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A Modified Construction Method of Blended Rolled Edge
and Its Application

Yongquan Jiang1, 2, *, Hongcheng Yin1, 2, Chongjiang Mo1, and Dewang Kong1

Abstract—It is of great practical value to study the blended rolled edge of reflector used in Compact
Antenna Test Range (CATR). Taking a rectangular aperture reflector as the benchmark, a reflector
with ideal blended rolled edge is obtained by means of parameter iterative optimization after accurately
establishing the position relationship between the local and global coordinates where the blended rolled
edge is located, precisely deriving the geometric equation of the main reflector zone and blended rolled
edge zone in the local coordinate and optimizing continuity condition of curvature radius. On the basis,
a blended rolled edge reflector with minimum operating frequency of 0.8GHz and quiet zone size of 2m
is designed. The simulation results show that the performance of the reflector with blended rolled edge
obtained by the proposed method is better than that obtained by the traditional construction method,
and the designed reflector has excellent performance. The work in this paper provides a theoretical
support for the optimal design and engineering application of the blended rolled edge reflector.

1. INTRODUCTION

Compact Antenna Test Range (CATR) is a general term for a kind of electromagnetic measuring
equipment, who can convert spherical wave emitted by the feed into plane wave through a high-
precision reflector at a short distance. This kind of equipment is used to imitate far-field test conditions
in a specific area called quiet zone, whose shape seems like inverted cylinder, as shown in Figure 1.
According to the geometric form and quantity, the reflector can be classified as single paraboloid, single
parabolic cylinder, double parabolic cylinder, double Gregorian reflectors, double Cassegrain reflectors,
etc., among which single offset paraboloid is the most commonly and widely used.

In consideration of reducing the influence of the diffraction field caused by reflector edge on the
field distribution in quiet zone, the reflector edge needs to be shaped. Once the reflector used in CATR
was invented in the 1970s [1], the form of follow-up sharp teeth has been adopted in the design of
reflector edge, which is still used today. Although the sharp teeth has derived various shapes during
this period [2], its low-frequency performance still cannot fully meet the actual use requirements. From
1984 to 1997 [3–16], Professor Burnside’s team creatively put forward the concept and construction
method of blended rolled edge and proved the advantages of this kind of edge processing method in
improving the low-frequency performance of reflector. This method was widely used by researchers
in the design of reflector used in CATR afterward, which is suitable for low-frequency testing [17–20].
Recently, when designing the blended rolled edge reflector used in practical engineering, the authors
found that the former construction method involves some problems, such as inaccurate selection of local
coordinate and approximate treatment of the equation of the main reflector zone in local coordinate,
which will affect the aperture shape of the reflector and limit the low-frequency performance of the
quiet zone. This reason prompted the authors to reexamine the former method.
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Figure 1. Operating principle of reflector in CATR.

By establishing new local coordinate, accurately solving the equation of the main reflector in the
local coordinate and optimizing the continuity condition of curvature radius, this paper proposes a
modified construction method of blended rolled edge, so as to obtain the blended rolled edge reflector
whose geometric shape and electromagnetic performance fully meet the requirements, and design a
reflector with minimum working frequency of 0.8GHz and quiet zone size of 2m. Finally, the correctness
of this modified method and the superiority of the performance of the designed reflector are verified by
the geometric model and simulation results.

2. TRADITIONAL CONSTRUCTION METHOD OF BLENDED ROLLED EDGE

In order to restrict the size and shape of the reflector, the parameters of aperture projection in the
xoy plane are usually well designed. The projection parameters of rectangular aperture can be defined
as follows [9, 13]: the coordinate of points on aperture outline is (xax, yax); the coordinate of central
point in this aperture is (xavg, yavg); the maximum and minimum values of this aperture in the x-axis
direction are xmax and xmin, respectively, and the maximum and minimum values in the y-axis direction
are ymax and ymin, respectively, which satisfy the relationship:

xavg = (xmax + xmin)/2 (1)

yavg = (ymax + ymin)/2 (2)

Assuming that the connection point between the main reflector zone and the blended rolled edge
is Pj(xj , yj , zj) in 3D coordinate, and the absolute length of blended rolled edge is re, the coordinate
components of connection point Pj can be expressed as:

xj = xax −
re (xax − xavg)√

(xax − xavg)
2 + (yax − yavg)

2
(3)

yj = yax −
re (yax − yavg)√

(xax − xavg)
2 + (yax − yavg)

2
(4)

zj =
x2j + y2j
4fc

(5)

where fc represents the focal length of the reflector, and all parameters above are shown in Figure 2.
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Figure 2. Parameters in rectangular projection.

The blended rolled edge zone in Figure 2 is composed of curved surfaces obtained by sweeping all
the blended rolled edge curves on each side. The specific construction of blended rolled edges is shown
in Figure 3.

blended rolled

edge curves

blended rolled edge generated

by blended rolled edge curves

(a) (b)

Figure 3. Construction of blended rolled edges. (a) Main reflector and blended rolled edge curves. (b)
Main reflector, blended rolled edge curves and blended rolled edge upside.

In order to easily solve the equations corresponding to blended rolled edge curves on each side, it is
necessary to establish a local coordinate (xe, ye, p) at Pj . In [9] and [13], firstly, the normal direction at
Pj is determined as the negative direction of ye, and then the unit vector along ye-axis can be expressed
as:

ŷe = −n̂j = yp1x̂+ yp2ŷ + yp3ẑ (6)
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where x̂, ŷ, and ẑ represent the unit vector along x-axis, y-axis, and z-axis in global coordinate,
respectively, and meet that:

yp1 =
xj√

x2j + y2j + 4f2
c

(7)

yp2 =
yj√

x2j + y2j + 4f2
c

(8)

yp3 =
−2fc√

x2j + y2j + 4f2
c

(9)

Then the direction perpendicular to the projection line of local coordinate is determined as the p-axis,
and its unit vector is defined as:

p̂ = p1x̂+ p2ŷ (10)

Since the projection line passes through Pj and the central point of rectangular aperture, p1 and
p2 can be expressed as:

p1 = − yj − yavg√
(xj − xavg)

2 + (yj − yavg)
2

(11)

p2 =
xj − xavg√

(xj − xavg)
2 + (yj − yavg)

2
(12)

The unit vector of xe-axis satisfies that:

x̂e =
ŷe × p̂

|ŷe × p̂|
= xp1x̂+ xp2ŷ + xp3ẑ (13)

where,

xp1 = − yp3p2√
(yp3p2)

2 + (yp3p1)
2 + (yp1p2 − yp2p1)

2
(14)

xp2 =
yp3p1√

(yp3p2)
2 + (yp3p1)

2 + (yp1p2 − yp2p1)
2

(15)

xp3 =
yp1p2 − yp2p1√

(yp3p2)
2 + (yp3p1)

2 + (yp1p2 − yp2p1)
2

(16)

The position of this local coordinate in global coordinate is shown in red in Figure 4 at Pj .
The transformation relationship between the local coordinate (xe, ye, p) and the global coordinate

(x, y, z) at Pj is expressed as: [
xe
ye

]
=

[
xp1 xp2 xp3
yp1 yp2 yp3

][ x− xj
y − yj
z − zj

]
(17)

[
x
y
z

]
=

[
xp1 yp1
xp2 yp2
xp3 yp3

] [
xe
ye

]
+

[
xj
yj
zj

]
(18)

Then the blended rolled edge needs to be constructed in the local coordinate at Pj . It is assumed
that the blended rolled edge is formed by the transition from section part on main reflector to ellipse,
that is:

fblend (γ) = fcurve (γ) [1− b (γ)] + fellipse (γ) b (γ) (19)

Among them, γ represents the radian corresponding to the angle of rotation from negative direction
of the ye-axis to its positive direction; fblend(γ) represents the blended rolled edge equation; fcurve(γ)



Progress In Electromagnetics Research C, Vol. 120, 2022 81

main reflector

zone

blended rolled

edge zone

x

y

O

(xavg , yavg)

Pj(xj , yj , zj)

(xax , yax)

projection line of

local coordinate

projection line

of normal at Pj

ye
∧

xe
∧

p
∧

ye
∧

xe
∧

p
∧

ye
∧xe

∧

p
∧

-y  = e
∧

nj
∧

Figure 4. Position relationship between local coordinate and global coordinate.

represents the section equation of the main reflector; fellipse(γ) represents the elliptic equation; b(γ)
represents the transition function and satisfies that when γ = 0, b(γ) = 0, and when γ = γm, b(γ) = 1;
γm represents the maximum rotation angle. Considering the highest derivative order as possible, the
expression of b(γ) is determined as:

b (γ) =
1

4

(
1− cos

πγ

γm

)2

(20)

Assuming that the length of blended rolled edge curve corresponds to that of extended line on main
reflector, and there is a linear relationship between them:

fcurve (γ) =
xm
γm

γx̂e (21)

In [9] and [13], the section part of main reflector is approximately equivalent to a parabola in local
coordinate, and then the concept of equivalent parabola is derived. By randomly selecting two groups of
points on the equivalent parabola in local coordinate, the focal length fc’ and the height of connection
point yj ’ can be solved, and the equation of equivalent parabola in local coordinate is obtained.

The elliptic equation in local coordinate can be expressed as:

fellipse (γ) = ae sin γx̂e + be (1− cos γ) ŷe (22)

where ae and be represent the semi-major and semi-minor axes of the ellipse, respectively.
Then the parametric equation of blended rolled edge in global coordinate can be solved by combining

with Equations (18) and (19). The parameters of blended rolled edge in local coordinate are shown in
Figure 5.

The parametric equation of blended rolled edge in global coordinate contains four unknowns: xm,
γm, ae, and be, which need to be solved further in combination with other conditions.

Since the blended rolled edge and main reflector are expressed by two independent equations,
respectively, in order to ensure the continuity between them, it is necessary to guarantee that the
n-order curvature radius is continuous in local coordinate at Pj :(

∂mRc

∂ym

)blend

=

(
∂mRc

∂ym

)curve

m = 1, 2, . . . , n− 1 (23)(
∂nRc

∂yn

)blend

=

(
∂nRc

∂yn

)curve

+ yεεn (24)
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where Rc is the radius of curvature, n = 4, which is limited by b(γ); yε represents the residual coefficient;
εn represents the residual of curvature radius. In order to ensure the continuity, εn needs to be as small
as possible, and its expression can be written as:

εn =

90π4fc

(√
1 + (yj/2fc)

2

)7

x4m

 ae
γm/xm

+

fcbe

(√
1 + (yj/2fc)

2

)3

(γm/xm)2
− 1

2

 (25)

Assuming that the radian of the rotation angle corresponding to aperture edge is γ0, then the
curvature radius at this position should not be less than one quarter of the maximum working
wavelength [9, 13]:

Rc (γ0) ≥
λmax

4
(26)

In order to ensure that the aperture shape is completely consistent with rectangle, it is necessary
to fully meet that:

x′ (γ0) = 0, y′ (γ0) = 0,

x (γ0) = xax, y (γ0) = yax
(27)

Then the four unknowns can be finally solved through the above three optimization conditions,
and the parametric equation of blended rolled edge in global coordinate can be obtained.
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3. MODIFIED CONSTRUCTION METHOD OF BLENDED ROLLED EDGE

The traditional construction method of blended rolled edge involves the following three problems:
1) Since the vertical relationship between ŷe and p̂ is not strict, it is impossible to realize the

accurate transformation between the local coordinate (xe, ye, p) and global coordinate (x, y, z), which
means that the transformation relationship given in Equations (17) and (18) is not tenable, and another
local coordinate needs to be selected.

2) Except that the section part of main reflector in the y-axis direction is a parabola, all other
sections in local coordinate passing through the center of aperture projection are not, which makes the
concept of equivalent parabola inaccurate. Moreover, even if the concept of equivalent parabola is still
adopted, the calculation results will be inconsistent due to the arbitrary two groups of points on the
equivalent parabola, and the equation of main reflector zone in local coordinate needs to be derived
precisely.

3) As the blended rolled edge curves are located in 3D coordinate, in order to ensure that its
curvature radius is continuous with that of the main reflector zone, it is necessary to restrict it in global
3D coordinate instead of local coordinate.

The following improvements are made for the above problems, and the other construction steps of
blended rolled edge are the same as those in the previous sections.

3.1. Establishing New Local Coordinate Accurately

On the premise of keeping the p-axis unchanged, the intersection line between the plane passing through
Pj with normal vector p̂ and the tangent plane at Pj is determined as xe-axis, and there is:

⇀
xe =

∣∣∣∣∣ x̂ ŷ ẑ
xj yj −2fc
p1 p2 0

∣∣∣∣∣ = 2fcp2x̂− 2fcp1ŷ + (xjp2 − yjp1) ẑ (28)

Its unit vector satisfies that:

x̂e =
⇀
xe∣∣⇀xe

∣∣ = xp1x̂+ xp2ŷ + xp3ẑ (29)

where,

xp1 =
2fcp2√

(2fcp2)
2 + (2fcp1)

2 + (xjp2 − yjp1)
2

(30)

xp2 =
−2fcp1√

(2fcp2)
2 + (2fcp1)

2 + (xjp2 − yjp1)
2

(31)

xp3 =
xjp2 − yjp1√

(2fcp2)
2 + (2fcp1)

2 + (xjp2 − yjp1)
2

(32)

Then the unit vector of ye-axis satisfies that:

ŷe =
p̂× x̂e
|p̂× x̂e|

= yp1x̂+ yp2ŷ + yp3ẑ (33)

where,

yp1 =
xp3p2√

(xp3p2)
2 + (xp3p1)

2 + (xp2p1 − xp1p2)
2

(34)

yp2 =
−xp3p1√

(xp3p2)
2 + (xp3p1)

2 + (xp2p1 − xp1p2)
2

(35)

yp3 =
xp2p1 − xp1p2√

(xp3p2)
2 + (xp3p1)

2 + (xp2p1 − xp1p2)
2

(36)
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The position of this local coordinate in global coordinate is shown in black in Figure 4 at Pj .
At this time, the accurate transformation relationship between the local coordinate (xe, ye, p) and

the global coordinate (x, y, z) at Pj can be expressed as:[
xe
ye
p

]
=

[
xp1 xp2 xp3
yp1 yp2 yp3
p1 p2 0

][
x− xj
y − yj
z − zj

]
(37)

[
x
y
z

]
= C

[
xp1 yp1 p1
xp2 yp2 p2
xp3 yp3 0

][
xe
ye
p

]
+

[
xj
yj
zj

]
(38)

where,

C =
1

−xp1yp3p2 + xp2yp3p1 + xp3 (yp1p2 − yp2p1)
(39)

3.2. Deriving the Equation of the Main Reflector Zone and Blended Rolled Edge Zone in
Local Coordinate Precisely

It is known that the equation of plane passing through Pj with normal vector p̂ can be expressed as:

p1 (x− xj) + p2 (y − yj) = 0 (40)

The paraboloid equation of the main reflector zone can be expressed as:

x2 + y2 = 4fcz (41)

Then the equation of the main reflector zone in local coordinate can be expressed as:[
1 +

(
p2
p1

)2
]
y2 − 2

p2
p1

(
xj +

p2
p1

yj

)
y +

(
xj +

p2
p1

yj

)2

= 4fcz (42)

Rewrite the equation above with y as the independent variable:

x (y) = −p2
p1

y +

(
xj +

p2
p1

yj

)
(43)

y (y) = y (44)

z (y) =

{[
1 +

(
p2
p1

)2
]
y2 − 2

p2
p1

(
xj +

p2
p1

yj

)
y +

(
xj +

p2
p1

yj

)2
}/

(4fc) (45)

The expression of the independent variable y in global coordinate can be obtained by solving
Equations (21) and (38):

y (γ) =
Cxmxp2

γm
γ + yj (46)

Then Equations (43) and (45) can be rewritten as:

x (γ) = −Cxmxp2p2
p1γm

γ + xj (47)

z (γ) =
p21 + p22
4fc

(
Cxmxp2
p1γm

)2

γ2 +
p1yj − p2xj

2fc

Cxmxp2
p1γm

γ + zj (48)

Combined with Equations (22) and (38), the parametric equation of elliptical line with γ as the
independent variable in global coordinate can be expressed as:

x (γ) = C [(ae sin γ)xp1 + be (1− cos γ) yp1] + xj (49)

y (γ) = C [(ae sin γ)xp2 + be (1− cos γ) yp2] + yj (50)

z (γ) = C [(ae sin γ)xp3 + be (1− cos γ) yp3] + zj (51)
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It can be seen from Eq. (19) that the parametric equation of blended rolled edge with γ as the
independent variable in global coordinate can be expressed as:

x (γ) =

[
−Cxmxp2p2

p1γm
γ + xj

]
[1− b (γ)] + [C ((ae sin γ)xp1 + be (1− cos γ) yp1) + xj ] b (γ) (52)

y (γ) =

[
Cxmxp2

γm
γ + yj

]
[1− b (γ)] + [C ((ae sin γ)xp2 + be (1− cos γ) yp2) + yj ] b (γ) (53)

z (γ) =


p21 + p22
4fc

(
Cxmxp2
p1γm

)2

γ2+

p1yj − p2xj
2fc

Cxmxp2
p1γm

γ+zj

 [1−b (γ)]+[C ((ae sin γ)xp3 + be (1−cos γ) yp3)+zj ] b (γ) (54)

3.3. Optimizing the Continuity Condition of Curvature Radius

The continuity condition of curvature radius needs to be extended from one dimension to two dimensions,
which means that the n-order curvature radius of blended rolled edge curve and the section of main
reflector need to be continuous in the y direction and z direction at Pj simultaneously(

∂mRc

∂ym

)blend

=

(
∂mRc

∂ym

)curve

m = 1, 2, . . . , n− 1 (55)

(
∂nRc

∂yn

)blend

=

(
∂nRc

∂yn

)curve

+ yεεn (56)

(
∂mRc

∂zm

)blend

=

(
∂mRc

∂zm

)curve

m = 1, 2, . . . , n− 1 (57)

(
∂nRc

∂zn

)blend

=

(
∂nRc

∂zn

)curve

+ zεεn (58)

where Rc represents the curvature radius; n decreases to 3 due to the increasing dimension; yε represents
the residual coefficient in y direction; zε represents the residual coefficient in z direction; εn represents
the residual of curvature radius. In order to ensure the continuity, εn needs to be as small as possible,
which can be written as:

εn =
[y′ (y′z′′′′′ − y′′′′′z′)− x′ (x′′′′′z′ − x′z′′′′′)]

[
(x′)2 + (y′)2 + (z′)2

]3/2
(z′′)4

[
(y′)2 + (x′)2

]5/2 (59)

where x′, y′, z′, z′′, x′′′′′, y′′′′′ and z′′′′′ represent the first derivative, second derivative, and fifth derivative
of x, y, z components of blended rolled edge curve equation, respectively.

4. COMPARISON BETWEEN TRADITIONAL METHOD AND MODIFIED
METHOD

It is known that the parameters of blended rolled edge are that [9, 13] the observation frequency is
2GHz; the focal length is 7.25′; the absolute length of edge is 3.5′; the maximum and minimum values
of aperture in the x-axis direction are 7.5′ and −7.5′; the maximum and minimum values in the y-axis
direction are 15′ and 2′; and the distance between observation point and aperture in the z-axis direction
is 20′.
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According to [9, 13] and the modified construction method in this paper, the outline and aperture
of blended rolled edge reflector are shown in Figure 6, Figure 7, and Figure 8, respectively. The outline
part (a) only gives the projection of right blended rolled edge curves on rectangular aperture, and the
left side can be obtained symmetrically through the right side.

not reaching

the boundary

beyond the

boundary
(a) (b)

Figure 6. Model in Reference [9]. (a) Outline of blended rolled edge. (b) Aperture of blended rolled
edge reflector.

not reaching

the boundary

beyond the

boundary

(a) (b)

Figure 7. model in Reference [13]. (a) Outline of blended rolled edge. (b) Aperture of blended rolled
edge reflector.

It can be seen from the above results that in terms of geometric construction, the shape of
blended rolled edge reflector obtained by traditional construction method deviates greatly from the
rectangular aperture, while that obtained by modified construction method is completely consistent
with the rectangular aperture.

The electrical performance of the reflectors above is simulated and analyzed below. Before that,
the following adjustments need to be made:
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(a) (b)

Figure 8. Modified model. (a) Outline of blended rolled edge. (b) Aperture of blended rolled edge
reflector.

1) Adjusting the observation frequency. The advantage of blended rolled edge reflector lies in the
low-frequency performance, and the edge length is usually 3 ∼ 5λmax [21]. As the current absolute
length of the edge is 3.5’, the observation frequency should be chosen as 0.85GHz corresponding to
3λmax, or 1.4GHz corresponding to 5λmax;

2) Adjusting the observation position. Generally speaking, the distance between reflector vertex
and quiet zone center is 5/3fc [21]. Therefore, the distance between the observation point and reflector
vertex in the z-axis direction is set to 12.08’.

The Gaussian beam with 1 dB beam width of 47◦ is used as the feed to irradiate these reflectors,
and its elevation angle is set to 87◦. The amplitude and phase curves of quiet zone are shown in Figure 9
and Figure 10, which are simulated at the observation position by using the method of moments (MoM).

It can be seen from the above results that in terms of electrical performance, compared with the
reflector obtained by traditional construction method, the main polarization amplitude and phase of
the reflector obtained by modified construction method are much better, especially the amplitude of
vertical center cuts. Compared with the results in [9] and [13], the overall amplitude flatness of vertical

amplitude taper:

1.46dB

amplitude ripple:

±0.11dB

amplitude taper:

1.41dB

amplitude ripple:

±0.11dB

amplitude taper:

1.98dB

amplitude ripple:

±0.07dB

phase variation:

±0.77°

phase variation:

±0.58°

phase variation:

±2.41°

(a) (b)
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(c) (d)

Figure 9. Comparison on main polarization amplitude and phase of center cuts at 0.85GHz.
(a) Distribution of main polarization amplitude of horizontal center cut. (b) Distribution of main
polarization phase of horizontal center cut. (c) Distribution of main polarization amplitude of vertical
center cut. (d) Distribution of main polarization phase of vertical center cut.

center cuts of the modified one at 0.85GHz is improved by about 0.21 dB and 1.33 dB, respectively,
while that at 1.4GHz is improved by about 0.25 dB and 0.68 dB, respectively. In addition, the reflector
obtained by modified construction method has good steep drop characteristics at the lower end of quiet
zone, which reduces the design difficulty of the chamber environment. Compared with the reference
results, the steep drop amplitudes at 0.85GHz and 1.4GHz are about 1 dB and 0.8 dB, respectively.
Due to the proper treatment of aperture edge and connection relationship between the main reflector
zone and blended rolled edge zone geometrically, there is no doubt that good electrical performance can
be obtained.

amplitude taper:

1.52dB

amplitude ripple:

±0.04dB

amplitude taper:

1.53dB

amplitude ripple:

±0.03dB

amplitude taper:

1.47dB

amplitude ripple:

±0.15dB

phase variation:

±0.18°

phase variation:

±0.17°

phase variation:

±1.00°

(a) (b)
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amplitude taper:
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Figure 10. Comparison on main polarization amplitude and phase of center cuts at 1.4GHz.
(a) Distribution of main polarization amplitude of horizontal center cut. (b) Distribution of main
polarization phase of horizontal center cut. (c) Distribution of main polarization amplitude of vertical
center cut. (d) Distribution of main polarization phase of vertical center cut.

5. DESIGN OF BLENDED ROLLED EDGE REFLECTOR

In order to further illustrate the correctness of modified construction method proposed in this paper,
a blended rolled edge reflector with minimum working frequency of 0.8GHz and quiet zone size of 2m
is designed. The absolute length of the blended rolled edge is determined as 5λmax, i.e., 1.875m, and
the utilization rate of the reflector is set to 40%, then the maximum and minimum values of aperture
in the x-axis direction are 2.5m and −2.5m, respectively, and the maximum and minimum values in
the y-axis direction are 5.1m and 0.1m, respectively. In order to ensure that the cross polarization
amplitude is less than −28 dB, the focal diameter ratio is determined as 0.9, then the focal length is
6.36m. The center of quiet zone is located at 5/3fc from reflector vertex in z-axis direction, i.e., 10.6m.
The aperture projection of this designed reflector is shown in Figure 11.

Figure 11. Aperture projection of the designed reflector.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Results of amplitude and phase in quiet zone under horizontal polarization. (a) Distribution
of main polarization amplitude of horizontal cuts. (b) Distribution of main polarization phase of
horizontal cuts. (c) Distribution of cross polarization amplitude of horizontal cuts. (d) Distribution
of main polarization amplitude of vertical cuts. (e) Distribution of main polarization phase of vertical
cuts. (f) Distribution of cross polarization amplitude of vertical cuts.

The Gaussian beam with 1 dB beam width of 27◦ is used as the feed to irradiate the reflector, and
its elevation angle is set to 26◦. The MoM is used to simulate the amplitude and phase of front cuts,
center cuts, and rear cuts at 0.8GHz. The simulation results under two feed polarization states are
shown in Figure 12 and Figure 13, respectively.

It can be seen from the above results that the maximum value of amplitude taper is 0.82 dB; the
maximum value of amplitude ripple is ±0.26 dB; the maximum value of cross polarization amplitude
is −28.2 dB; and the maximum value of phase variation is ±3.2◦, which is much better than the
requirements of conventional design indexes in quiet zone.

(a) (b) (c)
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(d) (e) (f)

Figure 13. Results of amplitude and phase in quiet zone under vertical polarization. (a) Distribution of
main polarization amplitude of horizontal cuts. (b) Distribution of main polarization phase of horizontal
cuts. (c) Distribution of cross polarization amplitude of horizontal cuts. (d) Distribution of main
polarization amplitude of vertical cuts. (e) Distribution of main polarization phase of vertical cuts. (f)
Distribution of cross polarization amplitude of vertical cuts.

6. CONCLUSION

In order to obtain the blended rolled edge reflector whose aperture size and electromagnetic performance
fully meet the design requirements, this paper improves the traditional construction method of blended
rolled edge from three aspects: accurately establishing new local coordinate, precisely deriving the
equation of main reflector zone and blended rolled edge zone in local coordinate, and optimizing the
continuity condition of curvature radius. On this basis, a blended rolled edge reflector with minimum
working frequency of 0.8GHz and quiet zone size of 2m is designed. The simulation results show that
the performance of the blended rolled edge reflector constructed by proposed method is better than that
obtained by the traditional construction method, and the designed reflector has excellent performance,
which can be used in practical engineering. The work in this paper provides theoretical support for
the accurate model construction, efficient performance optimization, and wide engineering application
of blended rolled edge reflector.
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