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Abstract—Implementation of a broadband Ruthroff-type transmission line transformer balun with a
1 : 2 step-up impedance transformation ratio is presented in this letter. The proposed Transmission Line
Transformer (TLT) balun was investigated with broadside-coupled lines using three stacked microstrip
lines. The proposed balun was formed by cascading one section of modified Ruthroff-type 2 : 1
unbalanced-to-unbalanced TLT with one section of Ruthroff-type 1 : 4 TLT balun in series. The
achieved fractional bandwidth of the balun is 192.17% over the frequency range from 1.2 to 6.6GHz,
which covers the IEEE 802.11 a/b/g WLAN, WiMAX applications. The measured amplitude and phase
imbalances are less than 1 dB and less than 4.51◦, respectively at this frequency range.

1. INTRODUCTION

Baluns have an important role in most differential RF and microwave circuits such as power amplifiers
(PAs) [1], balanced mixers [2], and matching networks between antennas [3]. They are used to provide
balanced outputs from an unbalanced input. The most popular transmission line balun is the Marchand
balun [4]. The bandwidth of this balun is larger than that of the magnetically coupled transformer.
However, two pairs of quarter wavelength transmission lines are typically used in the Marchand balun,
leading to a larger occupied area. A magnetically coupled transformer has been used as a passive
balun [5]. The critical issues of this kind of balun are stray inductance and the capacitance between
windings which limit its upper-frequency response. Transmission line transformer (TLT) is another
type of baluns. It operates by delivering energy via the transverse transmission line mode [6, 7], and
its interwinding parasitics will be absorbed into the characteristic impedance of the transmission lines,
resulting in a lower insertion loss and larger bandwidth than that of magnetically coupled transformer-
type balun [8]. The Guanella-type TLT balun has a flexible impedance transformation ratio, which
makes it utilized often in the performance of various impedance transformations [9]. However, the
combination of various basic blocks to perform various impedance transformations causes higher loss
within a larger area. Moreover, in the absence of ferrite materials, the magnitude difference would
be greatly worsened, because of an insufficient inductance. The Ruthroff-type TLT balun allows an
impedance transformation ratio of 1 : 4 using a smaller number of transmission lines than those in
the Guanella-type TLT balun. In the absence of ferrite materials, it also suffers from insufficient
inductance, but achieves a better magnitude difference than that of the Guanella-type TLT balun [10].
Recently, Ruthroff type balun has been revisited using CMOS and IPD technologies [10, 11], and an
adjusted length of the phase compensation was utilized in those baluns to mitigate the problem of
phase imbalance. Traditionally it is fabricated by bifilar windings or coaxial cables as transmission
lines [12–14]. The electrical length of the Ruthroff type balun is typically less than 1/8λg [11], leading
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to a smaller required chip area for this balun. The applications of this balun are limited due to the
disadvantage of its fixed impedance transformation ratio at 1 : 4.

In this letter, a broadband Ruthroff-type 1 : 2 TLT balun with impedance transformation from
50Ω to 100Ω implemented with broadside-coupled lines and stacked microstrip lines is investigated.
The proposed 1 : 2 TLT balun is formed by cascading one section of Ruthroff-type 2 : 1 unbalanced-to-
unbalanced TLT with one section of Ruthroff-type 1 : 4 TLT balun in series.

2. RUTHROFF 1 : 2 TLT BALUN

Four layers were stacked together to implement the Ruthroff 1 : 2 TLT balun as shown in Fig. 2(a). The
used materials from the bottom to the top are Micro. 3, Micro. 2, and Micro. 1, with 127µm thickness
Rogers substrate (ϵr = 10.2), 25.4µm thickness Dupont substrate (ϵr = 3.4), and 25.4µm thickness
Dupont substrate (ϵr = 3.4), respectively. Conductors shown in pink (metal-1) and green (metal-3) are
the top metal layers of micro. 1 and micro. 3, respectively, and the blue (metal-2) and violet (metal-4)
colors show the bottom metal layers of micro. 1 and micro. 3, respectively. The two sections of the
Ruthroff 1 : 2 TLT balun were simulated in advance to verify the performance of the two TLTs sections.
To achieve broad bandwidth, the ground plane was etched in the coupled line section. The selected
substrate and thickness are comparable to the CMOS die ones including the SI layer at the bottom with
permittivity of 11.2 [15].

2.1. Ruthroff-Type 2 : 1 Unbalanced-to-Unbalanced TLT

As the Ruthroff topology does not support a 2 : 1 ratio, the TLT used to implement the first section
of the Ruthroff 1 : 2 TLT balun is the Ruthroff 2.25 : 1 un-to-un TLT, because it has the closest
impedance to the 2 : 1 [9]. Traditionally, these TLTs are realized using bifilar or trifilar windings
with ferrite material [8]. Instead of these materials, a Ruthroff 1 : 2.25 TLT has been developed using
both TFMS and multilayer MMIC technologies [16]. Fig. 1(a) shows the schematic diagram of the
conventional 2.25 : 1 TLT [8]. This TLT includes two pairs of conductors which are connected in series
on the generator side and in shunt on the other side. If the two transmission lines in Fig. 1(a) are short
and ideal, the currents through the two conductors are equal and opposite. Additionally, the voltage at
the beginning of the line is the same as the voltage at the end of the line [14, 17]. Therefore:

Vinput − Vz = Voutput − 0 (1)

Vz − 0 = Voutput − Vz (2)

So the relation between Voutput and Vinput is: Voutput = 2Vinput/3, and if the source resistance
Rs = Vinput/2I. Then the load resistance,

RL = Voutput/3I = 2Vinput/9I = (4/9)(Vinput/2I) = 4Rs/9 (3)

Therefore the impedance transformation ratio from Rs to RL is 2.25 : 1. However, the area occupied
by the conventional TLT is large because it requires two pairs of the primary and secondary windings,
and to reduce the later, the modified Ruthroff 2.25 : 1 TLT shown in Fig. 1(b) was used to implement

(a) (b) (c) (d)

Figure 1. Schematic diagram of (a) conventional Ruthroff 2 : 1 TLT, (b) modified Ruthroff 2 : 1 TLT,
(c) Ruthroff 1 : 4 TLT balun, (d) proposed Ruthroff 1 : 2 TLT balun.
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the first section of the Ruthroff 1 : 2 TLT balun. In this transformer, the length of the secondary
winding is twice that of the primary winding. In this way, the area of the modified TLT is about half of
the conventional TLT. A spiral with one turn was utilized in the primary winding, and two turns were
utilized in the spiral of the secondary winding. Metal-1 was used as the 50Ω and 25Ω microstrip lines,
and also as the first half of the secondary winding, and the other half was implemented on metal-3.
Metal-2 was used as the crossover layer and as the primary winding, and metal-4 was used as the ground
plane. The primary and secondary windings were connected together in parallel and in series as shown
in Figs. 2(b), (c), (d), (e) with 50.8µm diameter vias. The same diameter via was used to connect the
secondary winding with the ground plane. Table 1 lists the simulated results of the modified 2 : 1 TLT
with different conductor widths. As shown in this table, the bandwidth can be increased by decreasing
the metal width. Thus the largest bandwidth can be obtained with the smallest winding width.

(a) (b)

(c)(d)(e)

Figure 2. (a) Cross section view of the three stacked microstrip lines used to implement the proposed
Ruthroff 1 : 2 balun, 3-D view of the: (b) metal 1, (c) metal 2, (d) metal 3, (e) metal 4.

Table 1. Summary of bandwidth parameters by varying the width of the broadside-coupled modified
2 : 1 TLT.

w (µm) Feq. when RL < −10 dB Feq. when IL > −1 dB

102 (0.67–4.86) (0.48–5.12)

127 (0.79–4.75) (0.58–5.10)

137 (0.84–4.72) (0.61–5.07)

157 (0.93–4.56) (0.70–4.96)

177 (1.02–4.47) (0.78–4.87)

2.2. Ruthroff-Type 1 : 4 TLT Balun

Figure 1(c) shows the structure of a Ruthroff 1 : 4 TLT balun [10, 11]. The bandwidth of the balun
depends on the characteristic impedance, terminated impedance, and physical length of the transmission
lines [10]. The high-frequency cutoff of the Ruthroff 1 : 4 un-to-un TLT and Ruthroff 1 : 4 balun are
equal [7]. In general, the characteristic impedance and length of the transmission lines command the
high-frequency cutoff, and the inductance at low frequency commands the low-frequency cutoff [18].
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According to the theory of the ideal coupled lines [14, 17], the impedance transformation ratio can
be calculated. The currents on conductors are equal and opposite. Additionally the voltage at the
beginning of the line is the same as the voltage at the end of the line. Therefore, the current that flows
into the balanced ports and the voltage difference between the balanced ports are Iinput/2 and 2Vinput,
respectively. Then the impedance transformation ratio from the source impedance Rs to the balanced
impedance Rdiff is 1 : 4. The impedance transformation of the broadside-coupled Ruthroff 1 : 4 TLT
balun is from 25Ω to 100Ω, and thus the impedance of each output port is 50Ω. Metal-1 was used as
the 25Ω and 50Ω microstrip lines, and also to form the primary winding and phase compensation line.
Metal-2 was used as the crossover layer and to implement the secondary winding. Metals 3 was used
as the crossover layers, and metal-4 was used as the ground line. 50.8µm diameter vias were used to
connect the primary and secondary windings with the ground plane (see Figs. 2(b), (c), (d), (e)). Table 2
summarizes the simulated results of the broadside-coupled Ruthroff 1 : 4 TLT balun with different metal
widths. It is seen that the S11 bandwidth, where the return loss exceeds 10 dB, is inversely proportional
to the conductor line width, but the bandwidth defined as the amplitude difference less than 1 dB is
proportional to the conductor line width. In this simulation, the largest bandwidth can be obtained
with the widest metal width. The metal width of the conductor line was chosen as 350µm.

Table 2. Balun performance by varying the width of the broadside-coupled 1 : 4 TLT balun.

w (µm) 250 300 350

Feq. when Return Loss < −10 dB (GHz) (0.31–9.39) (0.31–7.87) (0.31–7.75)

Feq. when Amp. Diff.± 1 dB (GHz) (0.01–6.67) (0.01–6.81) (0.01–8.01)

Feq. when Phase Diff. 180◦ ± 5◦ (GHz) (0.01–5.75) (0.01–10) (0.11–10)

FCBW (%) 405.97 448.28 480

FCBW = Combined bandwidth (CBW)/center frequency (F0); F0 = sqrt (Fl ×Fh). FCBW: Fractional
Combined bandwidth (bandwidth with S11 < −10 dB, Amp. Diff.± 1 dB and Phase Diff. 180◦ ± 5◦).

3. FABRICATION AND MEASUREMENTS

To characterize the proposed Ruthroff 1 : 2 TLT balun, a combination of the two aforementioned TLTs
was fabricated. Their designs and dimensions are described in the previous sections. Figs. 3(a), (b)
show photographs of the chip. In this balun a 50Ω microstrip line was connected to the input of
the broadside-coupled modified Ruthroff 2 : 1 TLT, with a metal width of the primary and secondary
windings of 102µm, then the output of the broadside-coupled modified 2 : 1 TLT was connected in series
with the input of the broadside-coupled Ruthroff 1 : 4 TLT balun. Both primary and secondary metal
widths of the 1 : 4 TLT balun were 350µm, and finally the endings of the phase compensation line and
of the secondary winding of the 1 : 4 TLT balun were connected to a 50Ω microstrip line, respectively.
The size of the proposed balun (without the three added microstrip line access) was 2572µm×3257µm.
The stacked layers were fixed together. Figs. 3(c), (d) show the measured and simulated results of the
proposed 1 : 2 TLT balun. In Fig. 3(c), the −10 dB S11 bandwidth of 5.9GHz, which is defined as the
return loss, exceeds 10 dB over the frequency range from 1.2 to 7.1GHz. The amplitude difference is less
than 1 dB from 1 to 6.6GHz. From 1 to 6.7GHz, the phase difference is less than 5◦ in Fig. 3(d). Thus
the fractional combined bandwidth of 192.17% is from 1.2 to 6.6GHz. These imbalances are calculated
from the magnitude and phase responses of S21 and S31 using the following equations [19]:

AI = dB(S21)− dB(S31). (4)

PI = |180◦ − |∠(S21)− ∠(S31)|| . (5)

The measured minimum insertion loss can be derived from S21 and S31 with Equation (6) [19], and it
is 0.59 dB at 2.8GHz.

IL ≈ −10 ∗ log
(
|S21|2 + |S31|2

)
(dB). (6)
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Figure 3. (a) Top view of the fabricated Ruthroff 1 : 2 TLT balun. (b) Bottom view of the fabricated
Ruthroff 1 : 2 TLT balun. (c) Amplitude imbalance of the proposed Ruthroff 1 : 2 TLT balun. (d)
Phase imbalance of the proposed Ruthroff 1 : 2 TLT balun.

Table 3. Comparison of the proposed balun 1 : 2 TLT balun with some recently published Marchand
baluns.

Ref. −10 dB S11 BW (GHz) Imbalances Amp. (dB)/Phase (deg.) FCBW (%)

[4] 2.39–5.68 0.35/5.26 89.40

[20] 2.28–5.41 0.42/1.81 89.17

[21] 0.6–0.88 0.65/1.20 38.53

[22] 2.14–2.64 0.19/0.84 21.01

Our work 1.2–7.1 1.15/6.07 192.17

FCBW = Combined bandwidth (CBW)/center frequency (F0); F0 = sqrt (Fl ×Fh). FCBW: Fractional
Combined bandwidth (bandwidth with S11 < −10 dB, Amp. Diff.± 1 dB and Phase Diff. 180◦ ± 5◦).

The simulated and measured results are in very good agreement. The slight discrepancies between the
simulated and measured results are due to manufacturing including layers alignment. Table 3 compares
the achieved result with published Marchand baluns. As can be seen, the proposed Ruthroff 1 : 2
TLT balun can compete against the other baluns. It outperforms on both amplitude imbalance, phase
imbalance and 10 dB bandwidth.

4. CONCLUSION

A broadband Ruthroff-type 1 : 2 TLT balun with impedance transformation from 50Ω to 100Ω
has been successfully investigated. A broadside-coupled structure was adopted using three stacked
microstrip lines to obtain the large bandwidth and compact size. The ground was avoided to perform
a pure coupled-mode over a broader bandwidth. The measured results show that our balun exhibits
a fractional bandwidth of 192.17% over the frequency range from 1.2 to 6.6GHz. The amplitude and
phase imbalances are less than 1 dB and less than 4.51◦, respectively at this frequency range.
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