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Diffraction of Plane Waves by Arbitrary-Angled Coated Wedges
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Abstract—This research work deals with the plane wave diffraction by a coated perfect electrically
conducting wedge with arbitrary apex angle. The uniform layer covering the impenetrable wedge is made
of a standard double positive material or an unfamiliar double negative metamaterial with negative
permittivity and permeability at the operating frequencies. The propagation mechanism is studied
when the incidence direction is perpendicular to the edge of the composite structure, and uniform
asymptotic solutions are proposed to evaluate the diffraction contribution for both the polarizations.
Such approximate solutions are obtained by using the Uniform Asymptotic Physical Optics approach
based on electric and magnetic equivalent surface currents radiating in the neighboring free space.
The related expressions are user-friendly and provide reliable field values as verified by numerical tests
involving a full-wave electromagnetic solver.

1. INTRODUCTION

A coated perfect electrically conducting (PEC) wedge with arbitrary apex angle is positioned in a
propagation scenario and modifies the high-frequency electromagnetic field in the surrounding free
space by means of the reflection from the surfaces and the diffraction from the edge. This last field
contribution is here analyzed in the context of the Uniform Geometrical Theory of Diffraction (UTD) [1]
when the considered obstacle is lit by plane waves propagating in the plane orthogonal to the edge (see
Fig. 1).
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Figure 1. An incident plane wave illuminates a coated PEC wedge with arbitrary apex angle.
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The material covering of dielectric and metallic objects is a standard method to alter the
electromagnetic scattering of the structure, thus is very attractive in civil and military application areas,
e.g., aircrafts and naval ships can require proper material covering of their metallic surfaces to control
the radar cross section. The scattering requirements are usually obtained by means of uniform layers
made of artificially engineered materials, which can be recognized as double positive (DPS) materials
or double negative metamaterials (DNG MTMs) according to the positive or negative values of both
the permittivity and permeability at the frequencies of interest. The unusual electromagnetic features
of DNG MTMs offer alternative solutions with respect to DPS materials, thus opening new research
and application scenarios. Definitions, formulas, and applications of DNG MTMs can be found in many
textbooks and research papers available in the open literature (see [2–7] also for other references).

As well known, UTD is an asymptotic analytical approach offering ray tracing representations and
allowing high-frequency scattering evaluations more efficient than numerical techniques in real scenarios.
If the propagation environment contains coated PEC structures, the UTD peculiarities are exploited for
solving two- and three-dimensional scattering problems (heuristic UTD formulations are also included)
by taking advantage of impedance boundary conditions (see [8–16] for a partial list of references).
Further analytical methods based on the representation of the scattering problem by means of integral
equations have been proposed in [17] and [18].

An alternative analytical approach has been proposed for analyzing the diffraction contribution in
the UTD framework. The research team has denoted it as Uniform Asymptotic Physical Optics (UAPO)
approach since it is based on the PO approximation of electric and magnetic equivalent surface currents
radiating in the surrounding region. References [19–31] provide the UAPO solutions to some diffraction
problems. Pros and cons of such solutions have been identified and highlighted in these manuscripts.
Pros include the opportunity to obtain reliable results, as confirmed by numerical tests and comparisons
involving well-assessed numerical techniques, as well as simple formulations in closed form without
requiring the solution of differential/integral equations or the calculation of special functions. Cons
are essentially associated with the approximate nature of the UAPO solutions. An important role for
solving the here tackled diffraction problem has been played by the procedure proposed in [20] with
reference to planar junctions made of DPS and DNG MTM layers with PEC backing. In particular,
the equivalent transmission line (ETL) models are proposed to evaluate the reflection coefficients for
both the polarizations again. This choice is important not only for determining the Geometrical Optics
(GO) response of the composite structure (see the next section), but also for formulating the electric
and magnetic PO equivalent surface currents in terms of the incident electric field.

2. GO FIELD AND PO SURFACE CURRENTS

Let us consider a plane wave impacting a lossy and uniform layer covering a planar PEC structure (see
Fig. 2). The layer has thickness d, permittivity ε = ε0(±ε′ − jε′′), and permeability µ = µ0(±µ′ − jµ′′),
where ε0, µ0 are relevant to the free space; ε′, ε′′, µ′, µ′′ are positive quantities; and the sign + or − is
associated with DPS or DNG MTM, respectively.

The incident field and that reflected from the external surface of the structure define the GO
field contributions at any observation point P (r) in the free space with impedance ζ0 and propagation

constant k0. Accounting for the ordinary plane of incidence defined by the unit vector k̂i of the incidence
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Figure 2. Plane wave reflection from a coated PEC structure.
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direction and the unit vector n̂ normal to the surface, the incident electric field Ei can be expressed
in terms of its parallel (Ei

∥) and perpendicular (Ei
⊥) components with respect to such a plane, i.e.,

Ei = (Ei
∥ û

i
∥ + Ei

⊥ û⊥) e−jk0k̂i·r with ûi∥ = û⊥ × k̂i and û⊥ = (k̂i × n̂) /|k̂i × n̂| (see Fig. 2). The

components of the reflected field Er = (Er
∥ û

r
∥ + Er

⊥ û⊥) e−jk0k̂r·r, where k̂r is the unit vector of the

reflection direction and ûr∥ = û⊥ × k̂r, are related to the incident field components by means of the

reflection matrix Γ as follows:(
Er

∥
Er

⊥

)
=

(
Γ∥ 0
0 Γ⊥

)(
Ei

∥
Ei

⊥

)
= Γ

(
Ei

∥
Ei

⊥

)
(1)

The elements of Γ are here determined by using the corresponding ETL models, thus obtaining:

Γ∥,⊥ =
Zin
∥,⊥ − Z0

∥,⊥

Zin
∥,⊥ + Z0

∥,⊥
(2)

where the free-space ETL characteristic impedances are expressed by Z0
∥ = ζ0 cos θ

i and Z0
⊥ = ζ0/ cos θ

i,

with θi being the incidence angle. The ETL input impedances Zin
∥,⊥ account for the thickness and

material of the layer, i.e., Zin
∥,⊥ = jZ∥,⊥ tan(knd) with Z∥ = kn/(ωε), Z⊥ = (ωµ)/kn and kn = ±βn−jαn

(kn is the complex propagation constant associated with n̂). Appendix contains useful information about
DNG MTM and reflection from a DNG MTM layer with PEC backing.

The knowledge of the GO response of the structure is very important when the UAPO approach
is used since it allows one to formulate the PO radiating sources in the approach. The next part of
this section is devoted to the evaluation of the electric (Js) and magnetic (Jms) PO equivalent surface
currents on S0 and Snπ shown in Fig. 1, where the z-axis of a reference system is chosen coincident
with the external edge, and the plane y = 0 corresponds to the surface S0 of the structure. The second
surface is denoted by Snπ according to the wedge external angle.

In accordance with the Modified Equivalent Current Approximation (MECA) [32, 33] and the above
expressions,

Js0 = U0

[
n̂S0 ×

(
H i +Hr

) ∣∣
S0

]
=

U0

ζ0

[(
1 + Γ∥0

)
Ei

∥x̂+ (1− Γ⊥0)E
i
⊥ sinϕ′ẑ

]
e−jk0k̂i·r′0 = U0J

∗
s0e

−jk0k̂i·r′0 (3)

Jms0 = U0

[(
Ei + Er

) ∣∣
S0

× n̂S0

]
= U0

[
− (1 + Γ⊥0)E

i
⊥x̂+

(
1− Γ∥0

)
Ei

∥ sinϕ
′ẑ
]
e−jk0k̂i·r′0 = U0J

∗
ms0e

−jk0k̂i·r′0 (4)

JSnπ
= Unπ

[
n̂Snπ ×

(
H i +Hr

) ∣∣
Snπ

]
=

Unπ

ζ0

[
−
(
1 + Γ∥nπ

)
Ei

∥ (cos(nπ)x̂+ sin(nπ)ŷ) + (1− Γ⊥nπ) e
i
⊥ sin

(
nπ − ϕ′) ẑ] e−jk0k̂i·r′nπ

= UnπJ
∗
Snπ

e−jk0k̂i·r′nπ (5)

Jmsnπ
= Unπ

[(
Ei + Er

) ∣∣
Snπ

× n̂Snπ

]
= Unπ

[
(1 + Γ⊥nπ)E

i
⊥ (cos(nπ)x̂+ sin(nπ)ŷ) +

(
1− Γ∥nπ

)
Ei

∥ sin
(
nπ − ϕ′) ẑ] e−jk0k̂i·r′nπ

= UnπJ
∗
msnπ

e−jk0k̂i·r′nπ (6)

wherein k̂i = − cosϕ′x̂ − sinϕ′ŷ, r′0,nπ denotes the source point P ′(r′), and U0,nπ is equal to 1 or

0 depending on the ON/OFF illumination of the related surface by the incident plane wave. This
last point is strictly related to the PO approximation and limits the evaluation of the scattered field
at the beginning of the UAPO approach. It is authors’ opinion that the inclusion of further wave
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contributions can improve the formulation of the equivalent surface currents to be used also in the
shadow region, but this means abandoning the simplicity of the PO approximation and probably
preventing the determination of a UTD-like solution in closed form as in [19–31].

3. UAPO DIFFRACTED FIELD

The electric and magnetic PO equivalent surface currents on S0 and Snπ are now used to apply the
UAPO approach. As a matter of fact, they act as radiating sources in the radiation integral to evaluate
the scattered field Es, i.e.,

Es = −jk0

∫∫
S0

[(
I − R̂0R̂0

)
ζ0Js0 + Jms0 × R̂0

] e−jk0R0

4πR0
dS0

−jk0

∫∫
Snπ

[(
I − R̂nπR̂nπ

)
ζ0Jsnπ

+ Jmsnπ
× R̂nπ

] e−jk0Rnπ

4πRnπ
dSnπ (7)

where I is the 3 × 3 identity matrix, R0,nπ = |r − r′0,nπ| and R̂0,nπ = (r − r′0,nπ)/R0,nπ. Note that the
linearity of the radiation integral permits to separate the contribution of each surface.

Since the source point of the diffracted field is on the edge, the approximation R̂0,nπ
∼= ρ̂ =

cosϕx̂+ sinϕŷ is permitted in the square brackets, thus obtaining

Es ∼= U0

[
(I − ρ̂ρ̂)ζ0J

∗
s0 + J∗

ms0 × ρ̂
]
Is0 + Unπ

[
(I − ρ̂ρ̂)ζ0J

∗
snπ

+ J∗
msnπ

× ρ̂
]
Isnπ (8)

with

Is0,nπ =
−jk0
4π

∫∫
e−jk0(k̂i· r′0,nπ+|r−r′0,nπ|)∣∣∣r − r′0,nπ

∣∣∣ dS0,nπ (9)

Accounting for useful approximations, mathematical computations, integral representations, and
asymptotic evaluations (see [20] as reference for the analytical procedure), it is possible to extract the
diffraction contributions Id0,nπ composed in Eq. (9). They can be so expressed:

Id0 =
e−jπ/4

2
√
2πk0

Ft

(
2k0ρ cos

2

(
ϕ± ϕ′

2

))
cosϕ+ cosϕ′

e−jk0ρ

√
ρ

(10)

Idnπ =
e−jπ/4

2
√
2πk0

Ft

(
2k0ρ cos

2

(
(nπ − ϕ)± (nπ − ϕ′)

2

))
cos(nπ − ϕ) + cos(nπ − ϕ′)

e−jk0ρ

√
ρ

(11)

in which ρ is the radial distance of P , and Ft(·) is the UTD transition function [1]. The use of the sign +
or− in Eqs. (10) and (11) depends on the position of P with respect to S0 and Snπ. In fact, +(−) must be
considered in Eq. (10) if 0 < ϕ < π(π < ϕ < nπ) and in Eq. (11) if (n−1)π < ϕ < nπ(0 < ϕ < (n−1)π).

The UAPO diffracted field then results from Eq. (8) as follows:

Ed = U0

[
(I − ρ̂ρ̂)ζ0J

∗
s0 + J∗

ms0 × ρ̂
]
Id0 + Unπ

[
(I − ρ̂ρ̂)ζ0J

∗
snπ

+ J∗
msnπ

× ρ̂
]
Idnπ (12)

It can be conveniently expressed according to the two-dimensional UTD formulation, i.e.,

Ed =

(
Ed

z

Ed
ϕ

)
= D

(
Ei

z

Ei
ϕ′

)
e−jk0ρ

√
ρ

(13)

where the UAPO diffraction matrix D is written as:

D =

(
Dzz 0
0 Dϕϕ′

)
= U0

(
Dzz0 0
0 Dϕϕ′

0

)
+ Unπ

(
Dzznπ 0

0 Dϕϕ′
nπ

)
= U0D0

+ UnπDnπ
(14)



Progress In Electromagnetics Research M, Vol. 108, 2022 107

with

Dzz0 =
e−jπ/4

2
√
2πk0

[
(1− Γ⊥0) sinϕ

′ − (1 + Γ⊥0) sinϕ
] Ft

(
2k0ρ cos

2

(
ϕ± ϕ′

2

))
cosϕ+ cosϕ′ (15)

Dϕϕ′
0
=

e−jπ/4

2
√
2πk0

[(
1 + Γ∥0

)
sinϕ−

(
1− Γ∥0

)
sinϕ′] Ft

(
2k0ρ cos

2

(
ϕ± ϕ′

2

))
cosϕ+ cosϕ′ (16)

Dzznπ =
e−jπ/4

2
√
2πk0

[
(1−Γ⊥nπ) sin (nπ−ϕ′)−(1+Γ⊥nπ) sin(nπ−ϕ)

]Ft

(
2k0ρ cos

2

(
(nπ−ϕ)±(nπ−ϕ′)

2

))
cos(nπ−ϕ) + cos(nπ−ϕ′)

(17)

Dϕϕ′
nπ

=
e−jπ/4

2
√
2πk0

[(
1+Γ∥nπ

)
sin (nπ−ϕ)−

(
1−Γ∥nπ

)
sin(nπ−ϕ′)

]Ft

(
2k0ρ cos

2

(
(nπ−ϕ)±(nπ−ϕ′)

2

))
cos(nπ−ϕ)+cos(nπ−ϕ′)

(18)

Note that Eqs. (13) and (14) are obtained with no “a priori” limitations on geometric, electric, and
magnetic parameters of the involved layers. Of course, they account only for the presence of the external
wedge and neglect the field interactions with the inner PEC wedge.

4. NUMERICAL EXAMPLES

Tests showing the UAPO field ability to balance the discontinuities of the GO field across the shadow
boundaries and to provide reliable values are presented in this section when ϕ′ = π/3 and ρ = 7λ0, with
λ0 being the free-space wavelength.

Figures 3 and 4 show the GO and UAPO field contributions as well as the total fields when
considering a wedge identified by n = 1.2 and a DPS covering with ε/ε0 = 2.3 − j0.023, µ/µ0 = 1
and d = 0.1λ0. Based on the incidence direction, both the surfaces are lit by the incident plane wave
(U0,nπ = 1) and contribute to the UAPO field associated with the parallel (see Fig. 3) and perpendicular

Figure 3. Incident plane wave with parallel polarization (Ei
z = 0, Ei

ϕ′ = 1). Wedge with n = 1.2 and

DPS covering with ε/ε0 = 2.3− j0.023, µ/µ0 = 1, d = 0.1λ0.
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Figure 4. Incident plane wave with perpendicular polarization (Ei
z = 1, Ei

ϕ′ = 0). Wedge with n = 1.2

and DPS covering with ε/ε0 = 2.3− j0.023, µ/µ0 = 1, d = 0.1λ0.

(see Fig. 4) polarizations. An angular region of about seventy degrees separates the reflection boundaries,
where jumps of the GO field and peaks of the UAPO field exist. Obviously, different field levels result
in the first (from S0 to the first reflection boundary) and third (from the second reflection boundary to
Snπ) angular regions, since different values of the reflection coefficients exist. Moreover, it is necessary to

take into account that the output unit vector ϕ̂ changes in direction when P moves and then Ei
ϕ ̸= Ei

ϕ′ .
The continuity of the total fields in Figs. 3 and 4 certifies the UAPO field ability to compensate the
GO field discontinuities as expected.

The accuracy of the UAPO solution is now tested by using the RF module of Comsol
Multiphysics R⃝, which relies heavily on the proven Finite Element Method (FEM). In particular, Fig. 5
continues the analysis opened by Fig. 4 with Ei

z = 1, Ei
ϕ′ = 0 and shows: a) the amplitude of the UAPO-

based total field and the Comsol Multiphysics R⃝ counterpart; b) the comparison between the phase
values; c) the amplitude of the UAPO diffracted field and the amplitude of the Comsol Multiphysics R⃝
data deprived of the GO field. The agreements in Figs. 5(a) and 5(b) are very good, thus assessing

(a)
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(b) (c)

Figure 5. Incident plane wave with perpendicular polarization (Ei
z = 1, Ei

ϕ′ = 0). Wedge with n = 1.2

and DPS covering with ε/ε0 = 2.3− j0.023, µ/µ0 = 1, d = 0.1λ0.

the efficacy of the UAPO approach, and the comparison in Fig. 5(c) is acceptable, since it confirms
the relevance of the diffraction by the outer dielectric wedge and makes evident the presence of other
contributions (e.g., terms due to the propagation of the diffraction by the inner PEC wedge), which are
not considered in the proposed approach. The results in Fig. 6 are relevant to an increased thickness
of the DPS layer, i.e., d = 0.5λ0, and recommend limiting the approach to thin layers compared to λ0.
Such a recommendation is also suggested by further comparisons corresponding to d > 0.5λ0. Fig. 7
permits to estimate the reliability of the UAPO-based results when only one surface is lit by the incident
wave. As a matter of fact, Snπ is in the shadow region (Unπ = 0) by choosing n = 1.7 and ϕ′ = π/3,
so that only S0 contributes to the UAPO diffracted field. The comparison confirms the very good
performance also in this case.

Figure 6. Incident plane wave with perpendicular polarization (Ei
z = 1, Ei

ϕ′ = 0). Wedge with n = 1.2

and DPS covering with ε/ε0 = 2.3− j0.023, µ/µ0 = 1, d = 0.5λ0.
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Figure 7. Incident plane wave with perpendicular polarization (Ei
z = 1, Ei

ϕ′ = 0). Wedge with n = 1.7

and DPS covering with ε/ε0 = 2.3− j0.023, µ/µ0 = 1, d = 0.1λ0.

Figures 8 and 9 show what changes with respect to Figs. 5 and 7, respectively, when using the sign
minus in front of the real part of permittivity and permeability, i.e., the coating now possesses DNG
MTM characteristics. The agreements are very good, thus endorsing the effectiveness of the proposed
approach.

Figure 8. Incident plane wave with perpendicular polarization (Ei
z = 1, Ei

ϕ′ = 0). Wedge with n = 1.2

and DNG MTM covering with ε/ε0 = −2.3− j0.023, µ/µ0 = −1, d = 0.1λ0.
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Figure 9. Incident plane wave with perpendicular polarization (Ei
z = 1, Ei

ϕ′ = 0). Wedge with n = 1.7

and DNG MTM covering with ε/ε0 = −2.3− j0.023, µ/µ0 = −1, d = 0.1λ0.

5. CONCLUDING REMARKS

Comparisons with Comsol Multiphysics R⃝ results concerning DPS or DNG MTM coatings prove the
effectiveness of the proposed UAPO approach for the plane wave diffraction by an arbitrary-angled
coated wedge. The corresponding solution is in closed form and conveniently formulated in the UTD
framework. Moreover, it must be marked that the agreement with the Comsol Multiphysics R⃝ data
decreases by increasing the thickness with respect to the wavelength and that the inclusion of the field
interactions with the inner PEC wedge can produce better results.

APPENDIX A.

DNG MTMs exhibit simultaneously negative real parts of both permittivity and permeability, and
are also commonly referred as negative index materials (NIMs) or left-handed materials (LHMs) or
backward (BW) media accounting for their unusual characteristics. In fact, the term NIM is related
to the corresponding refraction index with negative real part thus leading to anomalous refraction
properties, whereas the term LHM makes evident that electric field, magnetic field, and wave vector
of a propagating plane wave obey the left-hand rule rather than the right-hand one, as it occurs in
conventional media, and the term BW means that the backward wave propagation characterized by
the wave vector antiparallel to the Poynting one is supported. DNG MTMs are artificially engineered
materials obtained by embedding small inclusions in host media.

When a uniform plane wave propagating in free space impinges on a planar DNG MTM interface,
the Snell’s law of reflection continues to be valid by returning specular propagation, whereas the Snell’s
law of refraction implies a negative refraction angle. This last occurrence means that the transmitted
wave propagates in the same side with respect to the normal to the interface. Accounting for this
propagation effect, when a DNG MTM layer with PEC backing is lit by an incident plane wave, it is
possible to evaluate the reflection coefficients for parallel and perpendicular polarizations by means of
the ETL formulation (2), where the complex propagation constant kn = −βn− jαn associated with the
normal to the interface is defined by [20]:

βn =

√√√√√
√

A2 +
[
B − (k0 sin θi)

2
]2

+B − (k0 sin θi)
2

2
(A1)
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αn =

√√√√√
√

A2 +
[
B − (k0 sin θi)

2
]2

−B + (k0 sin θi)
2

2
(A2)

with A = k20(ε
′µ′′ + ε′′µ′) and B = k20(ε

′µ′ − ε′′µ′′).
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