drawn in Section 5.

2. THEORY

Figure 1 shows the far-field geometry of a typical N -element ULA with spacing d, oriented in the
direction θ. Assuming that all elements each with identical magnitude and a progressive phase β have
identical far-field radiation pattern [19] in the absence of mutual coupling, the array factor can be
derived as

AF (θ) =
N∑

n=1

ej(n−1)(kd sin θ+β) (1)

where k = 2πf/c0, c0 = 2.9979 × 108m/s, and f is the operating frequency. To make the maximum
radiation oriented in any direction θ0 to form a scanning array, β should be adjusted so that

kd sin θ + β |θ=θ0 = 0 ⇒ β = −kd sin θ0 (2)

Thus the array factor can be rewritten as

AF (θ) =

N∑
n=1

ej(n−1)kd(sin θ−sin θ0)

= ej[(N−1)/2]kd(sin θ−sin θ0) · sin[Nkd(sin θ − sin θ0)/2]

sin[kd(sin θ − sin θ0)/2]
(3)

Figure 1. The far-field geometry of a typical N -element ULA.
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If the reference point is the physical center of the array, the array factor is reduced to

AF (θ) =
sin[Nkd(sin θ − sin θ0)/2]

sin[kd(sin θ − sin θ0)/2]
(4)

Multiplied by the field E(θ) of a single element, the total field of the array is expressed by

T (θ) = E(θ) ·AF (θ)

= E(θ) · sin[Nkd(sin θ − sin θ0)/2]

sin[kd(sin θ − sin θ0)/2]
(5)

In most cases, E(θ) is not isotropic, leading to beam pointing deviation from the desired angle θ0.
Therefore, the progressive phase β must be adjusted as

βx = −kd sin θx (6)

where θx is called correction angle which should be at the neighborhood of θ0. Then the total field of
the array is rewritten as

T (θ) = E(θ) · sin[Nkd(sin θ − sin θx)/2]

sin[kd(sin θ − sin θx)/2]
(7)

To make beam pointing precisely at θ0, the condition that the derivative of T (θ) at θ0 equals zero must
be fulfilled.

dT (θ)

dθ
|θ=θ0 = −m cosθ0E(θ0) cos(mb) sin(Nmb)

sin2(mb)

+
Nm cos θ0E(θ0) cos(Nmb) + E′(θ0) sin(Nmb)

sin(mb)
= 0 (8)

where m = kd/2, b = sin θ0 − sin θx. It is reduced to

tan(Nmb) =
Nm cos θ0E(θ0)tan(mb)

m cos θ0E(θ0)− E′(θ0) tan(mb)
(9)

According to Taylor’s theorem, when x tends to 0, tanx = x+ x3/3+ o(x3). Thus the equation can be
rewritten as

Nmb+
(Nmb)3

3
=

Nm cos θ0E(θ0)(mb+m3b3/3)

m cos θ0E(θ0)− E′(θ0)(mb+m3b3/3)
(10)

We simplify it as

b2 − (N2 − 1) cos θ0E(θ0)

E′(θ0)
b+

3

m2
= 0 (11)

There are two possible solutions

b =


c+

√
c2 − 12

m2

2
, when E′(θ0) ≤ 0;

c−
√
c2 − 12

m2

2
, when E′(θ0) > 0.

(12)

where c = (N2 − 1) cos θ0
E(θ0)
E′(θ0)

. For the case E′(θ0) ≤ 0

b = sin θ0 − sin θx =
c+

√
c2 − 12

m2

2
(13)

According to sin θ0 − sin θx ≈ cos θ0(θ0 − θx), we give an approximate solution of correction angle θx
in Equation (14), which is a function of element number N , desired beam pointing angle θ0, spacing d,
operating frequency f , and far-field radiation pattern E(θ) of a single element.

θx = θ0 −
p+

√
p2 − 12

m2cos2θ0

2
(14)
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where p = (N2 − 1) E(θ0)
E′(θ0)

< 0. Likewise for the case E′(θ0) > 0

θx = θ0 −
p−

√
p2 − 12

m2cos2θ0

2
(15)

From another perspective, θx is the angle which beam control system uses to calculate the phase
distribution according to Equation (6). The actual beam direction is θ0. The deviation between them,
also called beam pointing error, can be obtained from Equation (16) for the case E′(θ0) ≤ 0.

θx − θ0 = −
p+

√
p2 − 12

m2cos2θ0

2
(16)

It is easy to figure out the monotonicity of the function that the deviation between θx and θ0 is bigger
when the scanning angle θ0 is wider, and the number N of the elements is smaller. It should be noted
that the following equation has to be fulfilled to ensure the validity of the solution.

p2 − 12

m2cos2θ0
≥ 0 (17)

It is further reduced to

N ≥

√
2
√
3

m cos θ0

∣∣∣∣E′(θ0)

E(θ0)

∣∣∣∣+ 1 (18)

However, it is hard to judge whether it is a big or small error simply according to the value of beam
pointing error. A scientific method to evaluate the beam pointing error is to compare it with the half-
power beamwidth (HPBW). Although HPBW is theoretically affected by the anisotropy of the antenna
element, the classical formula [21] listed as Equation (19) can be adopted as a reference.

HPBW = 51
λ

Nd| cos θ0|
(◦) (19)

For practical phased systems in the presence of mutual coupling, if the array is large, most of
the elements will see a uniform neighboring environment, and the active element pattern can be
approximated as equal for all elements in the array [22]. Thus, the pattern of the full excited array can
be expressed as the product of active element pattern and the array factor. The radiation pattern of the
central element with all other elements terminated in matched loads is selected as E(θ). In addition,
since E(θ) is obtained practically from the radiated field of discrete sampling angles, E′(θ0) can be
derived from the slope of the fitted curve of E(θ) or replaced with the following equation.

E′(θ0) ≈
E(θ0 +∆)− E(θ0 −∆)

2∆
(20)

where ∆ should be bigger than the beam pointing measurement accuracy in practical application.
For practical phased array systems, mainly four steps to compensate beam pointing error are

summarized below.
(1) Obtain the active element pattern E(θ) of the ULA. This step can proceed in advance in an

anechoic chamber. The radiation pattern of the central element with all other elements terminated in
matched loads is measured, and the gain data at every angle are recorded.

(2) Extract the gain E(θ0) and the slope of the gain E′(θ0) of the active element pattern at the
desired beam pointing angle θ0.

(3) Calculate the correction angle θx by Equation (14) or (15) depending on the sign of E′(θ0).
(4) Excite the array with progressive phase βx = −kd sin θx by beam control system.

3. NUMERICAL SIMULATION IN THE ABSENCE OF MUTUAL COUPLING

Assuming that there is a 12-element ULA with spacing d = 16mm operating at 9.5GHz, and its radiated
field E(θ) in Y OZ plane of a single element equals cos θ. If the desired beam pointing direction θ0 is
60◦ and β = −kd sin θ0, the array’s radiation pattern can be calculated by pattern multiplication using
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Figure 2. The radiation patterns of a single element, array factor and the whole array of a 12-element
ULA with progressive phase β = −kd sin 60◦.

Equation (5) in the absence of mutual coupling. As a result of the anisotropy of antenna element’s
radiation pattern, the beam direction seen from Fig. 2 actually points at 57.39◦, a non-negligible error
compared to the desired angle.

Applied with the compensation theory using Equation (14), the correction angle θx = 63.29◦ is
obtained. Replacing the progressive phase with β = −kd sin θx, the radiation pattern of the array is
calculated with Equation (7), and its beam points at 59.92◦ seen from Fig. 3, quite close to the desired
scanning angle. Likewise, the beam pointing results before compensation and after compensation are
listed respectively as in Table 1 when the scanning angle varies and Table 2 when the number of
antenna elements changes. As pointed out in Section 2, the deviation between θx and θ0 is bigger
when the scanning angle θ0 is wider, and the number N of the elements is smaller. The beam pointing
directions after compensation show good accordance with the desired angles. Thus, the correctness of
the closed-form solution to compensate beam pointing error with ULAs gets validated.

Table 1. The beam pointing results of a 12-element ULA before compensation and after compensation
when the scanning angle varies.

desired beam angle θ0 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

beam pointing before compensation 9.91◦ 19.81◦ 29.64◦ 39.35◦ 48.75◦ 57.39◦

correction angle θx 10.09◦ 20.2◦ 30.37◦ 40.68◦ 51.37◦ 63.29◦

beam pointing after compensation 10◦ 20◦ 30◦ 40◦ 49.99◦ 59.92◦

Table 2. The beam pointing results of a ULA with desired beam angle θ0 = 60◦ before compensation
and after compensation when the number of antenna elements changes.

the number N of elements 10 15 20 30 50 100

beam pointing before compensation 56.5◦ 58.21◦ 58.93◦ 59.5◦ 59.82◦ 59.95◦

correction angle θx 64.75◦ 62.1◦ 61.18◦ 60.52◦ 60.19◦ 60.05◦

beam pointing after compensation 59.84◦ 59.97◦ 59.99◦ 59.99◦ 60◦ 60◦
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Figure 3. The radiation pattern of a 12-element ULA with progressive phase β = −kd sin 63.29◦.

4. EXPERIMENTS IN THE PRESENCE OF MUTUAL COUPLING

4.1. Simulation with HFSS

To validate the compensation theory in the presence of mutual coupling, an 11-element microstrip patch
antenna array operating at 9.5GHz is studied. The structures of the antenna element and its array are
described by Fig. 4. The detailed parameters are described in Table 3, and the substrate material is
Rogers 5880. The far-field radiation patterns of the element and the array in Y OZ plane derived from
electromagnetic simulator HFSS are shown as Fig. 5.

(a) (b)

(c)

Figure 4. (a) Top view of the patch antenna. (b) Front view of the patch antenna. (c) The arrangement
of the ULA.
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(a) (b)

Figure 5. (a) The far-field radiation pattern in Y OZ plane of a single element. (b) The far-field
radiation pattern in Y OZ plane of the array.

Table 3. The detailed parameters of the patch antenna.

antenna parameters R sub H sub R patch W slot l 1 l 2 l 3 D port d port

value(mm) 16 2.1 8.8 0.2 5.66 1.36 3.1 1.3 0.38

Figure 6. The simulated radiation pattern of an 11-element ULA with progressive phase β =
−kd sin 60◦.

Assuming that the desired steering angle θ0 = 60◦, and the array is excited by progressive phase
β = −kd sin θ0, the radiation pattern of the array in the presence of mutual coupling, as shown in Fig. 6,
is simulated with HFSS. As seen from the result, the steering angle at the maximum gain declines to
56.21◦, almost 4◦ error from the desired angle. To compensate the beam pointing error, firstly the active
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element pattern with a feed at the central element and with other elements terminated in matched loads
is obtained by HFSS simulation, as shown in Fig. 7. Then, according to Equation (14), the correction
angle θx = 64.9◦ is derived. Replacing the excitation phase with progressive phase β = −kd sin θx, the
radiation pattern of the fully excited array after compensation is simulated, as shown in Fig. 8. Results
show that the beam points at 59.88◦, quite close to the desired angle. Thus, the compensation theory
can be applied to the situation in the presence of mutual coupling. The slight deviation from 60◦ is
caused by the approximation of the compensation solution and the edge effect of the antenna array.

Figure 7. The simulated active element pattern.

Figure 8. The simulated radiation pattern of an 11-element ULA after compensation with progressive
phase β = −kd sin 64.9◦.
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4.2. Measurement in Anechoic Chamber

A two-dimension phased array operating at 9.5GHz is available for our experiment with near field
measurement system in an anechoic chamber, shown in Fig. 9. Since the compensation theory is only
applied to ULA, an 11-element array is specially selected from the array as the experiment object,
shown in Fig. 10. Only the radiation patterns in Y OZ plane are considered.

(a) (b)

Figure 9. (a) The two-dimension array available for experiment. (b) The near field measurement
environment in anechoic chamber.

Figure 10. The arrangement of the array and the selected 11-element ULA for experiment.

Firstly, the active element pattern with a feed at the central antenna and with all other elements
terminated in matched loads is measured and calculated by the near field measurement system, shown
as Fig. 11.

Then in view of the situation that the array’s beam scanning range is within ±50◦. The desired
beam direction is set at θ0 = −45◦. Thus, the reference HPBW can be calculated by Equation (19),
which is 12.94◦. The radiation pattern of the ULA excited by progressive phase β = −kd sin(−45◦) is
measured, shown in Fig. 12(a). As seen from the result, the actual beam direction is −44.0◦, 7.73% of
the HPBW deviation from the desired angle.

Finally, according to the compensation theory using Equation (15) with the gain data and the slope
of the gain at −45◦ derived from the active element pattern, the correction angle θx calculated is −46.3◦.
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Figure 11. The measured active element pattern of the central element.

(a) (b)

Figure 12. (a) The measured radiation pattern before compensation. (b) The measured radiation
pattern after compensation.

Adjusting the array’s excitation with progressive phase β = −kd sin(−46.3◦), the radiation pattern after
compensation is measured, shown as Fig. 12(b). The beam points at −45.2◦, 1.55% of the HPBW
deviation from the desired angle. Although there is slight error, the values of the normalized gain at
−45◦ and −45.2◦ are only 0.005 dB apart. Considering the issue of the beam pointing measurement
accuracy, the compensation effect is acceptable.

5. CONCLUSION

In this paper, an approximate closed-form solution is proposed to compensate beam pointing error
with ULAs mainly due to the anisotropy of antenna element’s radiation pattern. It gives a theoretical
explanation how beam pointing deviates from the desired angle when scanning angle and the number of
elements vary. Numerical simulation and near field measurement experiment validate its effectiveness in
both conditions: no mutual coupling and in the presence of mutual coupling. It is a simple and original
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way to directly give the phase distribution to compensate beam pointing error without complicated
phase optimization, especially suited for practical beam control system offering progressive excitation
phase. A solution of compensation for beam pointing error applied to two-dimension arrays is our next
work.
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