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Decoupling Control of Six-Pole Hybrid Magnetic Bearings
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Abstract—Six-pole hybrid magnetic bearing is a multiple input-output system with strong coupling
between the degrees of freedom, a state feedback linearization dynamically decoupling the fuzzy immune
PID controller for the subsystem after linear resolution coupling is proposed in this paper. Firstly,
the basic theory of linear resolving coupling is expounded. Secondly, the proposed decoupling theory
and control strategy are simulated in Matlab. Finally, the experimental platform is built, and the
suspension experiments and coupling experiments are performed. It can be seen that the fuzzy immune
PID controller has good performance, and the state feedback linearization method can realize the
decoupling between the radial degrees of freedom of six-pole magnetic bearings.

1. INTRODUCTION

The friction between the rotor and stator of traditional mechanical bearing increases the energy loss,
and this can be solved by magnetic bearing [1]. Traditional magnetic bearings have eight magnetic
poles, and two magnetic poles are driven by one power amplifier, so magnetic bearing requires four
power amplifiers [2]. A rotary shaft is supported by two radial magnetic bearings, and the rotary shaft
connects with the rotor of a motor [3, 4]. Power amplifier and displacement sensors increase the cost
and volume of a magnetic bearing system. Therefore, a compact and cost-effective design has long been
an important issue in research and development of magnetic bearings. One approach is to use sensorless
control [5–7]. Only one three-phase inverter is required for three-pole magnetic bearings in [8], which
greatly reduces the cost and power consumption of a magnetic bearing system. To increase the stability
of magnetic bearings, an accurate mathematical model is established in [9]. In order to perform the
six-pole magnetic bearing under high speed operation, the degrees of freedom and controller must be
designed for the decoupling subsystems [10].

In [11], a multivariable decoupling Fuzzy-Smith predictive control algorithm is presented, and
this algorithm has a good control performance to achieve obvious decoupling between outputs and
has a strong robustness. A nonlinear controller based on state feedback linearization is designed such
that the nonlinear system with multivariable and strongly coupled motion is reduced to decoupled
linear subsystems [12]. The decoupling control strategy based on the Internal Model Control (IMC)
is proposed, and it has better decoupling and realizes dynamic decoupling control [13]. The dynamics
in stator flux oriented reference frame is heavily affected by the nonlinear cross-coupling between the
two axes, and a nonlinear transformation method to decouple the axes for a uniform bandwidth at all
operating points is proposed to solve it [14]. The decoupled hybrid radial magnetic bearing is proposed,
which can simultaneously produce radial active controllable suspension force, radial passive suspension
force, and axial passive suspension force [15]. The x and y magnetic circuits of the heteropolar PM biased
radial magnetic bearing are independent of each other, which decreases the magnetic field coupling of
the two channels significantly [16]. A decoupling control approach based on inverse system method is
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developed in [17], and the inverse system compensates original system to pseudo linear system of linear
transmission relationship, which can realize dynamic decoupling control among the 5 degrees of freedom
of AC HMB electro-spindle.

In this paper, the state feedback linearization method is used to dynamically decouple the six-pole
hybrid magnetic bearing. A fuzzy immune PID controller is designed for the linear resolving coupling
subsystem, and the feasibility of the decoupling control strategy is verified by simulation and test.

2. SIX-POLE MAGNETIC BEARING STATE FEEDBACK LINEAR RESOLVING
COUPLING

State feedback linearization is an important method to develop linear coupling control for nonlinear
system with differential geometry. The purpose is to accurately linearize the nonlinear system and turn
the system into a linear system, and linear control theory can be used to design the controller in a
wide work area without losing the system accuracy and controllability. Its physical concept is clear,
intuitive, and understandable. With the continuous development of digital processor technology, the
designed differential geometry operation in state feedback is no longer an obstacle to its engineering
applications [18].

State feedback linearization is the main part of a differential geometric control theory system. Its
principle is to find a state feedback control law through the nonlinear coordinate transformation to turn
the state equation of the nonlinear system into a completely controllable linear system, so that each
input channel of the corresponding closed-loop system can independently control an output channel and
realize the system input and output linearization. The following nonlinear systems is as follows:{

ẋ = f(x) + g(x)u

y = h(x)
(1)

where x ∈ Rn is the state vector of the system; u is the input vector of the system; y is the output of
the system; f(x), g(x), h(x) is the smooth enough vector field of Rn; all the partial derivatives of f(x)
and g(x) are defined and continuous. To linearize the input and output of the system, the output y of
the system is derived.

ẏ = Lfh(x) + Lgh(x)u (2)

where Lfh = ∂h
∂xf(x) and Lgh = ∂h

∂xg(x) are the Lie derivatives of h(x) about f(x) and g(x), respectively.
To take the derivative of the system output y until at least one input component becomes explicit, the
order of defining the y-derivative is its relative order. Assuming that the relative order of y is r, the
formula is:

y(r) = Lr
fh(x) + Lr−1

g h(x)u (3)

The above derivative procedure is repeated for each output of the system to obtain a complete
m-dimensional expression: [

y
(r1)
1 . . . y(rm)

m

]T
= A(x) + E(x)[u1 . . . um]T (4)

where

E(x) =

 Lg1L
r−1
f h1(x) . . . LgmLr−1

f h1(x)
...

...
...

Lg1L
rm−1
f hm(x) . . . LgmLrm−1

f hm(x)

 (5)

A(x) = [Lr
fh1(x) . . . L

rm
f hm(x)]T (6)

Among them, E(x) is the decoupling matrix of the system. If E(x) is a non-singular array, the
following coordinate transformation can be considered:

u = −E−1(x)A(x) + E−1(x)v (7)
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In Equation (7), v is the set intermediate variable. Equation (7) is the desired state feedback
control law, and the input and output map represented by Equation (4) is reduced to the integral chain
form shown in the following Equation (8):[

y
(r1)
1 . . . y(rm)

m

]T
= [v1 . . . vm]T (8)

The process above realizes the linear resolving coupling of the nonlinear system in Equation (1).
Schematic diagram of linear resolving coupling of six-pole magnetic bearing is shown in Figure 1.
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Figure 1. Schematic diagram of linear resolving coupling of six-pole magnetic bearing.

The fuzzy immune controller is designed as follows. Suppose that the number of antigens in
generation k is ε(k); antigen stimulation in T cells includes TH cell and TS cell; the output of the cells
TH is indicated by TH(k); the output of the cells TS is indicated by TS(k); the total stimuli received by
B cells can be introduced as shown in the following formula:{

S(k) = TH(k)− TS(k)

∆S(k) = S(k)− S(k − 1)
(9)

where TH(k) = k1ε(k), TS(k) = k2f [S(k), S(k)]ε(k), k1 is the set stimulus factor; k2 is the set repressor;
S(k) is the amount of error change for stimulated B cells. The amount of antigen ε(k) is used as the
deviation amount of the system e(k), and the total stimulus S(k) received by B cells is used as the
control output of the system u(k). The following feedback control law can be obtained:

u(k) = k1{1− ηf [u(k),∆u(k)]}e(k) = Kpe(k) (10)

where the set stimulus factor k1 mainly controls the response speed; η = k2/k1 mainly determines the
stability effect of the control; f(*) is a selected non-linear function about u(k) and u(k). Since the
fuzzy control can approximate any nonlinear function, this paper builds a fuzzy controller to realize the
nonlinear function f(∗). The output u(k) of the immune controller and the output rate of change u(k)
are used as the two inputs to the fuzzy controller, respectively, and the amount of inhibition f(∗) of B
cells is used as the sole output of the fuzzy controller. In the fuzzy control, it is necessary to convert
the exact quantitative blur to a fuzzy subset on the standard theoretic domains, so the ranges of change
of the inputs u(k) and u(k) are defined for the fuzzy set. The fuzzy set is {P,N}; the domain range is
{−3, 3}; the output f(∗) on the fuzzy set is as {P,Z,N}; the domain range is {−1, 1}. Block diagram
of the fuzzy immune controller structure is shown in Figure 2.

The above designed fuzzy immune controller is actually a nonlinear proportional controller, which
cannot effectively control the second and above systems, nor can it compensate the noise or the errors
caused by external interference. The integral and differential links in the PID controller can well
eliminate static difference, improve accuracy, and eliminate jitter. Therefore, this paper combines the
fuzzy immune controller with the PID controller, namely the fuzzy immune PID controller.

The discrete form of the ordinary PID control algorithm can be expressed in Equation (11):

uPID(k) =

(
kP +

kI
z − 1

+ kD
z − 1

z

)
e(k) (11)
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Figure 2. Block diagram of the fuzzy immune controller structure.

where kP , kI , and kD are PID proportional coefficients, integral coefficient, and differential coefficient,
respectively. The conventional fuzzy immune PID controller can simply connects fuzzy immune control
with PID control, with the output of PID controller as the input of fuzzy immune controller, combined
with Eqs. (10) and (11) can launch the output of fuzzy immune PID controller as:

U(k) = k1{1− ηf [u(k)∆u(k)]} · uPID(k)

=

(
KP +

KI

z − 1
+KD

z − 1

z

)
e(k)

(12)

where KP , KI , KD are 
KP = kPk1{1− ηf [u(k),∆u(k)]}
KI = kIk1{1− ηf [u(k),∆u(k)]}
KD = kDk1{1− ηf [u(k),∆u(k)]}

(13)

As can be seen from Equation (13), when the three coefficients of the PID KP , KI , KD are
fixed cases, the change of KP , KI , KD will only simultaneously enlarge or shrink the same proportion
simultaneously, but each change of KP , KI , KD has a different effect on the performance of the system.
It can be seen that the fuzzy immune control is connected with the ordinary PID control, and the
parameters that meet the control performance are difficult to adjust quickly. The precise adjustment
is bound to affect the control effect of the system. In view of this problem, this paper uses the fuzzy
adaptive PID in series with the fuzzy immune controller, which can solve the problem of KP , KI , and
KD in adjustment, so as to realize the controller parameter accuracy, automatic tuning, improve the
control quality, and improve the system performance. The frame diagram of the improved fuzzy immune
PID controller structure is shown in Figure 3.
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Figure 3. The frame diagram of the improved fuzzy immune PID controller structure.

The fuzzy PID uses a Mamdani-type 2-D fuzzy controller, taking the error e(k) as well as the rate
of change of the error ∆e(k) as the input of the fuzzy controller. The outputs kP , kI , and kD are
respectively used as the three coefficients of PID.

The variation ranges of e(k), ∆e(k), kP , kI , kD changes are defined for the fuzzy set of standard
theory domains separately by quantifying the factors. The domain range is {−3,−2,−1, 0, 1, 2, 3}, and
the fuzzy set is {NB,NM,NS,ZO,PS,PM,PB}. To ensure the accuracy and flexibility of the control, all
the fuzzy language variables use the more sensitive and relatively simple triangle membership functions.
The inference rules of the input fuzzy value to the input fuzzy value are established based on the
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Table 1. Fuzzy rules table of the kP .
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Table 2. Fuzzy rules table of the kI .
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Table 3. Fuzzy rules table of the kD.
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experimental experience, and the fuzzy control rule tables of kP , kI and kD are shown in Table 1,
Table 2, and Table 3, respectively.

3. SIMULATION TEST AND PERFORMANCE ANALYSIS

To verify the decoupling strategy and control method, the object of the six-pole magnetic bearing test
prototype is conducted by Matlab/Simulink. The parameters of six-pole hybrid magnetic bearings are
designed and listed in Table 4.

The axial single DOF magnetic bearings is used to verify the performance of the fuzzy immune PID
controller. Figure 4 is a simulation block diagram of a single degree of freedom magnetic bearing using
a fuzzy immune PID controller. Figure 5 is a simulation block diagram of fuzzy PID and its submodules
in Figure 4. Figure 6 is a block diagram of fuzzy immune units and its sub-module simulation block
diagram in Figure 4.

Figure 7 is a floating diagram of an axial single-degree of freedom magnetic bearing under different
controllers, from an initial position of 0mm and suspended to an equilibrium position of 0.15mm. It
can be seen that the controller adopted in this paper has no overshoot, no static difference, and the
adjustment speed is fast.

Simulation test is conducted with the radial two-degrees of freedom hybrid magnetic bearing as the
object. The balance position of the rotor is 0mm. An external disturbance force lasting 0.1 s is suddenly
added when the rotor is stably suspended. Figures 8 and 9 are the axial movement trajectory of the
radial two-degrees of freedom hybrid magnetic bearing under different controllers, respectively. It can
be seen that the traditional PID control is relatively large, while the axial trajectory arc is significantly
reduced, and the motion range is reduced under the improved fuzzy immune PID control.
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Table 4. Parameters of six-pole hybrid magnetic bearings.

Parameters Six-pole hybrid magnetic bearings

The position stiffness N/mm 240.8

The current stiffness N/A 227.3

The mass of the rotor m/kg 5

Radial air gap length l/mm 0.5

Saturation induction density BS/T 0.8

The area of radial magnetic pole S/mm2 320

The max ampere-turns of radial coils/At 140

Magnetomotive force of PM Fm/At 280

Outer diameter of stator yoke d1/mm 82

Inter diameter of stator yoke d2/mm 58

Thickness of stator l1/mm 10

Outer diameter of rotor d3/mm 144

Inter diameter of rotor d4/mm 118

Thickness of rotor l2/mm 23

Outer diameter of PM d5/mm 72

Inter diameter of PM d6/mm 58

Axial length of PM l3/mm 3

Figure 4. Simulation block diagram of a single degree of freedom magnetic bearing using a fuzzy
immune PID controller.

4. PROTOTYPE AND EXPERIMENT

In order to verify the accuracy of the above analysis results and further analyze the performance
of the six-pole magnetic bearing, an experimental platform is designed and manufactured as shown
in Figure 10. The experimental platform is mainly composed of eddy current displacement sensor,
displacement signal interface circuit, DSP controller minimum system, DC power supply, radial power
drive board, axial power drive board, AC power supply, PC machine, and DSP controller.

The six pole magnetic bearing state feedback linear resolved coupling control block diagram is shown
in Figure 11. The six pole magnetic bearing system is decoupled by the state feedback linearization, and
the fuzzy immune PID controller is coupled in the control loop of each decoupling subsystem to achieve
high performance control of the six pole magnetic bearings. In the state feedback linearly decoupling,
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Figure 5. Simulation block diagram of the fuzzy PID and its submodules.

Figure 6. Simulation block diagram of the fuzzy immune unit and its submodules.

Figure 7. Floating of axial single DOF magnetic bearing under different controllers.



58 Liu et al.

Figure 8. Axis trajectories under the conven-
tional PID.

Figure 9. Improved axial trajectories under
fuzzy immune PID.

Figure 10. Experimental platform.

the differential equations of the control system are listed, and the eigenvalue and eigenvectors of the
coefficient matrix are obtained. The matrix is changed to the diagonal matrix, and the transformation
is replaced back to the original system for decoupling. Simulation tests were performed in Matlab to
validate the decoupling control strategy described above.

4.1. Rotor Lifting Test

The comparison of the centroid trajectories at the rotor of six-pole magnetic bearing is shown in
Figure 12. The x coordinate is x direction displacement; y coordinate is time; and z coordinate is
y direction displacement. Figure 12(a) is centroid trajectories at the three-degrees of freedom magnetic
bearing; the rotor centroid is in a static state at the initial moment; and the displacement in x and y
direction is set to 0mm. After 0.1 s, the displacements of rotor centroid in x and y direction are 1.5mm
and 1.5mm, and the rotor realizes stable suspension. By comparing the centroid trajectories of the rotor
before and after decoupling, the rotor reaches a stable suspension state, and the vibration is small after
decoupling. Figure 12(b) shows centroid trajectories at the two-degrees of freedom magnetic bearing,
and the shaking of the rotor before decoupling is large when it is reaching the steady state, but the
centroid trajectory of the rotor after decoupling is smooth. Figure 12 shows that the decoupled rotor
centroid floating trajectory is smoother with less vibration and better dynamic and static performance
than that before uncoupling.
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Figure 11. The six pole magnetic bearing state feedback linear resolved coupling control block diagram.

(a) (b)

Figure 12. Comparison of rotor centroid float trajectories before and after decoupling. (a) The centroid
trajectories of the three-degrees of freedom. (b) The centroid trajectories of the two-degrees of freedom.

4.2. Analysis of Decoupling Effect

There is no electrical coupling between the axial and other four radial degrees of freedom in the control
system, so the decoupling effect between the radial four degrees of freedom is analyzed. The desired
rotational speed of the rotor is n = 10, 000 r/min, with a 100N interference force for 0.02 s to the
displacement curve and the two degrees of freedom magnetic bearing in xa, ya, xb and yb as shown
in Figures 13(a), 13(b), 13(c), 13(d). As can be seen in Figure 13(a), the rotor is in the equilibrium
position, and external interference is added at the time of 0.15 s. The displacement of the rotor in the
xa direction suddenly becomes larger. The external interference duration withdraws after 0.02 s, and at
this time, the rotor is near its original position and returns to the equilibrium position in a very short
time. The time of the rotor under the external interference while it returns to the equilibrium position
in the xa direction is 0.02 s in Figure 13(a). The time of the rotor under the external interference while
it returns to the equilibrium position in the ya direction is 0.04 s in Figure 13(b). The time of the rotor
under the external interference while it returns to the equilibrium position in the xb direction is 0.005 s
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(d)

(a) (b)

(c)

Figure 13. Displacement curves of the xa, ya, xb, yb direction with interference forces in the xa
direction.

in Figure 13(c). The time of the rotor under the external interference while it returns to the equilibrium
position in the yb direction is 0.025 s in Figure 13(d). It can be seen from Figure 13 that the coupling
between radial degrees of freedom is small, and the dynamic uncoupling is well realized.

5. CONCLUSION

This paper expounds the basic theory of linear resolving coupling. The theory is used to realize
the decoupling of the five degrees of freedom of the six-pole hybrid magnetic bearing, according to
the problem of difficult parameters of traditional fuzzy immune PID controller. A control algorithm
combining fuzzy immune control with fuzzy adaptive PID control was used and strung in the control
loop of each post-decoupled subsystem. The decoupling theory and the control strategy proposed in
Matlab/Simulink show that the fuzzy immune PID controller has good performance, and the state
feedback linearization method can realize the decoupling between the radial degrees of freedom of six-
pole magnetic bearings.
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