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Minimizing Grating Lobes in Large Arrays Using Clustered
Amplitude Tapers

Jafar Ramadhan Mohammed*

Abstract—One of the common ways to design large arrays is by designing a small subarray known as
cluster and using it as a repeating element throughout a large array. In this paper, the genetic algorithm
is used to optimize the clustered amplitude tapers such that the final array pattern has minimum
grating lobes and controlled sidelobe level. The formulation of the synthesis problem includes the
minimization of the excess magnitude of the grating lobes or peak sidelobes which are usually higher than
a given allowable limit. Moreover, two clustered configurations based on increased/decreased number
of elements per cluster around the array center are introduced. Correspondingly, their clustered sizes
increase/decrease as they approach the center of the array. Simulation results show that the proposed
method has capability to optimize clustered linear and planar arrays without noticeable appearance of
undesirable grating lobes. The analysis for an array composed of 20 elements with clusters of different
cluster sizes M = 10, 8, 5, 4 and different numbers of elements per cluster Ns = 2, 3, 4, 5 found
that the complexity reductions were 50%, 60%, 75%, 80%; peak sidelobe levels were −29 dB, −23.6 dB,
−21.3 dB, −19.15 dB; and the directivities were 25.53 dB, 25.64 dB, 26.33 dB, 26.32 dB, respectively.

1. INTRODUCTION

The performance of the antenna arrays increases steadily to an increase in the number of deployed
elements. These improvements come at the cost of larger arrays, higher manufacturing costs, and more
complex feeding network circuitry [1]. Intuitively, smaller aperture array sizes can be obtained by
reducing the interelement spacing which will not be a good option in practice due to many limitations
such as mutual coupling between neighboring elements which surely causes significant degradation in
the overall array performance [2, 3].

One of the efficient methods for building large arrays is to design a small subarray and use it as a
repeating element throughout a large array. In this case, the excitation amplitudes and phases at both
element level and subarray level need to be carefully determined to meet the required radiation pattern
and at the same time to avoid undesirable grating lobes [4, 5]. In the literature, many researchers have
pointed out that the portioned array into regularly spaced smaller subarrays introduces grating lobes
and causes high sidelobes in its radiation pattern [6, 7]. To avoid these effects, irregular subarrays were
proposed in [8] where a random trial and error method was used to partition a circular planar array to
produce a difference pattern with low sidelobes. However, it is found that such a configuration did not
provide the required low sidelobe sum pattern.

The authors in [9] showed that each subarray in the partitioned array must be unique in shape
(i.e., random) to reduce the undesirable effects. Later, the authors in [10–13] suggested the use of
regularly shaped building blocks that are randomly combined to create an irregular set of subarray
phase centers. The best way for combining these building blocks perfectly and optimally determining
their excitation weights is to use an optimization algorithm. The early work by [14] used genetic
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algorithm to optimize the amplitude tapers of the subarray in the linear and planar arrays, but the
subarray shape was not subject to optimization. The GA was also used by [15–17] to optimize thinned
linear arrays. Rodriguez et al. [18] used simulated annealing to configure between two different radiation
patterns by optimizing a number of parameters in a combined fitness function in subarrayed linear and
planar antennas. Lopez and Rodriguez [19] used a simple divider method based on genetic algorithm
to optimize both the number of elements in each subarray and subarray weights in linear arrays. The
authors in [13, 20] proposed two different architectures based on fully and partially clustered arrays to
achieve the required array patterns. In the fully clustered arrays, all the elements of the original array
were divided into several equal subarrays, while in the partially clustered arrays, only the side elements
were grouped into subarrays, and the central elements were left individually.

In this paper, the method presented in [13] is further extended to planar arrays to deal with the
problem of grating lobes by formulating different clustered configurations. Moreover, two new irregular
clustered configurations based on either increased or decreased number of elements per successive clusters
are introduced. In each configuration, the clustered amplitude tapers are optimized such that the grating
lobes and side lobes are both simultaneously minimized. These clustered configurations lead to a better
design in terms of simple feeding network and save significant time in the synthesis of large antenna
arrays.

2. SUBARRAYS AND PROBLEM FORMULATION

It is well known that the overall array pattern (AP) of an ordinary linear array with N individual
radiating elements (i.e., without any subarrays) can be given by [21]:

AP (θ) =
∑N

n=1
EPn(θ)︸ ︷︷ ︸

Elemental Pattern

ane
jpnej(n−1)kd sin(θ)︸ ︷︷ ︸
Array Factor

(1)

It is clear from Eq. (1) that the overall array pattern is the multiplication of the elemental pattern,
EPn(θ), and the array factor determined by the inter-element spacing, d, excitation amplitude, an, and
phase, pn of the nth element. Note that for isotropic elements all the EPn(θ) terms will be identical.
The other variables are defined as k = 2π

λ ; λ is the wavelength; and θ is the observation angle normal
to the array.

On the other hand, when using subarrays as elements instead of Eq. (1), then the final array
pattern, AP , is the multiplication of the elemental pattern, the AF of subarray, and the AF of the
fullarray determined by the spacing, amplitude, and phasing between individual subarrays as follows:

AP (θ) = EP (θ)×AF subarray(θ)×AF fullarray(θ) (2)

AF fullarray with a number of subarrays equal to M can be written as

AF fullarray(θ) =
∑M

m=1
bm

∑Ns

n=1
amne

jk[d(m−1)Ns+n] sin(θ)︸ ︷︷ ︸
Subarray as Elements

(3)

where bm is the excitation amplitude at the mth subarray; Ns is the total number of elements per
subarray; amn is the excitation amplitude at the nth element and mth subarray; and d(m−1)Ns+n is the
distances of the elements from the array center.

From Eq. (2), it can be seen that there are three different levels, namely, element level, subarray
level where the individual elements are arranged in a subarray, and the fullarray level where subarrays
act as elements. The final AP (θ) according to Eq. (2) combines these three patterns and may show
high sidelobe levels or even grating lobes in its final pattern. The grating lobes and high sidelobe levels
usually appear in the fullarray level as a result of uniformly spaced smaller subarrays. Fig. 1 shows
the array patterns determined according to Eqs. (2) and (3) and its subarray configuration for used
parameters; M = 10, Ns = 2, bm = 1, amn = 1, d = 0.5λ. From this figure, it can be seen that, under
the assumption of uniform excitation, the exact matching among all grating lobes peaks of the fullarray
pattern and the nulls of the subarray pattern is feasible. Thus, cancellation of grating lobes after pattern
multiplication was noticed; however, high SLL is still noticed. Minimizing both the grating lobes and
the peak SLL are presented in the next section.
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Figure 1. Principles of subarray for E = 20, M = 10, and Ns = 2. (a) Array configuration and (b)
array patterns.

3. DESCRIPTION OF THE METHOD

In this section, the array elements are portioned into smaller subarrays known as clusters. Different
cluster shapes and sizes ranging from small to large size clusters are considered, and their clustered
amplitude tapers are optimized to get the required array patterns with minimized grating lobes and
sidelobes. For linear arrays, the method starts by dividing the total number of linear array elements,
E = Ns×M intoM clusters and Ns elements per cluster. Note that the total number of array elements,
E, does not have to be an integer multiple of the subarray elements where in some cases the clusters at
the end of the array may have fewer elements per cluster than those of the nearest clusters to the array
center which leads to an irregular clusters configuration. As an example, the configurations shown in
Fig. 2 have E = 20, M = 10, 8, 4 and Ns = 2, 3, 5, respectively. Note that for M = 8, the possible
number of elements per cluster is 1, 3, 3, 3, 3, 3, 3, 1. The array is assumed to be symmetric about its
physical center, thus, only half of the array elements and their corresponding clusters are pictured in
the above mentioned figure.

The final array pattern for such a linear clustered array is given by

AP cluster (θ) =
∑M

m=1
bm

∑Ns

n=1
amn cos [k (xm + xn) sin θ] (4)

where xn = (n−1)d is the inter-element spacing at the element level, while xm is the inter-cluster spacing
at the cluster level. bm and amn are the optimization variables for obtaining the desired array pattern.
Here, amn are set to unity whereas the variables bm are optimized. Thus, the genetic algorithm (GA)
has only M parameters to optimize. A genetic algorithm with an allowable constraint on the sidelobe
level is needed as follows. The normalized constraint mask, in decibels, can be written as:

Mask(θ) =

{
SLL, −90◦ ≤ θ ≤ −FNBW , FNBW ≤ θ ≤ 90◦

0, −FNBW ≤ θ ≤ FNBW
(5)

where FNBW is the first null to null beam width of the array pattern, and SLL is the allowable sidelobe
level. The cost function that is used to optimize the bm under the above mentioned constraint mask
can be written as:

Cost =
∑P

p=1
|AP cluster (θp)−Mask(θp)|2 (6)

where p = 1, 2, ..., P are the considered sample points. Note that the cost will minimize any excess
magnitudes of the AP cluster (θp) located outside the allowable SLL which in turn minimizes both the
grating lobes and sidelobes. The cost function will force the optimizer to adjust the weights, bm, to set
the sidelobes of the clustered array as close as possible to the mask limit.
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(a) (b)

(c) (d)

Figure 2. Different array configurations for E = 20. (a) Normal array, (b) M = 10 and Ns = 2, (c)
M = 8 and Ns = 3, (d) M = 4 and Ns = 5.

For the two dimensional clustered rectangular planar arrays, first recall the space variables u and
v which can be defined as functions of the elevation angle θ and the azimuth angle ϕ by u = sin θ cosϕ
and v = sin θ sinϕ. Consequently, these variables at the element and clustered levels will be represented
by ue, ve and uc, vc, respectively. Note that the rectangular planar array has been formed by simply
multiplying two linear arrays on the x and y axes such that it has Ex × Ey elements distributed along
the xy plane with inter-element spacing dxe, dye and inter-cluster spacing dxc, dyc, respectively.

AP cluster (u, v) =
∑Mx

mx=1

∑My

my=1
bmxmy cos [(my − 0.5)ψyc] cos [(mx − 0.5)ψxc]∑Nx

nx=1

∑Ny

ny=1
anxny cos [(ny − 0.5)ψye] cos [(nx − 0.5)ψxe] (7)

where ψxe = kdxeue, ψye = kdyeve, ψxc = kdxcuc, and ψyc = kdycvc. Again the cost function in Eq. (6)
is used to minimize the grating lobes according to the given mask constraints.

4. SIMULATION RESULTS

In the following, all the presented examples are based on the linear and planar antenna arrays with
interelement spacing d = 0.5λ, and the optimization parameters were: an initial population size is 50;
number of iterations is set to 1000; selection is roulette; number of crossovers is 2; mutation probability
is 0.04; and mating pool is chosen to be 4. The minimum and maximum values of the excitation
amplitudes are bounded between 0 ∼ 1, and the excitation phases were fixed to zeros. The mask
sidelobe level for all considered examples was set to −30 dB.

In the first example, many cluster sizes with different numbers of elements per cluster were
considered to study the variations in the array performance in terms of complexity reduction, directivity,
peak SLL, average SLL, half power beam width (HPBW), and the taper efficiency. The complexity
reduction was defined by the ratio of the number of clusters to the total number of array elements,
while the average SLL was defined as the total area under the sidelobes pattern. Table 1 illustrates all
the above mentioned variations under different cluster sizes and number of elements per cluster. This
table also shows the optimized values of the clustered amplitude tapers (due to symmetrical array, only
half values of the array elements were shown). Fig. 3, Fig. 4, Fig. 5, and Fig. 6 show the results for
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Table 1. Array performances versus cluster sizes for E = 20 linear array elements.

Performances

Fully

Optimized

Array

Clustered Array

No. of Elements per Cluster

1 2 3 4 5 6 7 8 9 10

No. of Cluster’s Weight

20 10 8 5 4 5 8 6 4 2

Complexity

Reduction
0% 0% 50% 60% 75% 80% 75% 60% 70% 80% 100%

Taper

Efficiency
0.73 0.77 0.86 0.84 0.91 0.91 0.91 0.83 0.86 0.94 1

Directivity

(dB)
24.85 25.17 25.53 25.64 26.33 26.32 26.39 25.57 25.84 26.58 27.16

Peak

SLL (dB)
−30 −30 −29 −23.6 −21.3 −19.1 −15 −15 −13.8 −13.2 −13.2

Average

SLL (dB)
−22.6 −23.1 −23.0 −21.8 −21.5 −21.3 −20.2 −20.7 −20.1 −20.4 −20.2

HPBW

(deg.)
7.11 6.84 6.17 6.44 5.90 5.86 5.68 6.35 6.04 5.50 5.50

Fully

Array

Weights

Subarray Weights

Excitation

Amplitudes

0.13 0.13 0.19 0.18 0.48 0.52 0.09 0.15 0.09 0.21 1.00

0.19 0.19 0.19 0.35 0.48 0.52 0.88 0.20 0.24 1.00 1.00

0.37 0.37 0.48 0.35 0.48 0.52 0.88 0.44 1.00 1.00 1.00

0.48 0.48 0.48 0.35 0.48 0.52 0.88 1.00 1.00 1.00 1.00

0.52 0.52 0.73 0.81 0.96 0.52 0.88 1.00 1.00 1.00 1.00

0.73 0.73 0.73 0.81 0.96 1.00 0.88 1.00 1.00 1.00 1.00

0.78 0.78 0.94 0.81 0.96 1.00 0.88 1.00 1.00 1.00 1.00

0.94 0.94 0.94 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00

0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

E = 20 elements, M = 10, 8, 5, 4 clusters, and Ns = 2, 3, 4, 5 elements per cluster, respectively. The
clusters configurations of these four cases were previously shown in Fig. 2. From this table and these
figures, it can be seen that when the number of clusters is increased, the complexity reduction increases,
and both the taper efficiency and the directivity are improved, while the peak SLL and average SLL
are decreased. Fig. 3 confirms that the two array patterns of the fully optimized array elements and
the proposed clustered array with M = 10 clusters, and Ns = 2 are largely indistinguishable, and both
patterns obey the allowable constraint mask.

In the second example, the cluster size was gradually increased by increasing its number of elements
until approaching the center of the array. In other words, the first cluster which is the farthest one
contains only a single element, and the second one contains 2 elements per cluster, while the third one
contains 3 elements per cluster and so on. Fig. 7 shows the proposed clustered array configuration and
its results, while Table 2 shows its performance measures. From these results, it can be found that the
peak SLL of this case is −25 dB, and the two desired wide nulls centered at ±35◦ are accurately placed.

In the next example, the cluster size was gradually decreased by decreasing its number of elements
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(a) (b)

(c) (d)

(e) (f)

Figure 3. The results for E = 20, M = 10 and Ns = 2. (a) Amplitude taper of fully optimized array,
(b) amplitude taper of clustered array, (c) fully optimized array pattern, (d) clustered array pattern,
(e) 2D array patterns, and (f) cost function variations.
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Figure 4. The results for E = 20, M = 8 and Ns = 3. The peak sidelobe level is −23.6 dB.

Figure 5. The results for E = 20, M = 4 and Ns = 5. The peak sidelobe level is −19.15 dB.

Figure 6. The results for E = 20, M = 5 and Ns = 6. The peak sidelobe level is −15 dB.
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Figure 7. The results for incremental case for E = 20, M = 8 and unequal cluster sizes.

Table 2. Array performances for E = 20 linear array elements with incremental number of elements
in each cluster.

Subarray with

Incremental Case

Performance

Distribution of

Elements per Subarray

1 2 3 4 4 3 2 1

Complexity Reduction 60%

Taper Efficiency 0.9029

Directivity (dB) 25.7201

Peak SLL (dB) -25

Average SLL (dB) -21.84

FNBW (deg.) 6.58
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Figure 8. The results for decreasing case for E = 20, M = 8 and unequal cluster sizes.

Table 3. Array performances for E = 20 linear array elements with decreasing number of elements in
each cluster.

Subarray with

Decreasing Case

Performance

Distribution of

Elements per Subarray

4 3 2 1 1 2 3 4

Complexity Reduction (%) 60

Taper Efficiency 0.8201

Directivity (dB) 25.6652

Peak SLL (dB) -22

Average SLL (dB) -21.4816

FNBW (deg.) 6.6696
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until approaching the center of the array. Fig. 8 shows the proposed clustered array configuration and
its results, while Table 3 shows its performance measures. From these results, it can be found that the
peak SLL of this case is −22 dB which is higher than that of the allowable constraint level −30 dB and
its capability to place the two wide nulls at ±35◦ as a previous design is found to be unsatisfactory.

5. CONCLUSIONS

Clustered amplitude tapering is highly desirable if grating lobes were not presented in the array pattern.
In this paper, it is shown that the proposed method allows designers to use amplitude taper at the
subarray level instead of its element level counterpart to simultaneously minimize the grating lobes and
the sidelobes. Thus, lesser number of RF components is needed to implement such feeding network.
Many clustered configurations have been investigated and their performances highlighted. For example,
when an array is considered with the total number of elements, E = 20, number of clusters, M = 4,
number of elements per cluster, Ns = 5, the complexity reduction is 80%, peak SLL = −19.15 dB,
directivity = 26.32 dB, and taper efficiency = 0.91. These results fully confirm the effectiveness of the
clustered array. The method can be further extended to the concentric ring arrays where each cluster
may be formed as a ring around the center of the array. Then, the number of elements per clustered
ring may be increased/decreased as they approach the edges of the array. The amplitude tapers of the
clustered rings as well as the clustered sizes may be both optimized to get the desired array pattern.
This is left for another research work.
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of two edge elements,” AEÜ International Journal of Electronics and Communications, Vol. 101,
145–151, Mar. 2019.

3. Mohammed, J. R. and K. H. Sayidmarie, “Synthesizing asymmetric sidelobe pattern with steered
nulling in non-uniformly excited linear arrays by controlling edge elements,” International Journal
of Antennas and Propagation, Vol. 2017, Article ID 9293031, 8 pages, 2017.

4. Holden, J. M., “Grating lobe minimization in sum and difference beam patterns,” IEEE
International Symposium on Antennas and Propagation Society, Vol. 1, 772–775, Jun. 22–27, 2003.

5. Haupt, R., “Reducing grating lobes due to subarray amplitude tapering,” IEEE Transactions on
Antennas and Propagation, Vol. 33, No. 8, 846–850, Aug. 1985.

6. Brockett, T. J. and Y. Rahmat-Samii, “Subarray design diagnostics for the suppression of
undesirable grating lobes,” IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1373–
1380, Mar. 2012.

7. Jeong, T., J. Yun, K. Oh, J. Kim, D. W. Woo, and K. C. Hwang, “Shape and weighting
optimization of a subarray for a mm-Wave phased array antenna,” Appl. Sci., Vol. 11, 6803, 2021,
https://doi.org/10.3390/app11156803.

8. Nickel, U., “Subarray configurations for digital beamforming with low sidelobes and adaptive
interference suppression,” Proceedings of IEEE International Conference on Radar, Alexandria,
714–719, USA, 1995.

9. Tarran, C., M. Mitchell, and R. Howard, “Wideband phased array radar with digital adaptive
beamforming,” High Resolution Radar and Sonar (Ref. No. 1999/051), 1/1–1/7, IEE Colloquium,
May 11, 1999.

10. Manica, L., P. Rocca, and A. Massa, “Design of subarrayed linear and planar array antennas
with SLL control based on an excitation matching approach,” IEEE Transctions on Antennas and
Propagtion, Vol. 57, No. 6, 1684–1691, Jun. 2009.



Progress In Electromagnetics Research C, Vol. 120, 2022 103

11. Rocca, P., L. Manica, R. Azaro, and A. Massa, “A hybrid approach for the synthesis of sub-arrayed
monopulse linear arrays,” IEEE Transctions on Antennas and Propagtion, Vol. 57, No. 1, 280–283,
Jan. 2009.

12. Mailloux, R. J., S. G. Santarelli, T. M. Roberts, and D. Luu, “Irregular polyomino-shaped subarrays
for space-based active arrays,” International Journal of Antennas and Propagation, Vol. 2009, 1–9,
2009.

13. Abdulqader, A. J., J. R. Mohammed, and R. H. Thaher, “Antenna pattern optimization via
clustered arrays,” Progress In Electromagnetics Research M, Vol. 95, 177–187, 2020.

14. Haupt, R., “Optimized weighting of uniform subarrays of unequal sizes,” IEEE Transctions on
Antennas and Propagation, Vol. 55, No. 4, 1207–1210, 2007.

15. Mohammed, J. R., “A method for thinning useless elements in the planar antenna arrays,” Progress
In Electromagnetics Research Letters, Vol. 97, 105–113, 2021.

16. Keizer, W. P. M., “Linear array thinning using iterative FFT techniques,” IEEE Transctions on
Antennas and Propagation, Vol. 56, No. 8, 2757–2760, 2008.

17. Mohammed, J. R., “Thinning a subset of selected elements for null steering using binary genetic
algorithm,” Progress In Electromagnetics Research M, Vol. 67, 147–157, 2018.

18. Rodriguez, A., L. Landesa, J. L. Rodriguez, F. Obelleiro, F. Ares, and A. Garcia-Pino, “Pattern
synthesis of array antennas with arbitrary elements by simulated annealing and adaptive array
theory,” Microwave and Optical Technology Letters, Vol. 20, No. 1, 48–50, Jan. 5, 1999.

19. Lopez, P. and J. A. Rodriguez, “Subarray weighting for the difference patterns of monopulse
antennas: Joint optimization of subarray configurations and weights,” IEEE Transactions on
Antennas and Propagation, Vol. 49, No. 11, 1606–1608, Nov. 2001.

20. Mohammed, J. R., A. J. Abdulqader, and R. H. Thaher, “Array pattern recovery under amplitude
excitation errors using clustered elements,” Progress In Electromagnetics Research M, Vol. 98,
183–192, 2020.

21. Balanis, C. A., Antenna Theory, Analysis and Design, 4th Edition, Wiley, 2016.


