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Tri-Band Bandpass Filter Using Mixed Short/Open Circuited Stubs
and Q-Factor with Controllable Bandwidth for WAS, ISM,

and 5G Applications

Omar C. Massamba1, Pierre Moukala Mpele1,
Franck Moukanda Mbango1, 2, *, and Désiré Lilonga-Boyenga1

Abstract—Designing a multi-band bandpass filter (BPF) with controllable bandwidths is an alternative
process to several technologies suggested by researchers. Hence, this paper presents a tri-band BPF
in microstrip technology where T-shaped short-and-open stubs have alternating positions to use the
maximally flat theory, based on the overall ABCD parameters of the circuit. The combination of the
design Q-factor and operating frequency to mismatch the design is the technique basis. The proposed
structure comprises quarter wavelength (λ/4) line section to develop a tri-band BPF frequency. All
stubs are symmetrical relative to the center axis, while the prototype has been fabricated on a wafer of
22.42×7.62mm2. Using an FR4 HTG-175 with a thickness 1-mm, dielectric constant εr = 4.4, and loss
tangent tan δ = 0.02, the (4.06–4.283)GHz, (5.877–6.408)GHz, and (14.281–14.589)GHz are obtained
referring to a 10-dB of the return loss. In contrast, the insertion losses at the center frequencies are
2.107/1.354/4.08 dB and the fractional bandwidths of 2.134%, 5.346%, and 8.645%, respectively. This
covers WAS (including RLAN), ISM, and 5G applications. However, the attenuation coefficient is
between 1.326 dB and 4.368 dB. The tri-band BPF prototype was validated using the Anritsu MS4642B
20GHz Vector Network Analyzer. The measured and E-simulated results have been compared with
good agreement.

1. INTRODUCTION

Several microwave components for communication exchanges have been designed to ease users’ lives,
and bandpass filter (BPF) plays a crucial role in that device. BPF can be narrow [1–3], wide [4, 5],
or ultra-wideband (UWB) [6]. Furthermore, the desire of scientists to lighten the weight and reduce
the occupied area of components has led to multi-band microwave devices such as antennas [7, 8] and
filters, which became a serious option. Hence, advanced communication systems have an enormous
demand for multi-band devices that provide various services at different frequencies [9]. The challenging
step in designing filters is to provide innovative structures [10] with at least two notched bands for
several applications [11]. These bandpass filters (BPFs) can be dual-bands [12, 13], triple-bands [9, 14],
quad-bands [15], and more [16]. There are several ways to design microwave bandpass filters. The
literature is large in kinds of configurations. Therefore, there are structures such as microwave photonic
filters [17–19], filters with lumped elements [20, 21], mixed lumped components [22], transfer-function
(TF) [23, 24], filters with defected ground structure (DGS) [2, 25], multiple mode resonators (MMR) [26–
28], spoof surface plasmon polaritons (SSPP) [29], stub loaded resonators (SLR) [30–33], stepped
impedance resonators (SIR) [32–34] which can use transmission zeros (TZs) [31] with symmetric [32, 33]
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or asymmetric structure’s geometry [35]. Designers’ innovative ideas allowed several filters’ shapes such
as square [36, 37], T-shapes, L-shapes, and U-shapes [6, 37]. The technology process of fabrication
can be in coplanar [38] or microstrip [37, 39] configuration. The use of transmission-lines in the
microwave domain for planar circuits can be terminated by open-circuit [40], short-circuit, or mixing
configurations [41, 42]. A metallic via (M-via) through one or several substrates [43] that can be crossed
(through), blind (hidden) or buried [44] as well-described in [43–45] is often used to connect two different
transmission lines or any other structures. In the case of a transmission-line and the ground (GND),
this connection represents a short circuit [45].

Some researchers have used short-circuit [4] which is a self through the M-via [46] or open-circuit [47]
quarter wavelength stubs (λ/4) or the mix of both [48]. The transmission line, terminated by short-
circuiting [12] or open-circuit configuration, is well-described in [49]. This paper presents mixed open-
and-short circuited stubs using the maximally-flat concept [50, 51] to prototype a compact tri-band
microwave bandpass filter with an attenuation coefficient of less than 4.5 dB in all covered areas bands.
T-shaped cascading stubs constitute the proposed filter topology. That BPF might be used to the
Wireless Access Systems (WAS), Industrial, Scientific, Medical (ISM), and the Fifth Generation (5G)
bands. The new concept is based on the overall ABCD matrix of the entire structure, obtained by
cascading the ABCD matrices of all the involved sections. The design is axially symmetric such as in
some filters, using SL-SIR [52], and the BPF quality factor Q is a controllable bandwidth parameter.
The Q-factor is also used to mismatch the system at the chosen frequency f0 and create a notched
band. The microstrip technology [53] is used with a mono-layer of FR4 HTG-175 having thickness
1-mm where the dielectric constant εr = 4.4 and loss tangent tan δ = 0.02 [54]. As reported in other
works [55], we present results in terms of return loss (RL), insertion loss (IL), attenuation coefficient
(AC), fractional bandwidth (FBW), center frequency (CF), and prototype’s size surface (S). Two main
parts are developed: Section 2 gives the proposed filter’s topology and mathematical modeling through
the methodology, while the results and discussion are the backbones of Section 3. Finally, a conclusion
is made to summarize the advantages and disadvantages of the proposed tri-band bandpass filter.

2. FILTER STRUCTURE AND METHODOLOGY

Without complications, the short-circuited stub technique could provide easy structure and outstanding
UWB performance [22], especially when the multi-transmission line sections are quarter-wave (λ/4) [4].
On the one hand, open-circuited stubs are used to design BPF [56, 57], and on the other hand, open
stubs can be used for band-stop filters [58, 59]. Furthermore, the open-circuited stubs can also be
quarter-wavelength [60, 61]. Therefore, the proposed filter’s topology mixes both configurations with
the electric length λ/4, as shown in Figure 1.

Figure 1. Proposed tri-band BPF with three short-circuited and two open-circuited stubs along with
four identical transmission-line sections.

2.1. Topology of the Filter and Principle

Below is the proposed filter, which has four transmission line sections, and five stubs terminated by
three short-circuits and two open-circuits.

The transmission line impedance Z0 = 50Ω and electric length θ0 = βl0 are computed at a chosen
frequency f0. The design is center axial-symmetrical, appearing at the admittance Y3. This simplifies
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Figure 2. Schematic of the tri-band BPF with pairwise identical short-circuited and open-circuited
stubs along with four similar transmission-line sections.

the filter analysis with two conditions: Y1 = Y5 and Z2 = Z4. Figure 1 becomes as shown in Figure 2
below.

2.2. Mathematical Modeling: Methodology

From Figure 2, the ABCD matrix of the transmission line (TL) section is given as follows [6],[
ATL BTL

CTL DTL

]
=

[
cos θ0 jZ0 sin θ0

jsin θ0/Z0 cos θ0

]
(1)

With P = −j cot θ0, and Y0 = 1/Z0, Equation (1) becomes,[
ATL BTL

CTL DTL

]
= j sin θ0

[
P Z0

Y0 P

]
(2)

The quarter-wave of the short-circuited stub is the equivalent of a RLC-parallel circuit, while that
becomes a RLC-series circuit for an open-circuited stub. The ABCD matrice of the short-circuited
stubs (SC1) and (SC3) are written as:[

ASC1 BSC1

CSC1 DSC1

]
=

[
1 0

Y1P 1

]
(3)[

ASC3 BSC3

CSC3 DSC3

]
=

[
1 0

Y3P 1

]
(4)

The open-circuited stub (OC2) ABCD matrix is given as follows,[
AOC2 BOC2

COC2 DOC2

]
=

[
1 Z2P
0 1

]
(5)

After calculating the individual ABCD parameter, the overall ABCD parameters of the tri-band BPF
are the multiplication of the nine ABCD matrices corresponding to the network (N) in Figure 2.
Equations (6)–(8) give the computation of ABCD matrix network step by step as,[

AN1 BN1

CN1 DN1

]
=

[
AOC2 BOC2

COC2 DOC2

] [
ATL BTL

CTL DTL

] [
ASC1 BSC1

CSC1 DSC1

]
(6)[

AN2 BN2

CN2 DN2

]
=

[
ATL BTL

CTL DTL

] [
ASC3 BSC3

CSC3 DSC3

] [
ATL BTL

CTL DTL

]
(7)[

AN3 BN3

CN3 DN3

]
=

[
ASC1 BSC1

CSC1 DSC1

] [
ATL BTL

CTL DTL

] [
AOC2 BOC2

COC2 DOC2

]
(8)

Finally, the overall ABCD parameters (NT ) results are obtained by multiplying Equations (6), (7), and
(8) as follows, [

ANT
BNT

CNT
DNT

]
=

[
AN3 BN3

CN3 DN3

] [
AN2 BN2

CN2 DN2

] [
AN1 BN1

CN1 DN1

]
(9)
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After developing and computing Equation (9), the following results are obtained.
ANT

= 1 +A2P
2 +A4P

4 +A6P
6 +A8P

8

BNT
= B1P +B3P

3 +B5P
5 +B7P

7

CNT
= C1P + C3P

3 + C5P
5 + C7P

7 + C9P
9

(10)

where ANT
= DNT

. Each parameter is expressed below,
A2 = 6 + 4Y1Z0 + Z0Y3 + 4Y0Z2

A4 = 1 + 4Y1Z0 + 4Y0Z2 + 2Y3Z0 + 2Y 2
0 Z

2
2 + 4Y1Y3Z

2
0 + 6Y1Z2 + 3Y3Z2

A6 = 2Y1Z2 + Y3Z2 + 2Y0Y1Z
2
2 + Y0Y3Z

2
2 + 4Y1Y3Z0Z2

A8 = Y1Y3Z
2
2

(11)


B1 = 4Z0

B3 = 4Z0 + 4Y3Z
2
0 + 6Z2

B5 = 2Z2 + 4Y3Z0Z2 + 2Y0Z
2
2

B7 = Y3Z
2
2

(12)



C1 = 4Y0 + 2Y 2
0 Z2 + 2Y1 + Y3

C3 = 4Y0 + 6Y 2
0 Z2 + 12Y1 + 2Y3 + 2Y 3

0 Z
2
2 + 8Y0Y1Z2 + 2Y0Y3Z2 + 4Y 2

1 Z0 + 4Y1Y3Z0

C5 = 2Y1 + Y3 + 8Y0Y1Z2 + 2Y0Y3Z2 + 4Y 2
1 Z0 + 4Y1Y3Z0 + 4Y 2

0 Y1Z
2
2 + Y3Y

2
0 Z

2
2

+6Y 2
1 Z2 + 6Y1Y3Z2 + 4Y 2

1 Y3Z
2
0

C7 = 2Y 2
1 Z2 + 2Y1Y3Z2 + 2Y0Y

2
1 Z

2
2 + 2Y0Y1Y3Z

2
2 + 4Y 2

1 Y3Z0Z2

C9 = Y 2
1 Y3Z

2
2

(13)

The power concepts to ABCD to determine the insertion loss (IL) is given through Equation (14) as
follows,

Pg

PL
= 1 +

1

4

[
(Ai+1 −Di+1)

2 −
(
Bi

Z0
− CiZ0

)2
]

(14)

with Pg the generator power delivered and PL the power delivered to the load. For the symmetric
structure (ANT

= DNT
), Equation (14) is written as,

Pg

PL
= 1− 1

4

[(
Bi

Z0
− CiZ0

)2
]

(15)

Finally, the maximally-flat condition is given by the equation below,

Bi = CiZ
2
0 (16)

At the same time, Qs (for series) and Qp (for parallel) factors for λ/4 stubs in short-and open-circuits,
as illustrated in Figure 2, are: 

Qp = 2

Q1

(
Q3 +

π

4

)(
Q5 +

π

4

)
2


1
3

Qs = 2

Q2

(
Q4 +

π

4

)
2


− 1

2

(17)

where 
Q1 = Q5 =

π

8

Y1
Y0

Q2 = Q4 =
π

8

Z2

Z0

Q3 =
π

8

Y3
Y0

(18)
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The BPF network quality factor QNT
is obtained as defined in [62, 63],

1

QNT

=
1

Qp
+

1

Qs
(19)

By substituting Equations (12), (13), and (15) into Eq. (16), developing and solving that, the
characteristic impedance Z2 is determined with Equation (20),

Z2 =


Z0 (1− 2Z0Y1)
or

Z0

{
(1− 3Y1)±

√
5Z0Y1 (Z0Y1 − 2)

} (20)

and the admittance Y3 is linked to Z2 and Y1 as,

Y3 =
1 + 12Y1Z0 + 4Y 2

1 Z
2
0 + 2Y 2

0 Z
2
2 + 8Y1Z2 − Y0

4Y1Z2
0 − 2Z0 + 2Z2

(21)

The operating frequency f0 is taken arbitrarily, and the electric length θ0 is defined as follows,

θ0 = 2πf0

√
εr
c

l0 (22)

and the reference admittance Y1,
Y1 = 2πf0X (23)

where εr is the material dielectric constant, c the vacuum lightspeed velocity, and “X” a random value
that the designer must fix to reach the needed goal. The transmission line sections and stub widths are
computed by using the empiric mathematical formula, given in Equations (24) and (25),

A =
Zc

60

(
εr + 1

2

)1/2

+
εr − 1

εr + 1

(
0.23 +

0.11

εr

)
w = 8

eA

e(2A) − 2
h

(24)

or 
B =

377π

2Zc
√
εr

w =
2

π

[
B − 1− ln (2B − 1) +

εr − 1

2εr

{
ln (B − 1) + 0.39− 0.61

εr

}]
h

(25)

The following equations give the fractional bandwidth (FBW) and insertion loss (αl) [64],

FBW(%) = 100

{
2

(
fH − fL
fH + fL

)}
(26)

and,

αl(dB) = −SdB
21 + SdB

11 + 10 log

{
1

|S11|2
− 1

}
(27)

where S
(dB)
21 and S

(dB)
11 are the transmission and reflection coefficients, respectively. Equation (27) is for

any unmatched system. But if the structure is matched, it becomes as follows,

αl(dB) ≈ −SdB
21 (28)

The return loss is defined [65, 66] as below

RL(dB) = 10 log

(
Pinc

Pref

)
= −S

(dB)
11 (29)

while the insertion loss [67] is given as,

IL(dB) = 10 log

(
Pinc

Pt

)
= −S

(dB)
21 (30)

where Pinc, Pref , and Pt are the incident, reflected and transmitted power.
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3. RESULTS AND DISCUSSION

3.1. Simulated and Measured Results

As stated earlier, we designed, simulated, prototyped, and measured the tri-band BPF device to verify
the prediction. The design and layout have been made with the Agilent Design System (ADS) software,
while the prototype measurements were done with Anritsu MS4642B 20GHz VNA. The prototype
was manufactured using FR4 HTG-175 with 1mm thickness, εr = 4.4, and tan δd = 0.02. Particular
attention is given to all frequency responses at the 10-dB in-band return loss. For f0 = 10.7GHz and
Qap = 0.747, the goal is reached when X = 402.8e− 15. Figures 3(a), 3(c), and 3(d) are the fabricated
prototype, while Figure 3(b) is the transmission line to be removed from the entire prototype.

(a) (b)

(c) (d)

Figure 3. (a) Top view of the prototype. (b) The 20.01-mm microstrip feedline. (c) Bottom view of
the fabricated prototype. (d) Prototype’s description.

The prototype has been fabricated using the parameters illustrated in Table 1, and all the results
are plotted in Figures 4, 5, and 6 coming from that prototype.

Table 1. The manufactured prototype design parameters.

Resonators 1 & 5:
w1 = w5

Resonators 2 & 4:
w2 = w4

Resonator 3:
w3

Main line:
w0

Impedance (Ω) 36.9272 85.40 76.7518 50

Width (mm) 3.0665 0.1 0.8669 1.9119

Diameter of
the via (mm)

1.5 None 0.8 None

Line section’s
length: l0 (mm)

3.8086

On a 170.778mm2 of an FR4 wafer, the prototype has been fabricated and occupied 56.673mm2.
Figure 4 is the prototype results (simulated and measured) in the scanned frequency (3–15)GHz. The
results’ comparison is made as shown, and a good agreement is noticed through the tendency of measured
and simulated data. One transmission zero (TZ) at around 10.7GHz as desired during the modeling
stage is obtained.
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Figure 4. Frequency response (reflection/transmission) measured and simulated (3–15) GHz.
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Figure 5. (a) The reflection/transmission coefficient measured in the frequency range (3–10) GHz. (b)
The reflection/transmission coefficient measured in the frequency range (14–15) GHz.

By zooming in the different essential parts, plotted in Figure 4, three bandwidths are observed in
Figures 5 and 6.

3.2. Results and Discussion

Both Figures 5(a) and 5(b) show three matched bandwidths at 10-dB of the return loss: (4.06–
4.283)GHz, (5.877–6.408)GHz, and (14.281–14.589)GHz, which represent an FBW of 5.346%, 8.645%,
and 2.134%, respectively, whenEquation (26) is applied. Equations (27) and (28) are consistent with
the results found in Figure 6. Table 2 sums up the prototypes’ performances.

The AC is between 1.326 dB and 2.466 dB in the two first bandwidths, while it increases in the
third bandwidth and does not go over 4.368 dB. The prototype dimensions have been computed at
10.7GHz to create the mismatched frequency. That is obtained through transmission zero at 10.679GHz.
The theory frequency is close to the experimental frequency found. With a bandwidth of 531MHz,
this developed filter prototype is broadband. At the same time, the designed and fabricated filter is
narrowband in its first and third bands. This tri-band BPF is also significant in its return loss parameter
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Table 2. The summary of the matched prototype experimental results at RL > 10 dB.

Bandpass filter’s Parameters First Band Second Band Third Band

Cut-off frequency (GHz)
fL 4.06 5.877 14.281

fH 4.283 6.408 14.589

Bandwidth (MHz) ∆ 223 531 308

Insertion loss at fL (dB) IL(L) 2.933 1.958 3.72

Insertion loss at fH (dB) IL(H) 2.316 2.007 4.819

Attenuation coefficient at fL (dB) αl(L) 2.466 1.497 3.257

Attenuation coefficient at fH (dB) αl(H) 1.89 1.558 4.368

Attenuation coefficient at CF (dB) αl(CF ) 2.059 1.326 3.799

Transmission zero: f @ S21 10.679 (GHz) @ −30.745 dB

Table 3. Comparison of the proposed tri-band bandpass filter with state-of-art designs.

Ref.
CF (GHz)
@ FBW (%)

Bandwidth
(MHz)

RL
(dB)

IL
(dB)

AC
(dB)

Size (mm2)
λ2
g @ εr

Technology
@ year

[9]
6.28 @ 9.5
13 @ 6.2

19.12 @ 4.5

597
806
860

> 13
1.6
2.5
2.2

none
0.26× 0.46

@ 2.2
Planar HMSIW
+ DGS @ 2021

[10]
3.27 @ 3
4.75 @ 2.5
6.3 @ 2.6

98
119
164

> 14
3.23
3.69
1.67

none
0.171× 0.143

@ 2.2
CSRR-loaded
SIW @ 2012

[16]

0.6 @ 115.2
1.6 @ 37.5
2.55 @ 19.6
3.4 @ 14.4
4.1 @ 10.3
4.6 @ 6.7
5 @ 4.9

5.9 @ 14.4

691
600
500
490
422
308
245
850

> 19

0.1
0.3
0.6
0.3
0.4
0.6
0.5
0.3

none
0.12× 0.12
@ 2.65

L-C Lumped
optimization

@ 2021

[30]
2.3925 @ 1.881
5.255 @ 3.045

45
160

> 20
1.18
1.03

none
0.316× 0.126

@ 2.55
SLR @ 2012

[32]
0.91 @ 8
1.81 @ 8.6
2.45 @ 5.4

73
156
132

14.7
15.1
20

1.8
1.36
1.7

none 0.06× 0.162 SLSIR @ 2016

[33]
1.8 @ 5.4
3.5 @ 7.3
5.2 @ 8.9

97
255
463

21
17
24

1.84
0.94
1.15

none
0.23× 0.23

@ 2.2
SLSIR @ 2017

[36]
4.1 @ 46
8 @ 55

1.886
4.4

15
10

1.2
2.8

none
0.31× 0.03

@ 4.4
SLSRR @ 2020

This
work

4.1715 @ 5.346
6.1425 @ 8.645
14.435 @ 2.134

223
531
308

19.63
21.98
12.029

2.107
1.354
4.08

2.059
1.326
3.799

0.499× 0.169
@ 4.4

Planar cascading
T-resonators
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Figure 6. (a) Attenuation/Insertion Loss coefficient measured in the scanned frequency (3–10) GHz.
(b) Attenuation/Insertion Loss coefficient measured in the scanned frequency (14–15) GHz.

(a)

(b)

(c)

Figure 7. Magnetic field distribution at: (a)
4.1715GHz, (b) 6.1425GHz, (c) 14.435GHz.

(a)

(b)

(c)

Figure 8. Electrical field distribution at: (a)
4.1715GHz, (b) 6.1425GHz, (c) 14.435GHz.

(19.63 dB, 21.98 dB, and 12.029 dB). The three bands are applied to the WAS, ISM, military and satellite
communications, and the 5G bands.

Table 3 denotes that the dielectric choice during the prototype implementation is essential to
reducing the circuit’s size and losses according to the covering frequency range. Each technology impacts
the filter’s performance. The proposed tri-band BPF has its simplicity. An easy way to control the
bandwidth is to change the Q-factor and the operating frequency f0 of the main linewidth, calculated
to mismatch the design and create two bandwidths before and after that frequency f0.
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3.3. Fields Distribution

The following Figures 7 and 8 show how the H-field and E-Field are distributed in the proposed BPF.
It is further verified that the electromagnetic waves are transmitted from the first to the second input.
The E-field is well distributed on the mainline and the open-circuited stub, while the H-field is better
distributed at the central short-circuited stub.

This distribution depends on the frequency. The lower the frequency is, the higher the fields are
distributed.

4. CONCLUSION

This paper has presented an alternative process to fabricate a tri-band bandpass filter (BPF) using the
maximally-flat condition. The novelty of the proposed miniaturized tri-band BPF consists of mixing
short-and open-circuit stubs using the maximally-flat state. The chosen circuit Q-factor and frequency
f0 are essential in the proposed technique to control the bandwidth and create a notched band. The
prototype has been manufactured on an FR4 HTG-175 substrate having a 1-mm thickness. The tri-band
BPF has 0.499 × 0.169λ2

g mm2 and was validated with Anritsu MS4642B 20GHz VNA. 56.673mm2 is
the proper surface of the tri-band bandpass filter prototype. The waveguide length λg was determined
at 4.06GHz for dimensions 22.42 × 7.62mm2. At 10-dB of the return loss, the center frequencies
4.1715/6.1425/14.435GHz with bandwidths 223/531/308MHz and the FBWs of 2.134%, 5.346%, and
8.645% have been reached. At the same time, the return loss of 19.63/21.98/12.029 dB and the insertion
loss of 2.107/1.354/4.08 dB make it an excellent candidate for the ISM, WAS, and 5G applications. The
tri-band bandpass filter was designed using microstrip technology with different cascading T-shape
stubs to achieve the cascading chain matrix (CCM) and apply the maximally-flat theory to planar
circuits. A short-and-open circuit alternatively terminates those stubs, which are λ/4 in length. As
previously reported, the technology is simple in its implementation, excellent to controllable prototype’s
bandwidth, and has great performances for integrated systems. For the tri-band BPF implementation,
suitable values of Q-factor and f0 have been chosen to avoid narrow (less than 0.1mm) or too broad
(more than 3.5mm) linewidth. The measurement and E-simulated results showed an excellent agreement
to support the method. Finally, the proposed BPF is both narrowband and broadband.
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