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Abstract—In this work we demonstrate the extended and generalized methodology for the design of
Quad-Furcated Profiled Horns (Q-FPHs). Based on a design case of a 4λ0×4λ0 Q-FPH, we extract the
Generalized Scattering Matrix (GSM) of the enlarged quad-furcated discontinuity and provide analytical
expressions for its multimode feeding. Next, the four feeding and the upper common waveguide sections
are optimized accordingly through Mode-Matching (MM). The high aperture efficiency levels delivered
by the methodology are verified by full-wave simulations of the optimized design case and compared to
the state-of-the-art which is thereby redefined.

1. INTRODUCTION

Horn antenna is the most common radiator in satellite applications deployed as feed elements for
reflectors or in phased arrays, owing to its favourable electrical performance [1]. Over more than two
decades, industry relies on the profiled horns, being those radiators that can achieve the best aperture
efficiency × bandwidth product [2–5]. The concept of hard [6] and metamaterial-based horns [7] has
been proved to be an appealing high aperture efficiency candidate as well; however, materials properties
and electrostatic discharge (ESD) effects pose significant obstacles at spaceborne applications.

The concept of utilizing more than one multimode waveguide access to feed the radiating aperture
of a horn was recently developed [8, 9]. Highly efficient, compact, and broadband horns were designed
and manufactured in single [10] and dual polarizations [11], redefining the state-of-the-art. Both of these
multi-access radiators present aperture sizes from 2.6λ0 to 2.8λ0; typical aperture sizes for Geostationary
Orbit (GEO) antennas.

This work comes to generalize and complement the design methodology of highly efficient Q-FPHs
with apertures larger than the typical GEO application-based aperture regime [12]. The necessity for
realizing horn antennas with larger aperture sizes is driven by two parameters. The first one relates to
the sparse arrays, which are configurations that employ different antenna apertures and are used for the
mitigation of grating lobes [13]. The second parameter relates to dual-band applications [1, 2, 14], where
typically one horn antenna followed by a dual-band OMT and a diplexer covers both Tx and Rx bands.
For a large frequency separation between the two bands, the electric size of the antenna aperture gets
values around 4λ0 for the latter band.

We present, here, analytical expressions and explicit design rules based on the design case of a
4λ0 × 4λ0 aperture Q-FPH. The numerically computed results are verified by full-wave simulations
demonstrating the extensibility and robustness of the design methodology for the conception of such
elements.
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2. DESIGN PRINCIPLES

There are two principal differences for design cases of Q-FPHs with larger apertures. The first is that
a greater number of aperture modes is involved, while the second relates to the potential of generating
more excitation modes in the form of TEm0, m = 1, 2, 3, ..., at the four feeding waveguide parts. The first
factor suggests that the theoretical maximum aperture efficiency bounds are enlarged up to 95.1% [3, 15].
This also adds complexity in the design since more modes should be considered at the calculations.
However, the proposed methodology relies principally on the design of the feeding waveguide sections.
These present a physically smaller (half at most) output section than the final radiating aperture. This
is translated into fast optimization of its structure especially when MM is used.

The analysis commences with the calculation of the 4-furcation’s GSM. After interpreting its modal
couplings, we create a system of equations upon which the excitation modes will be defined. Then, only
one excitation waveguide section is designed accordingly so that being when connected to the 4-furcation,
its common port can excite the desired set of propagating and radiating modes TEm0, m = 1, 3, 5, 7.
As a final step, the finite length of this common waveguide section will align the phase of the radiating
modes. Fig. 1 shows the optimized geometry of the four-port 4λ0 × 4λ0 horn designed according to the
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Figure 1. Geometry and layout of the quad-furcated profiled horn with a 4λ0 × 4λ0 square aperture:
(a) perspective and exploded view, (b) side cut-view with dimensional variables and (c) definition and
geometry of the quad-furcated surface waveguide discontinuity.
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presented methodology. From Fig. 1(b), the optimized geometrical parameters are as follows.

1. ai = {16.05, 19.9, 25.07, 28.66, 33.154, 34.78, 35.97, 41.43, 45.513, 48.25}mm.

2. di = {1.575, 2.625, 0.805, 1.437, 1.837, 1.905, 2.943, 2.5215, 2.3385}mm.

3. Li = {1.68, 5.73, 4.12, 6.06, 10.12, 7.42, 7.33, 3.98, 20.26, 45.762}mm.

4. {Lin, t, aap} = {15, 0.4, 102.27461253731}mm.

2.1. Modal Analysis and Results of the Quad-Furcated Surface Waveguide Discontinuity

The transmission coefficients of the quad-furcated surface waveguide discontinuity’s GSM among the
excitation modes are plotted in amplitude and phase in Figs. 2(a)–(c) and 3(a)–(d), respectively. These
are used to formulate the coupling matrix of the quad-furcation. The appropriate aperture modal vector
for maximum directivity will be then assigned as solution to the final system of equations. From this
system, the excitation modes will be defined. The indices w, u, and v of the 4-furcation’s waveguide
accesses are mentioned in Fig. 1(c).

The non-normalized output modal vector expressed as a function of the 4-furcation’s transmission

(a)

(b)

(c)

Figure 2. Amplitude of the modal transmission coefficients among the modes TEm0, m = 1, 2, 3 of the
four (w = 2, 3, 4, 5) feeding waveguides and the modes TEm0, m = 1, 3, 5, 7 of the common waveguide
for the 4-furcated surface discontinuity: (a) among the feeding modes TEm0 and the common waveguide
mode TE10, (b) among the feeding modes TEm0 and the common waveguide mode TE20 and (c) among
the feeding modes TEm0 and the common waveguide mode TE30.
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Figure 3. Phase of the modal transmission coefficients among the modes TEm0, m = 1, 2, 3 of the four
(w = 2, 3, 4, 5) feeding waveguides and the modes TEm0, m = 1, 3, 5, 7 of the common waveguide for
the 4-furcated surface discontinuity: (a) among the feeding modes TEm0 and the common waveguide
mode TE10, (b) among the feeding modes TEm0 and the common waveguide mode TE20 and (c) among
the feeding modes TEm0 and the common waveguide mode TE30.

coefficients and the feeding modal amplitudes can be now written as follows:


F h10
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F h30
1
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 =
1
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5∑
w=2

(
F h10
w · S1w(h10:h10) + F h20

w · S1w(h10:h20) + F h30
w · S1w(h10:h30)

)
5∑
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w · S1w(h30:h20) + F h30
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)
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(
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w · S1w(h50:h20) + F h30
w · S1w(h50:h30)

)
5∑

w=2

(
F h10
w · S1w(h70:h10) + F h20

w · S1w(h70:h20) + F h30
w · S1w(h70:h30)

)


(1)

From Figs. 3(a)–(d) and assuming ŷ as the reference polarization axis, the following phase conditions
are derived: ∣∣∣φSc

1u,hm0→hm′0
− φSc

1v,hm0→hm′0

∣∣∣ = 0◦ ⇒ e
jφSc

1u,hm0→hm′0 = e
jφSc

1v,hm0→hm′0 ,

u = 2, 4, v = 3, 5, m = 1, 3, 5, 7&m′ = 1, 7 (2a)∣∣∣φSc
1w,h50→h10

− φSc
1w,hm′′0→h10

∣∣∣ = 180◦ ⇒ e
jφSc

1w,h50→h10 = −e
jφSc

1w,hm′′0→h10 ,

w = 1, 2, 3, 4&m′′ = 1, 3, 7 (2b)∣∣∣φSc
1w,h50→h30

− φSc
1w,hm′′0→h30

∣∣∣ = 0◦ ⇒ e
jφSc

1w,h50→h30 = e
jφSc

1w,hm′′0→h30 ,

w = 1, 2, 3, 4&m′′ = 1, 3, 7 (2c)∣∣∣φSc
1u,hm0→h20

− φSc
1v,hm0→h20

∣∣∣ = 180◦ ⇒ e
jφSc

1u,hm0→h20 = −e
jφSc

1v,hm0→h20 ,

u = 2, 4, v = 3, 5&m = 1, 3, 5, 7 (2d)
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1u,h30→h10

− φSc
1u,h30→hm′′′0

∣∣∣ = 180◦ ⇒ e
jφSc

1u,h30→h10 = −e
jφSc

1u,h30→hm′′′0 ,

where u = 2, 4&m′′′ = 2, 3 (2e)∣∣∣φSc
1v,h30→h10

− φSc
1v,h30→hm′′′0

∣∣∣ = 0◦ ⇒ e
jφSc

1v,h30→h10 = e
jφSc

1v,h30→hm′′′0 ,

where v = 3, 5&m′′′ = 2, 3 (2f)∣∣∣φSc
1u,h70→h30

− φSc
1v,h70→h30

∣∣∣ = 0◦ ⇒ e
jφSc

1u,h70→h30 = e
jφSc

1v,h70→h30 ,

u = 2, 4& v = 3, 5 (2g)

If |hin20| ≠ 0, |Sc
1w,hm0→h20

| ̸= 0, m = 1, 3, 5, each second term of every summation in Eq. (1) will be
suppressed, and there will no longer be a contribution from the mode TE20, if and only if φw,h20 is the
same ∀w = 2, 3, 4, 5 due to Eq. (2d). Thus, the excitation waveguides should be designed so as to
comply with the following relation:∣∣∣φu,hin

20
− φv,hin

20

∣∣∣ = 180◦ ⇒ e
jφ

u,hin20 = −e
jφ

v,hin20 , u = 2, 4& v = 3, 5 (3)

After including Eqs. 2(a)–(g) and (3) into (1), occurs:
F h10
1

F h30
1

F h50
1

F h70
1



=2



∣∣hin10∣∣ · ejφ2,hin10 ·
∣∣∣Sc

12,h10→h10

∣∣∣+∣∣hin20∣∣ · ejφ2,hin20 ·
∣∣∣Sc

12,h10→h20

∣∣∣+∣∣hin30∣∣ · ejφ2,hin30 ·
∣∣∣Sc

12,h10→h30

∣∣∣∣∣hin10∣∣ · ejφ2,hin10 ·
∣∣∣Sc

12,h30→h10

∣∣∣−∣∣hin20∣∣ · ejφ2,hin20 ·
∣∣∣Sc

12,h30→h20

∣∣∣−∣∣hin30∣∣ · ejφ2,hin30 ·
∣∣∣Sc

12,h30→h30

∣∣∣
−
∣∣hin10∣∣ · ejφ2,hin10 ·

∣∣∣Sc
12,h50→h10

∣∣∣−∣∣hin20∣∣ · ejφ2,hin20 ·
∣∣∣Sc

12,h50→h20

∣∣∣+∣∣hin30∣∣ · ejφ2,hin30 ·
∣∣∣Sc

12,h50→h30

∣∣∣∣∣hin10∣∣ · ejφ2,hin10 ·
∣∣∣Sc

12,h70→h10

∣∣∣+∣∣hin20∣∣ · ejφ2,hin20 ·
∣∣∣Sc

12,h70→h20

∣∣∣+∣∣hin30∣∣ · ejφ2,hin30 ·
∣∣∣Sc

12,h70→h30

∣∣∣


(4)

As a next step, the phases of the excitation modes TE20 and TE30 are expressed as a function of
the phase of the first excitation mode TE10 as:

φ2,hin
20

= φ2,hin
10
−∆φin

20 ⇒ e
jφ

2,hin20 = e
jφ

2,hin10 · e−j∆φin
20 (5a)

φ2,hin
30

= φ2,hin
10
−∆φin

30 ⇒ e
jφ

2,hin30 = e
jφ

2,hin10 · e−j∆φin
30 (5b)

Finally, we include the principle of energy conservation under the assumption that the output of
the four excitation waveguides presents only the three afore-mentioned modes:√∣∣hin10∣∣2 + ∣∣hin20∣∣2 + ∣∣hin30∣∣2 = 1 ⇒

∣∣hin10∣∣ = √
1−

∣∣hin20∣∣2 − ∣∣hin30∣∣2 (6)

Therefore, by the inclusion of (5a)–(5b) and (6) into (4) and without loss of generality, after
considering the phase of the mode hin10, φ2,hin

10
constant and equal to zero the last system of equations
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takes the following form:∣∣∣∣∣∣∣∣∣∣
F h10
1

F h30
1

F h50
1

F h70
1

∣∣∣∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
1−

∣∣hin20∣∣2−∣∣hin30∣∣2 · ∣∣∣Sc
12,h10→h10

∣∣∣+∣∣hin20∣∣ · e−j∆φin
20 ·

∣∣∣Sc
12,h10→h20

∣∣∣+∣∣hin30∣∣ · ∣∣∣Sc
12,h10→h30

∣∣∣ · e−j∆φin
30√

1−
∣∣hin20∣∣2−∣∣hin30∣∣2 · ∣∣∣Sc

12,h30→h10

∣∣∣−∣∣hin20∣∣ · e−j∆φin
20 ·

∣∣∣Sc
12,h30→h20

∣∣∣−∣∣hin30∣∣ · ∣∣∣Sc
12,h30→h30

∣∣∣ · e−j∆φin
30

−
√

1−
∣∣hin20∣∣2−∣∣hin30∣∣2 · ∣∣∣Sc

12,h50→h10

∣∣∣−∣∣hin20∣∣ · e−j∆φin
20 ·

∣∣∣Sc
12,h50→h20

∣∣∣+∣∣hin30∣∣ · ∣∣∣Sc
12,h50→h30

∣∣∣ · e−j∆φin
30√

1−
∣∣hin20∣∣2−∣∣hin30∣∣2 · ∣∣∣Sc

12,h70→h10

∣∣∣+∣∣hin20∣∣ · e−j∆φin
20 ·

∣∣∣Sc
12,h70→h20

∣∣∣+∣∣hin30∣∣ · ∣∣∣Sc
12,h70→h30

∣∣∣ · e−j∆φin
30

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7)

There are three points to be noted as far as Eq. (7) is concerned. The first one refers to the fact that
the common waveguide modes TE10 and TE70 couple in the same way to the three excitation waveguide
modes TE10, TE20, and TE30. The next two comments regard the impact of the third excitation mode
that has been considered in contrast to the previous moderate aperture size cases [9–11]; the TE30

mode (|hin30| · e−j∆φin
30). The interaction of this mode with the common waveguide mode F h30

1 [second
line in Eq. (7)] acts similarly to the excitation mode TE20. As a result, it couples 180◦ out of phase

with the term
√

1− |hin20|2 − |hin30|2 · |Sc
12,h30→h10

| as the minus sign denotes. Likewise, for the case of the

common mode F h50
1 [third line in Eq. (7)], the TE30 mode (|hin30| · e−j∆φin

30) couples 180◦ out of phase

with both terms
√

1− |hin20|2 − |hin30|2 · |Sc
12,h50→h10

| and |hin20| · e−j∆φin
20 · |Sc

12,h50→h20
| as the plus sign

denotes. It is finally noted that the two first terms for the calculation of the common waveguide mode

TE50 add in phase between one another and out of phase with the term |hin30| · |Sc
12,h50→h30

| · e−j∆φin
30 .

However, the total phase of the common waveguide mode F h50
1 will be shifted by 180◦ (excluding the

term |hin30| · |Sc
12,h50→h30

| · e−j∆φin
30).

The vector on the left side of Eq. (7) represents the required modal distribution for the optimal
approximation of a uniform electric field at the aperture, that is [3, 15]:

|F | =

∣∣∣∣∣∣∣∣∣∣
F h10
1

F h30
1

F h50
1

F h70
1

∣∣∣∣∣∣∣∣∣∣
≈

∣∣∣∣∣∣∣∣
0.924

0.308

0.1848

0.132

∣∣∣∣∣∣∣∣ (8)

Therefore, this is the scalar vector to which (7) is subject. Essentially, Eq. (7) is an overdetermined

system with 4 equations and 2 complex unknowns; the terms |hin20| · e−j∆φin
20 and |hin30| · e−j∆φin

30 . The
solutions of these unknowns will define the design and optimization goals of the excitation waveguide
section; the asymmetrically flared waveguide section to be designed.

2.2. Design and Results of the Excitation and the Common Waveguide Sections

The design and optimization of the excitation waveguide section as well as the upper (common)
waveguide region of the total 4-port radiating element have been performed with MM by the
commercially available software µWave Wizard [16].

Figure 4(a) illustrates the normalized voltage amplitude of the excitation modes and the reflection
coefficient. The dominant mode hin10 exhibits levels above 0.9. The hin20 mode presents a flat level of
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(a)

(b)

(c)

Figure 4. The optimized feeding waveguide section’s results: (a) output amplitude of the modes TE10,
TE20 and TE30 and reflection coefficient at the input, (b) output phase of the modes TE10, TE20 and
TE30 and relative phase difference and (c) output amplitude of the rest higher order modes.

0.3, while the hin30 mode varies between 0.08 and 0.14. The input reflection coefficient remains below
0.1 (−20 dB). Fig. 4(b) depicts the absolute phase and relative phase difference of the three excitation
modes. The values of ∆φin

20 vary from 60◦ to 30◦ and of ∆φin
30 from 15◦ to −55◦. The amplitude of the

rest undesired higher order modes presents values below 0.14 (≈ −17 dB) as shown in Fig. 4(c). The
total profile of the waveguide structure is around 2.6λ0.

Next, the common waveguide section was designed so that the phase content of the aperture modes
canbe corrected. The guided wavelength is dependent on the cross-sectional dimensions of the square
waveguide. The (upper) common waveguide part was designed with a slightly linearly flared waveguide
section. From the common waveguide interface of the 4-furcation with dimensions 2 ·a10+ t = 96.9mm,
we end up to the final radiating aperture with dimensions aap. The total length of the common
waveguide section is Lout = 45.762mm. This corresponds to 0.93λg

F
h30
1

/λg
F
h10
1

≈ 0.77λg
F
h50
1

/λg
F
h10
1

≈

0.43λg
F
h70
1

/λg
F
h10
1

(where λg
F
hm0
1

the average guided wavelength) in order to maintain the required

phase consistency of the modes F hm0
1 or TEap

m0, m = 1, 3, 5, 7. The flared waveguide section has been
discretized into finite tapered waveguide parts with equal lengths; then the average guided wavelength
has been computed for the calculation of the ratios.
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3. COMPUTED RESULTS OF THE 4-PORT QFPH

The final tuning was performed with µWave Wizard [16], and last full-wave simulations in frequency
(HFSS [17]) and time (CST [18]) domain verified the high aperture efficiency levels that the radiating
element can attain.

Figure 5(a) illustrates the numerical results of the aperture modal amplitude and reflection
coefficient at the input ports of the Q-FPH. The absolute phases as well as the relative phase difference
of the aperture modes are illustrated in Fig. 5(b). For the calculation of the aperture modal content, the
4 orthomode ports have been excited simultaneously. Due to the transversal symmetry of the structure,
the results are identical for both polarizations. The radiating element has been simulated as a 5-port
network.

(a)

(b)

(c)

Figure 5. Modal results of the Q-FPH. (a) Amplitude of the aperture modes and input reflection
coefficient, (b) phase of the aperture modes and relative phase difference and (c) amplitude of the rest
higher order aperture modes.

Figure 5(a) shows that the designed Q-FPH excites the aperture modes with a very good agreement
with respect to the ideal case. Besides, the phase difference between the aperture modes is low except
for the TE70, whose phase at the borders of the Ku-Tx frequency band is not consistent. This occurs
due to the much larger guided wavelength (hence much lower propagation constant) in relation to the
rest three aperture modes. The amplitude of the rest higher order modes exhibits levels below 0.09
(≈ −21 dB) as shown in Fig. 5(c).

Next, the Q-FPH was simulated in frequency (HFSS) and time (CST) domain using the same
boundary conditions (Perfect Electric Conductor on the elements waveguide walls). Fig. 6 depicts the
active reflection coefficient and mutual couplings among the 4 ports. The maximum cross-polarization,
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Figure 6. Simulated active S-parameters and
max X-Pol of the Q-FPH.

Figure 7. Simulated aperture efficiency and
realized gain of the Q-FPH.

which is also illustrated, remains below −27 dB over all directions and below −30 dB for a solid angle
of ±90◦.

Figure 7 presents the simulated aperture efficiency and realized gain. A level above 90% over a
fractional bandwidth of 14% (10.7 ∼ 12.4GHz) is observed. The aperture efficiency can be further
improved at the lower frequencies for a better reflection coefficient level which is responsible for the
decrease of the realized gain. The level of reflection coefficient can be improved after the optimized
inclusion of the excitation network [19]. The discrepancies between the two electromagnetic solvers lie
below ±0.1 dB in terms of simulated realized gain. This is translated to an aperture efficiency difference
of less than ±1.5%. These discrepancies are attributed to the different solving methods and the level
of uncertainty induced by the meshing of each method.

Figure 8(a) depicts the simulation result with CST distribution of the electric field amplitude at the
central frequency of 11.7GHz on the aperture plane of the 4-port radiating element. Likewise, Fig. 8(b)
depicts the distribution of the electric field phase. The radiating element is polarized along x-axis in
both figures. As expected by the calculated aperture modes, the electric field is distributed in a uniform
way.

(a) (b)

Figure 8. Simulated electric field distribution at the central frequency of 11.7GHz on the aperture
plane of the 4-port radiating element. (a) Amplitude. (b) Phase.

Figures 9(a)–(d) show the simulated normalized far-field directivity pattern at 11.7GHz (circled
lines). The co-polarized pattern is shown for the three principal cuts [φ = 0◦, 45◦, 90◦ in Figs. 9(a)–(c),
respectively] and the cross-polarized pattern at the D-plane [φ = 45◦ in Fig. 9(d)]. In the same figures,
the ideal case is superimposed (solid lines). This is the case of an aperture with the same dimensions
illuminated by a uniform and unidirectional electric field. After applying the equivalence principle, we
obtain the directivity patterns of this identical with our case aperture which produces the maximum
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(a) (b)

(c) (d)

Figure 9. Normalized radiation pattern cuts (f0 = 11.7GHz): (a) co-polar e-plane, (b) co-polar h-
plane, (c) co-polar d-plane, (d) cross-polar (X-Pol) d-plane. Solid line: ideal. Circled line: simulated
results.

(a) (b)

Figure 10. Simulated radiation patterns of the 4-port radiating element: (a) 10.7GHz and (b)
12.7GHz.

directivity radiation pattern (i.e., 100% aperture efficiency). A very close agreement between the two
cases is observed, displaying the excellent radiation performance of the Q-FPH.

Figure 10 depicts the simulated normalized directivity patterns (the co-polar in the three principal
plane cuts and the cross-polar in D-plane) of the 4-port radiating element at 10.7GHz and 12.7GHz.
These patterns are characterized by rotational symmetry as well. The cross-polarization level is
below −30 dB for a solid angle of θ ≤ ±90◦ and below −32 dB for a solid angle of θ ≤ ±15◦. At
fhigh = 12.7GHz, the H-plane co-polar component presents increased radiation level outside the main
lobe. This is attributed to the amplitude and phase differentiation between the aperture modes referring
to the modal solutions in Fig. 5. In particular, the relative phase difference of the TE70 aperture mode
with respect to the rest aperture modes (TE10, TE30 and TE50) gets values above 70◦ after 12.5GHz.
Besides, its amplitude increases above the level of 0.2, while the optimum is around 0.15.

The radiating element’s axial profile length is 127.46mm (4.97λ0). It achieves aperture efficiency
above 90% for a wide frequency bandwidth (over 14%); it is noted that the maximum theoretical level
has been calculated 95.1% [15].
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Table 1. State-of-the-art square aperture and high efficiency horns.

Ref. → [3] [4] [5] This work

Aperture Size 4λ0 × 4λ0 4λ0 × 4λ0 4λ0 × 4λ0 4λ0 × 4λ0

Bandwidth (%) 12 2.5 20 20

Aperture Efficiency (%) 85–88 85 84–90.5 86–95

Min Return Loss (dB) 25 N/A 23.5 20

Max Cross-Pol (dB) −25 N/A −21.5 −27

Profile (λ0) 9.56 4.4 11.75 4.53

Horn Antenna Type Profiled Subarray Profiled Q-FPH

Table 1 includes the radiating elements that provide the better aperture efficiency than the Q-
FPH optimized by the presented generalized methodology. Fig. 11 depicts a more detailed view
of the aperture efficiency across the normalized frequency bandwidth between the horn in [5] and
the Q-FPH. The element in [5] delivers the best aperture efficiency × bandwidth product among all
solutions in the literature. The design case of the 4λ0 × 4λ0 Q-FPH conceived to describe and verify
the presented methodology achieves an average aperture efficiency augmentation of 3.5% over a 20%
relative bandwidth and a profile reduction of 7.2λ0 with respect to the state-of-the-art profiled horn
from [5].

Figure 11. Aperture efficiency vs frequency of the Q-FPH and the profiled horn from [5] selected as
that radiating element with a 4λ0×4λ0 aperture that achieves the best aperture efficiency × bandwidth
product.

Experimental verification of structurally similar high aperture efficiency Bi- and Quad-FPH
elements can be found in [10] and [11], respectively. These antennas have electrically moderate square
aperture sizes and were developed before the generalization of the methodology presented in this paper.
It is last mentioned that although the presented design case has been characterized numerically without
including materials and hence loss analysis, from former knowledge [11], ohmic losses of about 0.1 dB
are expected for non-treated 3D-metal printed antenna feeds which employ the 4-port radiating element
with the feeder [19].

4. CONCLUSION

We present here the extended methodology for the design of Q-FPHs. We extract the 4-furcation’s
GSM and provide analytical expressions for the calculation of the appropriate excitation of the four
feeding waveguide sections. Based on this analysis, the design is reducesd to the optimization of one
(out of the four) feeding and the upper waveguide sections with the rigorous mode-matching method.
The numerically calculated results of a design case of a 4λ0 × 4λ0 Q-FPH prove the extensibility and
robustness of the method.
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