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Machine Learning-Assisted Sensing Techniques for Integrated
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Abstract—Sensing is a key basis for building an intelligent environment. Using channel state
information (CSI) from the IEEE 802.11 physical layer in the wireless local access networks, the CSI-
based device-free sensing technique has become very promising to the current sensing solutions because
of its non-invasion of privacy, non-contact, easy deployment, and low cost. In recent years, the integrated
communication and sensing (ICAS) technology has become one of the popular research topics in both
wireless communications and computer areas. Given the fruitful advancements of ICAS, it is essential to
review these advancements to synthesize and give previous research experiences and references to aid the
development of relevant research fields and real-world applications. Motivated by this, this paper aims
to provide a comprehensive survey of CSI-based sensing techniques. This study categorizes the surveyed
works into model-based methods, data-based methods, and model-data hybrid-driven methods. Some
important physical models and machine learning algorithms are also introduced. The sensing functions
are classified into detection, estimation, and recognition according to specific application scenarios.
Furthermore, future directions and challenges are discussed.

1. INTRODUCTION

Wireless mobile communication is a driving force for the Internet of Everything (IoE) [1]. The integrated
communication and sensing (ICAS) has become a very promising candidate for future wireless local
access network (WLAN). Wi-Fi 6, as the latest generation of commercial Wi-Fi standards, is the
first one specially designed for the IoE compared to the previous five generation versions based on
the IEEE 802.11 standards [2]. Nowadays, wireless communication has moved from basic human-
computer interaction to intelligent IoE. Various emerging industries and technologies, such as augmented
reality (AR), smart home, and holographic interaction, not only put forward new requirements for
communication performance but also bring communication into the framework of the Internet of Things
(IoTs) [3–5].

As the key to building an intelligent environment, sensing is the foundation of the intelligent
connection of all things. Compared with the conventional IoT, which uses a variety of sensors, wearable
external devices, or cameras in computer vision to achieve sensing and interaction functions, wireless
communication system uses the ubiquitous electromagnetic waves in space as a medium to achieve
communication functions and has developed various sensing functions [6, 7]. This ICAS technology has
received wide attention in the past decade. Researches on various application scenarios emerge in an
endless stream. Among them, the indoor sensing research work with wireless Access Points (APs) or
Wi-Fi as communication and sensing devices is particularly effective [8, 9].
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The CSI-based schemes do not rely on the Line-of-Sight (LoS) path and can realize anytime,
anywhere sensing in a non-contact manner. At the same time, due to the widespread deployment
of WLAN and the maturity of its technology, the cost of CSI-based schemes becomes much lower.
Therefore, implementing the sensing function on Commercial-Off-The-Shelf (COTS) Wi-Fi devices,
and then realizing the ICAS has great application value, which will bring unprecedented convenience
to our lives.

In the physical layer of the WLAN, the CSI under Multiple-Input and Multiple-Output (MIMO) and
Orthogonal Frequency Division Multiplexing (OFDM) technologies is the channel frequency response
(CFR) on each subcarrier between each pair of transmitting and receiving antennas. It reflects the
multipath, shadow, and diffraction experienced by each subcarrier signal from the transmitting antenna
to the receiving antenna. That is, the influence of the environment on electromagnetic waves will be
manifested in CSI. Therefore, through the analysis of CSI, environmental information can be extracted,
and then the purpose of sensing can be achieved. However, this environmental information cannot be
presented intuitively. One solution is to construct a special model and make the special transformations
of the CSI so that it can reflect some dynamic changes in the environment. Another way is to introduce
artificial intelligence (AI). A large amount of measured data provides high-quality data sources for AI. In
ICAS, most sensing problems can be boiled down to detection, recognition, and estimation problems [9],
which is what AI is good at. Numerous studies have shown that many perceptual problems that cannot
be solved by traditional modeling methods in ICAS can be addressed using machine learning methods.

This paper will focus on the CSI-based ICAS in WLAN and introduce the commonality and general
methods of ICAS research work so far. Meanwhile, some key issues and future development directions
are present. In Section 1, we outline the concepts and applications of ICAS. In Section 2, we mainly
introduce the basic concepts of CSI and the devices and standards that are currently widely used in
Wi-Fi to implement ICAS. In Section 3, we summarize and categorize the methods used in most of
the current literature and highlight some important general methods. In Section 4, we analyze the
application of ICAS in combination with the literature. In Section 5, we present the main difficulties
and bottlenecks in the current CSI-based ICAS and propose solutions and prospects for future work.

2. BACKGROUND OF WLAN ICAS

Wi-Fi is a WLAN technology based on the IEEE 802.11 standard. Connectable network devices are
wirelessly connected through wireless APs. Low latency and high transmission have always been the
premise of the IoE. The latest Wi-Fi 6 technology, based on the IEEE 802.11ax protocol, has nearly
three times the actual rate compared to the previous generation of Wi-Fi 5, and the theoretical rate even
reaches 9.6Gbps [10]. The access volume is four times that of the previous generation. The application of
Orthogonal Frequency Division Multiple Access (OFDMA) technology enables the network to withstand
low-latency access of more terminals, and the Multi-User Multiple-Input Multiple-Output (MU-MIMO)
technology enables wireless APs to provide greater system capacity. Target Wake Time (TWT), an
improved timing wake-up mechanism from 802.11ah, provides Wi-Fi 6 with an important resource
scheduling function. The terminal can be woken up by the AP at a specific time by establishing a
“wake-up protocol” with the AP. This greatly saves the power consumption of terminal devices and
makes IoT devices more intelligent [11]. Nowadays, Wi-Fi technology provides a very friendly platform
for building smart environments. WLAN is also moving closer to the general trend of the future
intelligent IoE [12].

We will briefly analyze and explain the CSI extracted from WLAN and summarize and introduce
the main standards and devices used in the current CSI-based ICAS technology research.

2.1. RSSI and CSI

Wi-Fi-based systems analyze the changes in wireless signal characteristics, such as Received Signal
Strength Index (RSSI) or CSI, caused by reflection and diffraction phenomena by people or objects.
RSSI from the MAC layer is a measure of the power of the received radio signal. There is no strict
definition of RSSI in the IEEE 802.11 standard. Its magnitude is mainly affected by path loss, occlusion,
and multipath effects. It reflects the channel quality to a certain extent. However, since its measurement
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is the result of the superposition of all multipaths, the spatial information becomes blurred after the
signals undergoing different attenuation, reflection, and refraction are superimposed. At the same time,
due to the influence of multipath, the RSSI is less stable, and its value will fluctuate greatly even in
static scenes. Therefore, RSSI can only provide coarse-grained information about the communication
link, which greatly limits its potential in terms of sensing.

CSI from the physical layer contains the CFR information of each subcarrier between each pair
of transmitting and receiving antennas in the communication system. And the CSI between the n-th
transmitting antenna and the m-th receiving antenna can be expressed in the following form,

Hm,n = [hm,n,1, hm,n,2, . . . , hm,n,S ]
T , (1)

where S is the total number of subcarriers, and hm,n,s with s = 1, 2, . . . , S is the complex CFR in the
s-th subcarrier,

hm,n,s = |hm,n,s| exp(j∠hm,n,s), (2)

with |hm,n,s| and ∠hm,n,s being the amplitude and phase. The OFDM technology used in Wi-Fi allocates
signals to each orthogonal subcarrier for transmission. Therefore, each subcarrier corresponds to one
CFR in the CSI. The CSI combination of all transmitting and receiving antenna pairs can be expressed
as an MS ×N CSI matrix as follows,

H̃ =


H1,1 H1,2 . . . H1,N

H2,1 H2,2 . . . H2,N
...

...
. . .

...
HM,1 HM,2 . . . HM,N

 , (3)

where M and N are the numbers of receiving and transmitting antennas, respectively.
In the practical environments, the CSI can be expressed in the form of multipaths superposition.

The spatial experience of each subpath is imprinted in the CSI. Certain environmental information
can be extracted by analyzing the collected CSI. Compared with RSSI, which only provides the signal
power at the receiving end, the CSI matrix is extended in the subcarrier domain and uses phase and
amplitude to describe more abundant environmental information. Therefore, CSI can provide fine-
grained information of the spatial environment.

2.2. Standards and Devices

The acquisition of RSSI is relatively simple. Most chips take into account the collection of RSSI, so
RSSI information can be easily obtained on Wi-Fi. And for CSI information, not all network interface
controllers (NICs) provide CSI data. The CSI information must be obtained by modifying the driver
and using some specific COTS device NICs or using software-defined radio (SDR).

As the standard of Wi-Fi 4, IEEE 802.11n works in two frequency bands, 2.4GHz and 5GHz.
There are two options for bandwidth, 20MHz and 40MHz, and the number of subcarriers is 56 and 114
respectively. Up to 64QAM and 4×4 spatial streams are supported. Since Wi-Fi 4 was released in 2009,
many 802.11n-based measurement and experimental platforms have been developed so far, which can
be used to measure only need a specific NIC. The 802.11n CSI Tool was developed by Halperin et al. of
the University of Washington in 2011 [13]. Running it in Linux system with Intel 5300 Wi-Fi NIC
can obtain the CSI information of the 802.11n standard. But this tool can only provide compressed
CSI data of 30 subcarriers for both 20MHz and 40MHz bandwidths. The Atheros CSI Tool developed
by Yaxiong Xie et al. in 2015 is also an open-source 802.11n measurement tool [14]. Using this tool,
detailed physical layer information, including CSI information, can be obtained from the Atheros Wi-Fi
NIC. This tool can provide complete subcarrier CSI data including 56 sub-carriers at 20MHz and 114
sub-carriers at 40MHz. This method of modifying the driver to use special tools and NICs can easily
obtain 802.11n CSI information, so most CSI-based ICAS research chooses to collect experimental data
in this way.

Additionally, the SDR platform, such as USRP and WARP, can also be used to obtain the CSI
information of the received signal. 802.11n CSI Tool and Atheros CSI Tool only support CSI acquisition
in the 802.11n standard. Using SDR can measure CSI of higher bandwidth standards, such as 802.11ac
used in Wi-Fi 5, which operates in the 5GHz band and has higher 80MHz and 160MHz bandwidths.
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The number of subcarriers corresponding to the two bandwidths reaches 242 and 484 respectively. The
SDR platform provides more options for CSI-based research work. At present, there have been many
ICAS works based on USRP [15–19] or WARP [20].

3. METHODS AND ALGORITHMS

Extract fine-grained information from the received CSI raw data, and then achieve the purpose of sensing
the environment. Special processing or learning of CSI is the commonly used method. This section
categorizes the surveyed literature into model-based methods, data-based methods, and model-data
hybrid-driven methods, according to whether special physical models are built, or machine learning is
used. And the commonly used models and algorithms are explained for reference in the research work
of ICAS.

3.1. Model-Based Methods

It was mentioned in the previous section that CSI is a three-dimensional matrix. The three dimensions
correspond to the transmitting antenna, the receiving antenna, and the subcarriers, respectively. The
elements with superscript s and subscripts n, m can be expressed in the form of multipaths superposition
as follows,

hm,n,s =

Lm,n∑
l=1

αm,n,s,le
−j2πfs

dm,n,s,l
c , (4)

where Lm,n is the total number of multipaths from the n-th transmitting antenna to the m-th receiving
antenna; l is the l-th subpath; c is the propagation velocity of the electromagnetic wave in space; α
and d are the path loss and length of the l-th subpath of the s-th subcarrier from the n-th transmitting
antenna to the m-th receiving antenna, respectively; fs is the frequency of the s-th subcarrier.

It can be seen that the CFR expressed by Eq. (4) contains most of the information on multipath in
space. These multipaths include the highest energy LoS path, constant static, and changing dynamic
object reflection and diffraction paths. This information is very helpful for sensing the environment.
But after these subpaths are superimposed on each other, they only appear as a CFR in the form of
a pair of amplitude and phase. Multiple CFRs are combined into the form of CSI. At this time, it
is necessary to establish some special models and extract the environmental information from them
through some transformations.

3.1.1. Doppler Spread Model

Doppler spread model is a model commonly used to study the speed of moving objects in an environment.
Doppler spread is the spectral spreading caused by the time rate of change of the radio channel. In
communication, it usually refers to the situation in which the frequency of the received signal is shifted
because the radio transmitting antenna and receiving antenna are in a state of relative motion. The
faster the relative speed is, the more severe the Doppler spread is. In the ICAS system, the positions of
the transmitting and receiving antennas are usually fixed. Doppler spread in this scenario refers to the
situation where there is a moving object between the transmitting and receiving antennas that changes
the length of the signal path, thereby causing the phase of the signal at the receiving antenna to shift,
as shown in Fig. 1. Eq. (4) represents the CFR in a static scene. When there are moving objects in the
environment that affect the signal transmission, Eq. (4) becomes the following form,

hm,n,s(t) =

LST
m,n∑
l=1

αm,n,s,le
−j2πfs

dSTm,n,s,l
c +

LDY
m,n∑
l=1

βm,n,s,l(t)e
−j2πfs

dDY
m,n,s,l(t)

c

= hSTm,n,s +

LDY
m,n∑
l=1

βm,n,s,l(t)e
−j2πfs

dDY
m,n,s,l(t)

c ,

(5)
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Figure 1. Phase shift of the received signal caused by the moving object changing the subpath length.

where hSTm,n,s is the superposition of the static subpaths; the rest is the superposition of the dynamic

subpaths caused by the path loss and path length of some subpaths changed by the moving object; LST
m,n

is the number of static subpaths; LDY
m,n is the number of dynamic subpaths; βm,n,s,l(t) and dDY

m,n,s,l(t) are
the path loss and path length of the l-th dynamic subpath as a function of time t, respectively. The
precondition of Eq. (5) is that the numbers of static subpaths and dynamic subpaths do not change in
a short period. When a short time interval τ elapses, Eq. (5) can be expressed by,

hm,n,s(t+ τ) = hSTm,n,s +

LDY
m,n∑
l=1

βm,n,s,l(t+ τ)e−j2πfs
dDY
m,n,s,l(t+τ)

c

= hSTm,n,s +

LDY
m,n∑
l=1

βm,n,s,l(t+ τ)e−j2πfs
dDY
m,n,s,l(t)+vm,n,s,l(t)τ

c

= hSTm,n,s +

LDY
m,n∑
l=1

βm,n,s,l(t+ τ)e−j(2πfs
dDY
m,n,s,l(t)

c
+∆φm,n,s,l(t)),

(6)

where vm,n,s,l(t) is the rate of change of the length of the l-th subpath at time t, and ∆φm,n,s,l(t) has
the following form,

∆φm,n,s,l(t) = 2πfs
vm,n,s,l(t)τ

c
, (7)

The frequency change value can be obtained from Eq. (7), and the Doppler frequency shift at time
t is as follows,

fm,n,s,l(t) =
∆φm,n,s,l(t)

2πτ
= fs

vm,n,s,l(t)

c
. (8)

In an indoor wireless channel, a single moving object may affect many subpaths. Ignoring the
NLOS scenario, only one of these subpaths is a primary reflection path, and the energy of the remaining
multiple reflection paths is relatively low and can be ignored. Therefore, the rate of change of the path
length inversely deduced by the Doppler frequency shift can reflect the size of the projection of the
moving speed in a certain direction [21], and this direction is the normal direction of the ellipsoid where
the transceiver end is the focus, and the current position is located.



50 Shao et al.

3.1.2. Fresnel Zone Model

Fresnel zone model often appears together with Doppler spread model. Fresnel zone refers to an ellipsoid
with the positions of the transmitter and receiver as the focus, as shown in Fig. 2. Point Bn on these
ellipsoids satisfies the following distance constraints,

|dTBn|+ |dBnR| − |dTR| =
nλ

2
for n = 1, 2, . . . , (9)

where λ is the wavelength. The space between the (n − 1)-th ellipsoid and the n-th ellipsoid is called
the n-th Fresnel zone. The first Fresnel zone (FFZ) is the area enclosed by the first ellipsoid, which is
the area that contributes the most to the received signal. The influence of the object in the FFZ on
the wireless channel is mainly the diffraction phenomenon, and the reflection phenomenon is the main
phenomenon in other Fresnel zones.

n = 1

n = 2

n = 3

|dTR|

B2

|dTB2|

|dB2R|

P

|dPR|

|dTP|

Figure 2. Fresnel zone is the area surrounded by ellipsoids with the transceiver end as the focus.

In the Fresnel zone except the FFZ, reflection phenomena dominate. Compared with LoS path,
the path length of the reflection path is longer. Therefore, there is a certain phase difference between
the reflection path and LoS path at the receiving end. Considering any reflection point P in space,
without blocking the LoS path, the signal at the receiving end is the superposition of the LoS path and
reflection path. The phase difference between the reflection path and LoS path can be expressed by the
path length difference as follows,

∆φ = 2π
∆d

λ
= 2π

|dTP|+ |dPR| − |dTR|
λ

, (10)

When the reflection point is located at the boundary of the Fresnel zone, the phase of the reflection
path lags behind the LoS path by nπ. When n is an odd number, the two signals cancel in the opposite
directions, and when n is an even number, the two signals are enhanced in the same direction. When the
reflection point is located in the Fresnel zone. The closer the reflection point is to the boundary of the
odd Fresnel zone, the closer the reflection signal and LoS path signal are to the opposite direction. On
the contrary, the closer the two signals are to the same direction. And the amplitude of the superimposed
signal is between the amplitude ranges on the boundary of two adjacent Fresnel zones at this point.
Therefore, when a moving object crosses the boundaries of odd and even Fresnel zones, the received
signal will show fluctuations in which troughs and peaks appear in sequence.

Since objects in the FFZ are closer to the receiver, the diffraction phenomenon of the objects
dominates. In particular, when the object blocks the LoS path, the original LoS path will become the
transmission path, and the diffraction phenomenon will be more obvious in the total received signal.
The premise of the Fresnel integral used to analyze the diffraction phenomenon is that the incident



Progress In Electromagnetics Research, Vol. 175, 2022 51

electromagnetic wave is a uniform plane wave, which is difficult to satisfy in the space-constrained
indoor situation. But it still has a certain reference value. The work of Zhang et al. verifies that when
an object vertically passes through the LoS path in a straight line in the FFZ, the normalized amplitude
of the signal received by the receiving antenna exhibits a symmetrical “w” shape [22, 23].

The Fresnel zone model maps the movement of objects in the Fresnel zone to signal fluctuations
and is often used for positioning and tracking [24, 21], as well as some fine-grained reciprocating motion
detection near the transceivers [25, 23]. Combined with Doppler spread model mentioned earlier, more
accurate velocity estimation can be achieved.

3.1.3. AoA and ToF

Among other model-based methods, the angle of arrival (AoA) and time of flight (ToF) models are also
commonly used for localization and tracking [26, 17, 19]. AoA and ToF represent the angle and distance
from the signal source to the receiver, respectively. The position of the signal source is determined by
using the AoA or ToF of multiple receivers or using AoA and ToF at the same time. Space-Alternating
Generalized Expectation-Maximization (SAGE) and Multiple Signal Classification (MUSIC) are two
algorithms commonly used to estimate AoA and ToF. The SAGE algorithm is a deterministic parameter
estimation algorithm. The delay and angle parameters are estimated by alternate iterative search
methods. The goal of the iterative search is to make the likelihood function reach the maximum
value, and each group of parameters converges to a stable value finally. Compared with the SAGE
algorithm, the MUSIC algorithm is a classic high-resolution estimation algorithm. It is based on the
eigen-decomposition class of the covariance matrix and constructs a subspace for parameter estimation.
As shown in Fig. 3, the direction angle and time delay of the incoming wave can be obtained by searching
for spectral peaks.
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Figure 3. The MUSIC spectrum of AoA and ToF. (a) AoA estimation in the spatial domain. (b) ToF
estimation in the frequency domain.

3.1.4. Others

ToF can also be roughly estimated by calculating the power delay profile (PDP) of the received signal.
The PDP represents the strength of the received signal at different delays. The PDP can be obtained
by performing an inverse fast Fourier transform (IFFT) on the signal in the subcarrier domain. The
power spectral density (PSD) is a statistical model. According to the Wiener-khintchine theorem, the
PDP is the Fourier transform of the signal autocorrelation function. It defines how the signal power
is distributed with frequency. Autocorrelation and cross-correlation are also commonly used statistical
models. Autocorrelation is the cross-correlation of a signal at different times, whereas cross-correlation
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is a metric to calculate the similarity between two signals. Cross-correlation of different sets of measured
CSI to determine similarity is often used in identification applications, while autocorrelation of CSI to
observe its temporal similarity is often used in detection applications.

In addition, the short-time Fourier transform (STFT) is a transform commonly used for time-
frequency domain analysis of received data. STFT can determine the frequency domain characteristics
of time-varying signals in different time windows. Different from the traditional Fourier transform,
STFT can reflect the time domain and frequency domain characteristics of the signal at the same time.
Its essence is to window the signal and perform Fourier transform on the windowed signal, respectively.
The window function is fixed, and the resolution is determined accordingly. Through the moving window
function, the spectrum of the signal is taken segment by segment. The STFT y(n, ω) of a discrete signal
x(n) can be expressed as,

y(n, ω) =
∑
m

x(m)w(n−m)e−jωm, (11)

where w(n) is a window function with a fixed window size.

3.2. Data-Based Methods

The achievements of AI in computer vision are obvious to all. Would it be helpful for sensing to
replace image data in computer vision with CSI data in ICAS? The answer is positive. A large
number of different types of measured data in sensing applications provide a natural data foundation
for machine learning. Some classification problems can be solved by using machine learning to extract
subtle differences between different datasets and learn commonalities within the same dataset. This
provides a viable avenue for many sensing scenarios that cannot be accurately modeled.

The existing ICAS works involve numerous learning algorithms. Pattern recognition algorithms
are commonly used in speech recognition, and optical character recognition (OCR) fields still attract
much attention in ICAS. This type of algorithm achieves the purpose of recognition by finding special
patterns in various types of data. The input of the pattern recognition algorithm is the preprocessed
data features, so the extraction of the features directly determines the upper limit of the accuracy of
the algorithm. Unlike pattern recognition, another direct method is to input the data set intactly into
the deep learning algorithm and let the machine automatically learn the hidden features of various
categories of data sets. Deep learning eliminates the manual feature extraction process and instead uses
feedforward networks to learn autonomously from the data.

Deep learning is generally considered a type of pattern recognition algorithm, and the practice
of inputting compressed data into deep neural networks for learning [27] also exists. But as far as
the current CSI-based ICAS systems are concerned, the machine learning algorithms they use tend to
fall into two categories: artificially extracting features and using non-deep neural network classifiers,
inputting pre-compressed data or raw data into deep neural networks for learning. Therefore, the
above-mentioned divisions of pattern recognition and deep learning are still representative and even
more relevant.

3.2.1. Pattern Recognition

The support vector machine (SVM) [28] is a generalized linear classifier for binary classification of data.
It maps the labeled feature vectors in the training set directly to points in space and then finds a
hyperplane in this space that best separates these differently labeled points. The feature vectors of the
data to be classified are mapped to both sides of the hyperplane through the same mapping to determine
the corresponding category. Suppose that the training set is D, y, where D = {D1, D2, . . . , DN},
Di = [d1, d2, . . . , dM ] is the feature vector of the i-th data; y = {y1, y2, . . . , yN} is the learning
target; and yi ∈ [−1, 1] is a binary variable, indicating that the i-th data corresponds to a negative class
or a positive class. Map D directly into space X = {(x1, . . . , xM )|x1, . . . , xM ∈ R}. The form of the
hyperplane that can separate datasets is as follows,

wTX+ b = 0 s.t. yi
(
wTDi + b

)
> 1, (12)

where w and b are the normal vector and intercept of the hyperplane, respectively. For the linearly
separable case, there are infinitely many such hyperplanes. The goal of the SVM is to find a hyperplane



Progress In Electromagnetics Research, Vol. 175, 2022 53

with the largest shortest distance from the dataset to this hyperplane. For some linearly inseparable
cases, the original data can be mapped to a higher-dimensional space by performing a nonlinear mapping,
and different types of point sets in this high-dimensional space are linearly separable. However, this
method increases the computational complexity exponentially. Kernel function is a method provided
by the SVM that can maintain low complexity and solve linear inseparable problems.

The K-nearest neighbor (KNN) [29] is a supervised learning algorithm commonly used in
classification and regression. The idea is that if most of the K most similar samples in the feature space
of a sample belong to a certain category, then the sample also belongs to this category. The metric for
judging this similarity is the distance between samples in the sample space. The smaller the distance
is, the more similar the two samples are. For two samples x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN )
containing N dimension features, the Minkowski distance is defined as follows,

D(x,y) =

(
N∑

n=1

|xn − yn|p
) 1

p

, (13)

where p can be any value. When p = 1, it is called Manhattan distance. When p = 2, it is called
Euclidean distance. When p = ∞, it is called the Chebyshev distance.

The K value, as the only hyperparameter in the KNN, directly affects the final effect. If the value of
K is too small, the approximation error of learning will decrease, but the estimation error will increase,
which is prone to overfitting. When the value of K is too large, the learning error will decrease, but the
approximation error will increase, which is prone to underfitting. Generally, in applications, a smaller
K value is taken first, and then the cross-validation method is used to finally determine the K value
with the highest accuracy.

Another supervised learning algorithm commonly used in classification and regression in machine
learning is the decision tree (DT) algorithm, which uses information entropy as a metric to construct
a tree with the fastest drop in entropy. The metrics of information entropy include the information
gain used in ID3 [30], the information gain rate used in C4.5 [31], and the Gini coefficient used in
classification and regression tree (CART) [32]. In ICAS, branch nodes are constructed with data features
and thresholds, and the categories of each group of data are used as leaf nodes. The best decision tree
model is obtained through training. Bagging strategy works by sampling with replacement in the sample
set and constructing a decision tree on all features for these sampled samples. After repeating multiple
times to obtain multiple trees, the classification is achieved by voting. The random forest [33] is improved
based on bagging strategy. After sampling with replacement, the features are also randomly sampled.
The random forest can avoid overfitting more effectively while improving generalization ability.

The hidden Markov model (HMM) [34] is a statistical model that uses the time-dependent features
of data to build state transition models. It has been widely used in various recognition applications
and plays a significant role in speech recognition. In the ICAS classification problem, the observation
sequence for each activity can be treated as a Markov model. The visible state of the HMM is the
processed feature; the hidden state of the HMM is the decomposition of the activity in different periods;
and the observation state of the HMM is the category after classifying the features. The change of
the feature at adjacent moments corresponds to a state transition. Hidden states are derived from the
observed features, after which the HMM identifies and classifies them by studying changes in different
activity time domains.

3.2.2. Deep Learning

Deep learning is a machine learning method based on neural network algorithms. In 2006, Hinton et
al. published an article in Science [35], proposing a solution to the gradient vanishing problem in deep
neural network (DNN), which caused the upsurge of deep learning once again. Nowadays, there are
many variants of deep learning algorithms on the original DNN algorithm, such as deep residual network
(ResNet) [36], convolutional neural network (CNN) [37], recurrent neural network (RNN) [38], and long
short-term memory (LSTM) [39].

The DNN contains an input layer, multiple hidden layers, and an output layer. The number of
neurons in the input and output layers is equal to the length of the input sample data vector and the
desired output vector, respectively. Too few neurons in the hidden layer will lead to underfitting, and
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too many will lead to overfitting. Therefore, the optimal number of neurons in the hidden layer needs
to be obtained through continuous verification. The layers are fully connected and forward propagated
through linear combinations and activation functions. The output of the neuron in l-th layer can be
expressed as follows,

al = σ
(
zl
)
= σ

(
Wlal−1 + bl

)
, (14)

where zl is the linear combination of the outputs of the neurons in the (l − 1)-th layer, which can be
regarded as the input of the neurons in the l-th layer. Wl and bl are the weight coefficient matrix
and paranoid matrix of the (l − 1)-th layer to the l-th layer, respectively, and σ(·) is the activation
function. There are various activation functions. Hidden layers usually use the Tanh function and the
ReLU function. The output layer selects different activation functions according to different application
scenarios. For regression problems, the identity function can be used to output the data that is input
to the output layer as it is. For binary classification problems, the sigmoid function can be used. For
multivariate classification problems, the softmax function can be used.

The training process of DNN is to find the best W and b matrices so that the output of the
training sample set and the output of DNN maintain a high consistency. The input vector of the
sample set is input into the initial DNN for training through backpropagation, and W and b are
optimized using the loss function as the metric. Commonly used loss functions are mean square error
and cross-entropy error. The optimization method is gradient descent, including batch gradient descent,
mini-batch gradient descent, stochastic gradient descent (SGD), and stochastic gradient descent with
momentum (SGDM).

However, it has been proved that the fully connected DNN requires more computing power with
the increase of the number of layers, and it is easy to fall into the local optimum due to the phenomenon
of overfitting. This greatly limits the performance of neural networks. In the work of ICAS, CNN is
often used instead of DNN for classification and recognition [16, 27, 40–46]. CNN considers the spatial
distribution of samples and introduces the concept of the convolution kernel. CNN replaces hidden
layers in DNN with convolutional layers and pooling layers. In the convolutional layer, the relationship
between the output of the convolutional layer and the previous layer is determined by the convolution
kernel, stride, and activation function. The pooling layer samples the output of the convolutional layer
to reduce the dimension and compress the features. Pooling operations include max pooling, average
pooling, and L2 pooling. Finally, the result is output through a fully connected layer. CNN can be
seen as a special kind of DNN. It greatly reduces the network parameters, thus effectively avoiding the
network falling into local optimum.

DNN and CNN assume that all inputs are independent, while many of the samples in the recognition
of combined actions and gestures in ICAS research are temporally correlated. At this point, RNN with
memory can be used to deal with such problems. RNN consists of an input layer, hidden layers, and an
output layer. The hidden layer in RNN depends not only on the current input but also on the value of
the previous hidden layer, which can be expressed as follows,

at = σ(Uxt +Wat−1 + b), (15)

where at and at−1 are the output of the hidden layer at the current moment and the previous moment,
respectively; xt is the input of the current hidden layer; U and W are the weight coefficient matrixes of
the input at the current moment and the output of the hidden layer at the previous moment, respectively;
b is the paranoid matrix; and σ() is the activation function. Besides, U, W, b are the same at any
time.

The RNN processes data sequentially in such a way that the current output is influenced by previous
input data. The RNN can be regarded as a neural network that propagates on time, and its depth is
the length of time. However, this simple RNN structure is prone to gradient vanishing and gradient
explosion in the temporal dimension. The LSTM is by far the most used solution. LSTM selects
important information to retain and forgets unimportant information through the gate structure. As
an improved RNN, as shown in Fig. 4, the LSTM can perform better in longer sequences.
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Figure 4. The temporal features of time-related motion can be learned by inputting the collected
data into the RNN or LSTM. (a) Sequence CSI from time-dependent combined motion. (b) Input the
collected CSI sequences to the input layer of the RNN in sequence. (c) Input the collected CSI sequences
to the input layer of the LSTM in sequence.

3.3. Model-Data Hybrid-Driven Methods

Model-data hybrid-driven methods effectively combine models from model-based methods with learning
algorithms from data-based methods. This method first builds a physical model of the problem to be
solved to obtain rough features of the problem, then machine learning algorithms are used to refine
them. Comparing the advantages and inevitable shortcomings of pure model-based and data-based
methods shows that these two methods are complementary in many aspects. Model-data hybrid-driven
methods combine their advantages and break down their respective limitations.

The advantages and disadvantages of these three methods and future development trends are
summarized as follows:

Model-based methods start from the characteristics of electromagnetic waves and build special
physical models for different scenarios and applications. The original information is transformed into a
form that can reflect environmental information through signal processing. Compared with the other two
methods, model-based methods do not require a large amount of data to be collected for training, and
the algorithm is simple enough to achieve real-time sensing. Model-based methods are widely applicable
to detection and estimation applications. However, each model in the model-based approach is designed
for only one application, so it is difficult to extend. And there are a lot of problems that cannot be
modeled in actual scenes, such as complex action recognition. For most recognition applications, model-
based methods cannot accurately distinguish between different classes through modeling. The accuracy
of model-based methods is limited by accurate measurement and environmental dynamic information
extraction, so more effective noise filtering, multipath elimination, and dynamic information extraction
algorithms will become the focus of research.

On the other hand, data-based methods start from the measurement data and adopt different
learning methods according to the requirement to learn the features hidden in the data, to achieve
the purpose of prediction, identification, or classification. The learned data can be CSI raw data or
feature vectors extracted from CSI. Compared with the other two methods, data-based methods do not
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depend on the spatial context and do not require extensive signal processing. Data-based methods are
more suitable for dealing with some problems in recognition and detection scenarios. But it also has
many flaws. High recognition accuracy often requires a lot of training costs. Then, various activities
at various locations in the space are reflected differently on the receiving end, and it is impossible for
data-based methods to take them all into account. Many data-based methods only identify and classify
special activities in a specific location, and basically cannot be further extended to the entire space
or to achieve simultaneous detection of various fine-grained information. The accuracy of data-based
methods greatly depends on the prediction accuracy of machine learning algorithms. In addition, most
motions in human sensing are time-related. In the future, machine learning algorithms that consider
time characteristics will become the focus of research.

As mentioned earlier, model-based and data-based methods are complementary in many ways.
Model-data hybrid-driven methods learn the results obtained based on the model, which can achieve
more accurate estimation and detection results, and even realize the sensing function that could not
be achieved before. Model-data hybrid-driven methods preprocess the input of the algorithm in the
data-based methods. Compared with the previously unprocessed data, the processed data can already
reflect some spatial characteristics. Therefore, the training cost is greatly reduced, which provides the
conditions for giving play to the full potential of machine learning. This hybrid method can often
achieve higher accuracy than using models or learning algorithms alone, and also provides more ideas
and solutions for ICAS work. Model-data hybrid-driven methods not only require the selection of the
proper model and learning algorithm but also need to consider how to effectively combine the data
processed by the model with the data-based algorithm, which is also the main research direction of
model data hybrid-driven methods in the future.

4. APPLICATIONS OF CSI-BASED ICAS

Different application scenarios in CSI-based sensing are summarized in this section and divided into three
categories: detection, estimation, and recognition. According to the above-mentioned three methods,
scenarios, and specific applications in each scenario, the researched articles are summarized in Table 1.

In addition, this section focuses on representative applications in each scenario, and the devices,
protocols, models, signal processing methods, machine learning algorithms, and performance used in
these works are summarized according to Fig. 5.

4.1. Detection

In detection scenarios, the CSI-based sensing system needs to detect specific actions or objects in the
environment. This application scenario requires that the system is only sensitive to a certain change in
the environment and does not need to react to other things happening in the environment.

4.1.1. Human Detection

The simplest and most common detection application is human detection, which judges whether there
is a person in the environment. It is suitable for home scenarios and security fields. It is also the basis
for all human sensing. Some human detection works detect people in motion and judge whether there
is a person by comparing the dynamic and static features of the environment [47, 48]. R-TTWD in [49]
can realize dynamic human detection through the walls by calculating the first-order difference mean
of different subcarriers as features. This work of detecting people by distinguishing between static and
dynamic environments is essentially Motion Detection. WiDetect in [50] implements a calibration-free
motion detection system by exploiting the difference in the autocorrelation properties of CSI in static
and dynamic environments.

However, it is not accurate enough to judge the existence of people only by detecting the dynamic
changes of the environment, and people are not always in motion in the environment. Omni-PHD in [51]
detects the human through the fingerprint-based method and can judge the azimuth angle of the human
relative to the AP. In addition, DeMan in [52] detects stationary people by using a bandpass filter and
sine fitting to capture the environmental changes caused by people’s breathing while achieving dynamic
human detection.
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Table 1. Summary of existing WLAN ICAS.

Type Scenario Application Reference

Model-Based

Detection

Human Detection [52, 50]

Full Detection [17, 53]

Smoke Detection [54]

LoS Detection [55, 56]

Estimation

Walking Direction Estimation [57]

Human Counting [58–60]

Speed Estimation [53]

Indoor Positioning and Tracking [26, 17, 19–21, 24, 61]

Imaging [15, 62, 63]

Respiration Monitoring [25, 64, 65, 52]

Recognition
Gesture Recognition [66, 17, 67, 19]

Passing Direction Identification [60, 68]

Data-Based

Detection
Human Detection [47–49, 51]

Full Detection [69]

Estimation
Human Counting [70–72]

Indoor Positioning [48, 73, 74, 16]

Recognition

Keystroke Recognition [75, 76]

Human Identification [77, 78, 42]

Gesture Recognition [44, 79, 80, 81]

Human Activity Recognition
[82–84, 73, 41, 42, 27]

[43, 16, 85–90]

Model-Data

Hybrid-Driven

Detection Full Detection [91, 92]

Estimation

Human Counting [93–95, 40, 46, 18]

Speed Estimation [94, 91]

Respiration Monitoring [93, 96]

Recognition

Human Identification [97, 98]

Gesture Recognition [99–101]

Speech Recognition [102]

Human Activity Recognition [95, 45, 103]

Passing Direction Identification [94, 40]

Remarks: Human detection research work is summarized in Table 2. The detection system targeting
the dynamic human body is essentially a dynamic detection system, whose key point is how to extract
the different characteristics in the CSI of the static and dynamic environments. Once features with high
discrimination are found, simple binary classifiers or threshold-based detection methods can be used
for human detection. However, the impact of the static human body on the environment is weak, and
capturing such weak changes requires the establishment of high-precision physical models or the direct
use of fingerprint-based methods.

4.1.2. Fall Detection

Fall detection is designed for special family scenarios. For the elderly who are physically fragile, falls
are more harmful to the body than adults and children. Real-time monitoring of fall accidents in a
non-contact way through Wi-Fi devices at home, and responding in the first time, can gain more rescue
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Figure 5. WLAN-Based ICAS technologies and their applications.

time for the elderly at home alone.
WiFall in [69] is a data-based fall detection system. It detects abnormal activities by calculating

local outlier factor, then extracts features to distinguish falling activities from walking, sitting, and
standing activities using SVM or Random Forest. RT-Fall in [51] adopts the same strategy as WiFall,
first detecting abnormal activities and then extracting features using SVM to identify fall activities.
DeFall in [91] and WiSpeed in [53] detect fall activity by estimating the velocity and acceleration
of motion in the environment over a period of time. The difference is that DeFall uses the SLN-
DTW algorithm, and WiSpeed adopts a model-based method, which estimates speed by calculating
autocorrelation and then detects fall activity.

Remarks: Fall detection research work is summarized in Table 3. The fall detection system is often
required to determine the time-interval of the fall movement to extract its features. Next, to distinguish
fall movement from other fall-like motions, such as walking and sitting, the traditional approach is to
extract features and classify them. Most of the classifiers used are binary classifiers or threshold-based
discriminators. In addition, some velocity estimation work can achieve fall detection by predicting the
velocity and acceleration of the movement.

4.1.3. Other Detection Applications

Other detection applications are summarized in Table 4. Smokey in [54], a smoking activity monitoring
system in public places, can monitor smoking activities in the environment. Smokey proposes a motion
acquisition method based on foreground detection and filters counterfeit foregrounds using temporal and
frequency correlation. Finally, the unique breathing pattern of smoking is used to determine whether
each compound action is a smoking action.

The dependence of indoor positioning and other sensing applications on LoS path makes LoS/NLoS
detection a fundamental primitive. Besides, LoS/NLoS detection is beneficial to communication
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Table 2. Summary of detection scenarios: Human detection.

Reference
Other

Function

Base

Signal

Stationary

or Dynamic

Human

Signal

Processing
Method Performance

DeMan

[52]
/

Amplitude

& Phase
Both

Hampel Filter

BPF, LMS

Correlation

Sinusoidal Model

Nelder-Mead

Accuracy:

94.82%/93.33%,

dynamic/static

WiDetect

[50]
/ - Dynamic /

Autocorrelation

Thresholding

Accuracy:

> 83%

PADS

[47]
/

Amplitude

& Phase
Dynamic

Phase

Calibration

Hampel Filter

Thresholding

SVM

Accuracy:

97%

Pilot

[48]
Positioning Amplitude Dynamic /

Maximum a

Priori Probability

Fingerprint-Based

Methods

Accuracy:

90%,

Positioning

Accuracy: 90%

R-TTWD

[49]
/ Amplitude Dynamic

Hampel Filter

Interpolation

Wavelet Filter

Normalization

PCA

SVM

True Positive/

True Negative:

99%

Omni-

PHD [51]

Azimuth

Distinction

Amplitude

& Phase
Both /

Fingerprint-Based

Methods

EMD

Accuracy:

> 91%, Azimuth

Distinction:

> 75%

Notice : All the studies in this table are implemented on IEEE 802.11n protocol by using the Intel
5300 NIC.

link setting adjustment for high throughput and reliable communication. LiFi in [56] exploits the
characteristic that the received signal envelope exhibits Rician distribution under LOS propagation and
Rayleigh distribution under NLOS conditions. LiFi extracts the envelope distribution features Rician-K
factor and skewness of the received signal. Then set thresholds to detect LoS and NLoS paths. PhaseU
in [55] uses spatial diversity and frequency diversity to distinguish LoS and NLoS by thresholding based
on LiFi.

4.1.4. Summary

In detection applications, both model-based and data-based methods are popular. Commonly used
models include correlation characteristics and time-frequency domain analysis [17, 50, 53–56, 91, 92].
Most of the learning algorithms are light-weight classifiers such as SVM and random forest [47, 49, 69, 92]
or use EMD and DTW [51, 91] for binary classification.

4.2. Estimation

In estimation scenarios, the system needs to make judgments against uncertainties in the environment.
Unlike the system in the detection scene that only needs to make binary judgments, the possible results
of the problem in the estimation scene are mostly continuous. For example, speed estimation requires
the system to give an exact number as the output result [53, 91, 94].
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Table 3. Summary of detection scenarios: Fall detection.

Reference
Other

Function

Base

Signal

Transmission

Rate

Signal

Processing
Method Performance

WiSpeed

[53]

Speed

Estimation
- 150 0Hz

Median Filter

l1 Trend Filter

Autocorrelation

Peak Detection

Accuracy: 95%

Speed Mean Error:

4.85%

WiFall

[69]
/ Amplitude 100Hz

WMAF, CSI

Aggregation

Local Outlier

Factor, SVD

SVM or

Random Forest

Accuracy: 90%/94%

False Alarm Rate:

15%/13%

(SVM/RF)

DeFall

[91]
/ Amplitude 1500Hz /

Autocorrelation

SLN-DTW

DBA, WGSS

Thresholding

Accuracy: 96%

False Alarm Rate:

1.47%

RT-Fall

[92]
/

Amplitude

& Phase
100Hz

BPF, Phase

Calibration

Interpolation

Phase Difference

STFT, SVM

Thresholding

True Positive Rate:

91%, True Negative

Rate: 92%

Notice : All the studies in this table are implemented on IEEE 802.11n protocol by using the Intel
5300 NIC.

Table 4. Summary of detection scenarios: Other detection applications.

Reference Application Platform
Signal

Processing
Method Performance

Smokey

[54]

Smoking

Detection

Intel 5300

802.11n
Interpolation

Foreground

Detection

Temporal/

Frequency

Correlation

Peak Detection

True Positive

Rate: 97.6%

False Positive

Rate: 0.8%

PhaseU

[55]

LOS/NLoS

Identification

Intel 5300

802.11n

Hampel Filter

Phase

Calibration

Antenna

Selection

Phase

Difference

Thresholding

Detection Rate:

94%/80%,

(static/mobile)

LiFi

[56]

LOS/NLoS

Identification

Intel 5300

802.11n

Phase

Calibration

Normalization

IFFT

Rician &

Rayleigh

Distribution

Thresholding

Detection Rate:

90.42%, False

Alarm

Rate: 9.34%

4.2.1. Human Counting

Human counting requires the system to judge the number of people in the current environment. FCC
in [58] proposes a metric, the percentage of nonzero elements (PEM), in the dilated CSI Matrix. The
grey Verhulst model is used to fit the monotonic relationship between PEM and the number of people
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to estimate. [94] adopts a nonlinear fitting method to model the monotonic relationship between CSI
features and the number of people in the environment. In addition, it constructs the crowd density
contour curve according to the CSI amplitude distribution on the subcarriers under different crowd
densities. Then the crowd density is determined by calculating the EMD distance. Meanwhile, this
system uses the relative phase and total harmonic distortion algorithm to estimate the moving speed
of the person. WiCount in [71] directly inputs the preprocessed CSI amplitude and phase into the
BP neural network for learning. The system predicts the number of people by fitting the correlation
between the number of people and CSI by determining the parameters of the neural network.

In addition to using fitting to achieve human counting, it can also be considered a classification
problem. [70, 18] both use feature selection and linear discriminant analysis (LDA) to estimate the
number of people. [72] preprocesses the CSI amplitude and extracts its features, then inputs it into a
multi-class SVM model using error-correcting output codes (ECOC) for classification.

People flow counting is a special case of human counting, which requires the system to estimate the
number of people passing through an area. Wi-Count in [60] takes the CSI phase as the research goal
and uses the FastICA algorithm to separate the influence of a single person to achieve the purpose
of counting. Door-Monitor in [40] changes the research target to the CSI phase difference of the
two antennas based on Wi-Count and replaces the FastICA algorithm with STFT analysis and CNN.
WiFlowCount in [46] takes the CSI conjugate product of two antennas as the research object. People
flow counting is realized through four stages: flow detection, subflow detection, subflow size estimation,
and continuous flow counting. The detection of the first two stages is achieved by threshold detection.
The last stage inputs the STFT spectrogram of the substream into CNN for learning to estimate the
number of people.

Remarks: Human counting research work is summarized in Table 5. The influence of the number
of people on the channel is reflected in multiple reflection paths and fading. There are two types of
traditional research methods. The first method is to find the monotonic relationship between the number
of people in the environment and some characteristics of CSI. Then build a special model to fit this
monotonic relationship. Another approach is to treat population estimation as a classification problem,
where the class is the number of people. Moreover, because people flow counting studies the number of
people at a particular location, the transmitting and receiving devices tend to be short distances. At
this point, more granular analysis methods are needed to extract the different effects caused by different
numbers of people.

4.2.2. Respiration Monitoring

Respiration monitoring requires the system to capture the subtle changes in the environment caused
by human respiration and to estimate the respiration rate and cycle, which is of great significance in
the medical field. The Wi-Sleep system in [25, 96] places the transceiver devices on the two ends of
the lying down human chest to capture human breathing. It performs a series of preprocessing on the
collected raw CSI data and then selects the subcarrier CFR sequence with the strongest periodicity
to track respiration. At the same time, the DBSCAN clustering method is used to detect whether
the sleeping posture has changed, and three sets of transceiver devices in different positions are used to
judge the sleeping posture. PhaseBeat in [64] uses the MUSIC algorithm to estimate the respiratory rate
and the FFT-based method to estimate the heart rate. TR-BREATH in [93] estimates the breathing
rate by calculating the time-reversal resonating strength and analyzing it using the MUSIC algorithm.
TR-BREATH uses clustering by affinity propagation, likelihood assignment, and cluster merging to
estimate the breathing rate of multiple people simultaneously, and cluster-based estimation is used to
estimate the number of people. Since the effect of respiration on the signal is weak, respiration detection
is extremely dependent on the static environment.

Remarks: Respiratory monitoring research work is summarized in Table 6. Due to the strong
periodicity of human respiration, the influence of respiration on the signal is concentrated in the
frequency domain. For single-person monitoring scenarios, the respiration rate can be estimated using
the respiration-induced sine-like periodic pattern changes in CSI amplitude or phase. For multi-person
monitoring scenarios, it is necessary to use the differences in respiration rates of different people to
achieve monitoring. In practical environments, the effect of respiration is very weak and difficult
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Table 5. Summary of estimation scenarios: Human counting.

Reference Application Platform
Base

Signal

Signal

Processing
Method Performance

FCC

[58]
HC

Intel 5300

802.11n
Amplitude /

Rician Fading

Grey Verhulst

Model, PEM

Errors 6 2:

98%/70%

(indoor/outdoor)

[70] HC
Intel 5300

802.11n
Amplitude Normalization

Davies-Bouldin

index, LDA
Errors 6 2: 81%

[18] HC

Ettus

USRP N210

802.11b

Amplitude

& Phase
DFT

PPMCC,

LDA

Accuracy:

CSI 72%/69%

RSSI 70%/57%

(Office/Meeting)

[94]

HC, Density

Estimation

Speed &

Direction

Derivation

Intel 5300

802.11n

Amplitude

& Phase

LPF

Subcarrier

Selection

Non-Linear

Regression,

EMD Phase

Difference

THD, FFT

Accuracy:

> 90%

WiCount

[71]
HC

Intel 5300

802.11n

Amplitude

& Phase

LPF, Phase

Calibration

WMAF

BPNN
Accuracy:

82.3%

[72] HC

Nexmon CSI

Extractor

802.11n

Amplitude
Hampel Filter

LPF
ECOC-SVM

Accuracy:

92%/97%

(Elevator/Office)

Wi-Count

[60]

PFC,

PDD

Intel 5300

802.11n
Phase

K-means

Savitzky-Golay

Filter

FastICA

Peak

Detection

PDD: 95%

PFC: 92%

Door-

Monitor

[40]

PFC,

PDD

Intel 5300

802.11n

Phase

Difference

K-means

Median filter

Savitzky-Golay

Filter

STFT,

CNN

PDD: 95.2%

PFC: 94.5%

WiFlow-

Count

[46]

PFC
Intel 5300

802.11n

CSI

Conjugate

Product

BPF, PCA

Binarization

Gauss Filter

Thresholding

STFT, CNN

Accuracy:

96.7%/94.3%

(People Flow

6 4/6)

Notice: HC represents Human Counting. PFC represents People Flow Counting. PDD represents Passing Direction
Detection.

to detect, and most work is extremely dependent on static environments. Monitoring respiration in
complex dynamic environments remains a difficult problem.

4.2.3. Indoor Positioning and Tracking

Indoor positioning and tracking is also a specific application of estimation scenarios, which requires
the system to judge and continuously track the position of the person. Widar in [24] is a model-based
indoor positioning and tracking system. The Doppler model is utilized to locate and track by extracting
the path length change rate. Widar 2.0 in [61] reduces the two links in Widar to one and adds analysis
of ToF and AoA. Both Wits in [26] and IndoTrack in [21] are two-link indoor positioning and tracking
systems that track by estimating Doppler shifts. Regarding the initial positioning, Wits uses the ToF of
the two links, and IndoTrack uses the AoA to determine. The former parameter estimation algorithm
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Table 6. Summary of estimation scenarios: Respiration monitoring.

Reference
Other

Function
Platform

Transmis-

sion Rate

Signal

Processing
Method Performance

Wi-Sleep

[25, 96]

Posture

Change

Detection

Intel 5300

802.11n
20Hz

Hampel Filter

Interpolation

Wavelet Filter

Subcarrier

Selection

SVD, STFT

Nelder-Mead Method

Kolmogorov-Smirnov

test, DBSCAN

Tracking Respiration:

FPR & FNR 6 27%

Posture Change

Detection: > 80%

Apnea: > 85%

Phase-

Beat [64]
/

Intel 5300

802.11n
400Hz

Hampel Filter

Subcarrier

Selection

DWT, FFT

Phase Difference

Peak Detection

root-MUSIC

Maximum Estimation

Error: 0.85/10 bpm

(Breathing/Heart)

TR-

BREATH

[93]

Human

Counting

Wi-Fi NIC

802.11n
10Hz

CSI

Calibration

TRRS, root-MUSIC

Time-Reversal

K-means, SVM

Likelihood Assignment

Breathing Rate

LoS: 99.56%/98.65%

NLoS: 99.37%/97.3%

(Single/Multi-Person)

is maximum likelihood while the latter is MUSIC algorithm. DFLAR in [73] converts CSI of multiple
channels into radio images and extracts color and texture features from radio images. The optimized
deep image features are then extracted from the original image features using a sparse auto-encoder
(SAE) network. Finally, the deep features are input into the softmax regression algorithm to estimate
the position of the person, and at the same time, it can recognize the activity of the person.

Remarks: Indoor positioning and tracking research work is summarized in Table 7. The
implementation schemes of CSI-based indoor positioning are mainly divided into two categories:
triangulation and fingerprint-based methods. Triangulation mainly involves the estimation of
parameters such as AoA and ToF and needs to use channel parameter estimation algorithms such
as MUSIC, SAGE, and maximum likelihood. The estimation accuracy of AoA and ToF is limited by
the number of antennas and bandwidth, respectively. Better super-resolution parameter estimation
algorithms have become a mainstream research direction. Fingerprint-Based Methods achieve indoor
positioning by building a fingerprint library and matching it with the collected data. This method
usually achieves higher accuracy but is inflexible and extremely sensitive to environmental changes.
In addition to real-time positioning, Doppler and Fresnel zone models can be used to predict motion
trajectories to assist in tracking.

4.2.4. Summary

Model-based methods are widely used in estimation applications. For example, Doppler and Fresnel
zone models [57, 24, 61, 21, 25], as well as MUSIC algorithm [21, 15, 64, 93], are commonly used in
respiration monitoring, direction estimation, and indoor positioning. ToF is also commonly used for
indoor positioning [26, 17, 19, 61]. Time-frequency domain analysis of data is widely used in various
applications [57, 17–19, 24, 64, 65, 40, 46, 94, 96]. Data-based methods can solve classification problems
for estimation applications, or directly transform estimation problems into classification problems. Both
pattern recognition algorithms [18, 93, 96, 70, 72, 74] and deep learning algorithms [40, 46, 73, 16, 71] have
applications.

4.3. Recognition

In recognition scenarios, the target to be recognized must be clearly defined first. Then the system
needs to identify the target existing in the current environment based on the collected signals. There
are many applications in the recognition scene. Only three main applications are selected here for
detailed introduction.
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Table 7. Summary of estimation scenarios: Indoor positioning and tracking.

Reference
Other

Function
Platform

Transceiver

Device

Configuration

Signal

Processing
Method Performance

Widar

[24]

Speed

Estimation

Intel 5300

802.11n

1Tx-2Rx(3)

(1.6, 1.6)m

2000Hz

Subcarrier

Selection

BPF, PCA

STFT

Doppler Spread

PLCR Extraction

Cross-Correlation

Thresholding

Least Fitting

Error

Median Error:

0.38m

Median Relative

Velocity Error:

13%

Widar2.0

[61]
/

Intel 5300

802.11n

1Tx-1Rx(3)

-, 1000Hz

GPM,

Conjugate

Multiplication

Kalman Filter

Doppler

Spread SAGE,

AoA, ToF

Average Error:

0.75m

Wits

[26]
/ -

1Tx-2Rx(3)

(2.8, 3.2)m

/(4, 4)m, -

Phase

Calibration

Static

Elimination

Doppler Spread

Maximum

Likelihood, ToF

Mean Error:

0.41m

IndoTrack

[21]
/

Intel 5300

802.11n

1Tx-2Rx(3)

(6, 6)m

200Hz

Conjugate

Multiplication

Static

Elimination

Doppler Spread

Fresnel Zone

MUSIC, AoA

Median Error:

0.35m

DFLAR

[73]

Activity

Recognition

Intel 5300

802.11n

1Tx-1Rx(3)

13m, 500Hz

Median Filter

GLCM, Phase

Calibration

Gabor Filter

Softmax Regression

Algorithm, Sparse

Auto-Encoder

Network

Accuracy:

> 90%

(5 Activities at

12 Locations)

Notice: Transceiver device configuration includes the number of transceiver devices, the number of antennas in the
device, the distance between the transceiver devices, and the transmission rate.

4.3.1. Human Recognition

One of the applications that we are exposed to the most daily is human recognition. Face recognition,
fingerprint recognition, and even iris recognition, genetic recognition are its implementation methods.
CSI-based human recognition is achieved in a contactless manner by studying the influence of people
on Wi-Fi signals in the environment.

WiFi-ID in [77] selects the time and frequency domain features from the CSI of the walking state
to construct fingerprints by the ReliefF feature selection algorithm. Then the Sparse Approximation
based Classification face recognition method proposed in [104] is used for recognition. FreeSense in [78]
performs discrete wavelet transform compression on CSI sequences, and a DTW-based KNN classifier
is used to identify gait. The learning algorithms used by WiWho in [97] and Wi-FiU in [98] are DT
and SVM, respectively. EfficientFi in [42] proposes the first Wi-Fi sensing framework to support IoT
cloud. Robust CSI features are extracted using CNN in Wi-Fi and compressed into a quantized vector
using the CSI codebook for transmission. In the cloud server, the vector is restored and reconstructed
as the original CSI data, which is input into a recognition classifier composed of fully connected layers.
EfficientFi reduces communication overhead while achieving high-precision recognition.

Remarks: Human recognition research work is summarized in Table 8. CSI-based human
recognition studies the different influences of different people on CSI. Among them, identifying people
by studying the walking characteristics of different people is the most common. This research method
is also called gait recognition. However, both gait recognition and general human recognition need to
filter out the identity-independent quantities in CSI to obtain pure identity features. Therefore, as
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Table 8. Summary of recognition scenarios: Human recognition.

Reference
Other

Function

Transceiver

Device

Configuration

Signal

Processing
Method Performance

Wi-Fi-ID

[77]
/

1Tx(3)-1Rx(3)

2m, 800Hz

Silence Removal

CWT, ReliefF

Sparse

Approximation

based

Classification

Accuracy:

93% ∼ 77%

(From 2 ∼ 6 People)

FreeSense

[78]
/

1Tx(2)-1Rx(3)

2.5m, 1000Hz

LPF, DWT,

PCA
DTW, KNN

Accuracy:

94.5% ∼ 88.9%

(From 2 ∼ 6 People)

EfficientFi

[42]

Activity

Recognition

1Tx(3)-1Rx(3)

3m, 500Hz

Feature

Compression

and

Reconstruction

CNN

Activity

Recognition

Accuracy: 98%

Human-ID: 89.5%

WiWho

[97]
/

1Tx(3)-1Rx(3)

7.2/8.2/10m,

100Hz

/

IFFT, DTW

Peak Detection

Decision Tree

Accuracy:

92% ∼ 80%

(From 2 ∼ 6 People)

Wi-FiU

[98]
/

1Tx(2)-1Rx(3)

1.6m, 2500Hz

PCA,

Frequency

Domain

Denoising

STFT, SVM

Accuracy:

79.28%

From 7 People

Notice : All the studies in this table are implemented on IEEE 802.11n protocol by using the Intel
5300 NIC.

shown in Table 8, most human recognition work has higher requirements on the distance between the
transceiver and the human recognition area. This greatly limits the application prospects of CSI-based
human recognition systems. Next, reducing the sampling rate of the recognition system should also be
considered in subsequent human recognition research work.

4.3.2. Gesture Recognition

CSI-based gesture recognition provides a very convenient interaction method for human-computer
interaction. Hand-level gesture recognition focuses on the movement of the entire hand and tracking
the trajectory of the hand. Therefore, hand-level gesture recognition can also be referred to as hand
tracking. WiG in [81] uses Birge-Massart filter to filter and local outlier factor (LOF) based anomaly
detection algorithm to detect the anomaly segment on the collected CSI. Finally, the extracted features
are input to the SVM for classification. WiTrace in [66] uses the Doppler spread model to implement
1D and 2D hand tracking. WiTrace designs a heuristic algorithm to achieve the purpose of static
vector elimination and uses linear regression to remove the sampling frequency offset (SFO) and packet
detection delay (PDD) offset. Afterward, the phase difference between the sub-carriers is used to
estimate the path length of the dynamic path, and the initial position estimation is performed in two
steps. Finally, Kalman filtering based on a 2D continous Wiener process acceleration (CWPA) model
is used to correct the error caused by the continuous noise of the system.

The target of finger-level gesture recognition is finger movements. This application recognizes more
complex gestures and even sign language, so finger-level gesture recognition can be referred to as sign
language recognition. SignFi in [44] is a data-based sign language recognition system. This system
uses multiple linear regression on the CSI phase to remove the frequency offset and then inputs the
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magnitude and phase together into a 9-layer CNN network for learning and classification. SGDM is
used in SignFi to update the weights and biases. The WiFinger in [100] uses pattern matching to
recognize gestures based on CSI, which uses Multidimensional Dynamic Time Warping (MD-DTW) for
similarity calculation after CSI preprocessing. WiFinger in [101] is an American sign language (ASL)
recognition system that uses a DTW-based KNN classifier to recognize ASL.

Table 9. Summary of recognition scenarios: Gesture recognition.

Reference
Specific

Application
Platform

Transceiver

Device

Configuration

Signal

Processing
Method Performance

WiG

[81]

Hand

Tracking

Intel 5300

802.11n

1Tx(3)-1Rx(2)

-, 100Hz

Birge-Massart

Filter, Lof

Anomaly

Detection

SVM

4 Gesture

Accuracy:

92%/88%

(LoS/NLoS)

WiTrace

[66]

Hand

Tracking

Ettus

USRP N210

802.11g

1Tx(1)-2Rx(1)

(0.5, 0.5)m

100Hz

Hampel Filter

Normalization

LPF, Static

Elimination

Linear

Regression

Kalman Filter

Thresholding

STFT,

Doppler

Spread

Initial Position

Estimation:

6.23 cm, Average

Tracking Errors:

1.46/2.09 cm

(1D/2D Tracking)

SignFi

[44]

Sign

Language

Recognition

Intel 5300

802.11n

1Tx(1)-1Rx(3)

1.3/2.3m,

200Hz

Multiple

Linear

Regression

CNN, SGDM

276 Gestures

Accuracy: 98%

(Lab/Home)

94% (Lab+Home)

WiFinger

[100]

Sign

Language

Recognition

Intel 5300

802.11n

1Tx(-)-1Rx(-)

-, 20Hz
BPF, DWT

Thresholding

MD-DTW

IFFT, Pattern

Matching

8 Gestures

Accuracy: 93%

WiFinger

[101]

Sign

Language

Recognition

Intel 5300

802.11n

1Tx(1)-1Rx(3)

0.5m, 2000Hz

Hampel Filter

LPF, WMA

DWT

Autocorrelation

Thresholding

KNN, DTW

Finger-Grained

Accuracy:

90.4%/82.67%

(9/90Digits)

Remarks: Gesture recognition research work is summarized in Table 9. The influence of hand
movements in wireless channels is very weak, and there are certain similarities between different gestures.
Therefore, it is difficult to obtain discriminative features using model-based methods. Research using
purely machine learning algorithms usually has a precondition that the gesture occurs at a fixed location
close to the AP. Although this approach is beneficial to achieve high-precision recognition, it sacrifices
the robustness and flexibility of the system. Considering that vision-based or wearable device-based
solutions can realize gesture recognition more easily and accurately, future research work on CSI-based
gesture recognition should give full play to its own advantages and avoid disadvantages.

4.3.3. Activity Recognition

Human activity recognition aims to identify daily activities. The human activities that most of the
works focus on are simple basic activities such as walking, running, sitting, and falling. We refer to the
system that recognizes this type of activity as atomic activity recognition system. In contrast to atomic
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activity, a system that recognizes some combined actions, such as exercise, laundry, watching TV, and
other daily activities, can be called the combined activity recognition system.

CARM in [82, 90] proposes a CSI-speed model to relate the frequency power variation of CSI to
human movement speed. The CSI-activity model correlates the movement speed of different parts of
the human body with specific human activities. Finally, the HMM is used to identify eight kinds of
human daily activities. ReWiS in [27] uses SVD to compress the CSI sequence and inputs it into the
few-shot learning of the ProtroNet for learning. WiSDAR in [45] and [43] use deep learning architectures
combining CNNs with LSTMs. [43] proposes to adopt a matching network with enhanced channel state
information (MatNet-eCSI) to facilitate one-shot learning human activity recognition. [85] proposes
attention based bi-directional long short-term memory (ABLSTM) based on LSTM. WiAct in [86]
designs a novel adaptive activity cutting algorithm (AACA) based on the difference in signal variance
between the action and non-action parts. After that, the magnitude of the conjugate multiplication of
the two-link CFRs is used as the feature for activity recognition, and a three-layer ELM is used for
learning.

E-eyes in [84] use EMD techniques to measure the distribution of measured CSI and profiles to
identify in situ activity. Moving activity is identified using MD-DTW to align CSI measurements with
known activities in the profile. E-eyes can identify 13 daily activities such as eating, cooking, sleeping,
bathing, and washing according to different detection areas. WiFit in [103] and SEARE in [89] are two
exercise monitoring systems that identify an exercise action by its specific impact on CSI and perform
continuous counting and monitoring.

Remarks: Activity recognition research work is summarized in Table 10. Due to the complexity of
human daily activities and the location of occurrence is not fixed, it is difficult to establish an accurate
model to analyze the movements in daily activities. In this case, the data-based approach for machines
to learn the characteristics of different activities and the differences between them has been proven to
be a feasible approach. Besides, compared to pattern recognition algorithms, deep learning can extract
features from data more efficiently. In the future, with the development of deep learning, a large number
of novel deep neural networks will be introduced for the problem of activity recognition that cannot be
modeled.

4.3.4. Other Recognition Applications

In recognition scenarios, in addition to the above three main applications, there is some special but very
meaningful work. These other recognition applications are summarized in Table 11. WiKey in [75, 76]
recognizes keystrokes by placing the keyboard 30 cm from the receiver. WiKey achieves an average
keystroke recognition accuracy of 96.4% for 37 input keys using a DTW-based KNN classifier. WiHear
in [102] utilizes MIMO beamforming technology and directional antennas to locate and focus the mouth
to achieve speech recognition. The system uses Multi-Cluster/Class Feature Selection (MCFS) to extract
features. Finally, generalized least squares and DTW are used to obtain the similarity of the current
signal to the profile for classification.

4.3.5. Summary

Since recognition involves the comparison and learning of different categories of datasets, data-based
methods are widely used in recognition scenarios. For example, common algorithms in pattern
recognition algorithms are SVM [83, 99, 98, 103], KNN [83, 99], HMM [82, 99, 90], DT [97, 99], and
DTW-based KNN or SVM [78, 75, 88, 76, 101]. There are also studies using DTW-based pattern
matching [84, 102, 100, 79, 89, 80], and ELM classifiers [86]. In deep learning, commonly used
algorithms are CNN [40–42, 27, 16, 44], LSTM [85], and the learning architecture combining CNN and
LSTM [43, 45]. Model-based methods in recognition applications are often used to assist in extracting
features for machine learning, so time-frequency domain analysis is often used [97, 102, 94, 40, 98, 100].
Fresnel zone and Doppler models [99, 45, 103] are often used to guide AP deployment or assist in feature
extraction.
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Table 10. Summary of recognition scenarios: Activity recognition.

Reference
Type of

Activity
Standard

Transmis-

sion Rate

Signal

Processing
Method Performance

CARM

[82, 90]
Atomic

Intel 5300

802.11n
2500Hz

PCA, EMA

DWT

Thresholding

HMM

8 Activities

Accuracy:

96%

ReWiS

[27]
Atomic

Nexmon

Tool

802.11ac

100Hz
Normalization

SVD

ProtoNet, FSL

CNN

4 Activities

Accuracy:

98.85%

WiSDAR

[45]
Atomic

Intel 5300

802.11n
500Hz LPF, PCA

Fresnel Zone

STFT, LSTM

Thresholding,

CNN

8 Activities

Accuracy:

96%

FPR 6 10%

[43] Atomic
Intel 5300

802.11n
1000Hz Correlation

EWMA-Recursion

MatNet, CNN

BLSTM

7 Activities

Accuracy:

86.8%/93.4%

(One/Five-Shot)

[85] Atomic
Intel 5300

802.11n
500Hz -

ABLSTM,

ADAM

8 Activities

Accuracy: 96.7%

WiAct

[86]
Atomic

Intel 5300

802.11n
1000Hz

LPF

Median Filter

Sliding

Variance

Thresholding

ELM

10 Activities

Accuracy: 94.2%

E-eyes

[84]
Combined

Intel 5300

802.11n
20Hz

LPF, MCS

Index Filter

EMD, MD-DTW

Pattern

Matching

Non-Profiling

Clustering

13 Activities

Accuracy:

90%/94%

(Single/Multiple

Wi-Fi Device)

WiFit

[103]
Exercise

Intel 5300

802.11n
200Hz -

Doppler Spread

MUSIC, DTW

SVM

3 Activities

Accuracy: 95.8%,

Repetition

Counting: 99%

SEARE

[89]
Exercise

Intel 5300

802.11n
50Hz

LPF, PCA

Median Filter

FoD-FFT,

DTW

Thresholding

4 Activities

Accuracy:

97.8%/91.2%

(LoS/NLoS)

5. OPEN PROBLEMS AND FUTURE DIRECTIONS

With the evolution of communication technology, in the future, massive Machine-Type Communication
(mMTC) scenarios will open up a convenient path for the intelligent IoT in the field of communication,
and the construction of the indoor intelligent environment will also progress with the continuous
development of WLAN. We have introduced the research progress of CSI-based ICAS in various indoor
scenarios, then the notable challenges and possible future development directions are present here.
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Table 11. Summary of recognition scenarios: Other recognition applications.

Reference Application Platform
Transmis-

sion Rate

Signal

Processing
Method Performance

WiKey

[75, 76]

Keystrokes

Recognition

Intel 5300

802.11n
2500Hz

LPF,

PCA, DWT
DTW, KNN

Detection

Rate: 97.5%

Recognition:

96.4%

WiHear

[102]

Speech

Recognition

Intel 5300/

Ettus

USRP N210

802.11n

100Hz BPF, DWT
FFT, MCFS

DTW, SRDA

Accuracy:

91%/74%

(1/3 Person)

5.1. Open Problems

5.1.1. Robustness and Universality

The robustness of an algorithm refers to its anti-noise ability. In the ICAS system, this robustness can
be understood as the sensitivity of the WLAN system to the system and environment configuration or
some special parameters in the algorithm. Most of the work introduced before places the transmitting
and receiving devices in the middle of an clear environment, and some special sensing systems even
require fixed transceiver positions. However, the location of Wi-Fi in home scenarios is uncertain,
and in office scenarios, APs are mostly located on the ceiling. Responsive, dynamic changes in the
environment relative to the location of the transmitter and receiver are also a thorny problem. The
influence of the relative positions of the transmitter, the receiver, and the person is the first problem
that the ICAS system needs to overcome. Secondly, the adaptability of the system in the new unknown
environment and the accurate judgment of the new unknown data category are also crucial. These
challenges determine whether the system can move from the lab to the masses. Finally, the system
needs to be robust to more specific issues such as network configuration, movement speed, and number
of multipaths. The fundamental way to overcome this challenge and guarantee the generalization ability
of the system is to find suitable models, extract the most effective features and use machine learning
algorithms rationally.
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Figure 6. The design of the proposed EfficientFi framework.



70 Shao et al.

5.1.2. Reasonable Coexistence of Communication and Sensing

The CSI-based ICAS system requires Wi-Fi devices to continuously transmit and collect measurement
signals at high frequencies. The overhead incurred can only be borne by the communication performance.
At the same time, these measurement signals will have an effect on other radio devices in the
environment. In order to reduce the overhead caused by the high sampling frequencies of the sensing
function, the DeFall system in [91] adds a pre-judgment module. The module monitors the environment
at a lower sampling frequency (30Hz). When the module detects dynamic changes in the environment,
the system will perform fall detection at a high sampling frequency. Under the premise of maintaining
a high sampling rate (500Hz), the EfficientFi system in [42] performs feature extraction and codebook
compression on the CSI on the Wi-Fi side and then transmits it to the cloud server, as shown in Fig. 6.
The identification takes place in the cloud server, which also reduces communication overhead.

5.2. Future Directions

5.2.1. More thorough and Comprehensive Sensing

At present, the ICAS research is still in the exploratory stage. Although it is regarded as an achievable
vision by 6G and next-generation Wi-Fi, its key technologies, indicators and specific implementation
forms are still incomplete. Therefore, a more thorough and comprehensive study on sensing technology
is definitely the focus of future research work.

First of all, most of the current ICAS technology research is based on single-person scenarios.
However, in complex indoor multi-person scenarios, the system is required to sense multiple objects
simultaneously. Moreover, the mutual interference between different objects is an inevitable problem in
multi-person scenarios. Therefore, the ICAS technologies for single-person scenarios are usually difficult
to be applied to multi-person scenarios directly. Using special signal processing algorithms to separate
multi-person information into single-person information is the method adopted by most of the ICAS
works that consider multi-person scenarios. Such as, the root-MUSIC [105] is used by [64, 93] to estimate
the respiratory rate of multiple people. The influence of different people on the signal is modeled as a
linear superposition of different components in [60] when detecting the simultaneous entry and exit of
multiple people, and ICA [106] is used to separate each component. Through this method, the system
for single-person scenarios can be generalized to multi-person scenarios. However, the accuracy of the
system is also affected by the accuracy of single-person information extraction. In [95], the correlation
matrix of CSI amplitude and phase is used as an auxiliary feature for discrimination to reduce the
activity detection error caused by the multi-person dynamic environment.

Secondly, among the articles surveyed above, there are only a few works [93, 102, 54, 100, 67, 19, 91,
53, 89] that investigate the system performance in NLoS scenarios. But it is very necessary for the
actual environment. At the same time, these works only compare the sensing performance in NLoS
scenarios and do not propose substantive solutions. Based on 802.11ac, an outdoor human detection is
investigated in [107], and then a multi-station method is used to extend to NLoS scenarios [108], with an
accuracy rate of 99.58%. It is well known that the channel bias introduced by NLOS has serious effects
on ToA-based positioning systems. To solve this difficulty, a Bayesian approach is developed in [109],
where the joint distribution of all channel bias values is modeled with a multivariate GMM to account
for the channel correlations. In addition, diffraction-based and reflection-based millimeter-wave radar
sensing systems in NLoS scenarios are respectively studied in [110, 111]. In the future, the ICAS system
can also be developed toward channel model analysis and human sensing solutions in NLoS scenarios.

Last but not least, the human sensing achieved by current ICAS research work is only the first step
in constructing an intelligent environment. To realize the true interconnection of all things in indoor
scenarios, the sensing of all things is an indispensable part. There should be corresponding sensing
solutions for people, objects, or pets. Next, the research on multi-device interconnection and cross-layer
collaboration is also crucial. The research in this paper is mainly aimed at the CSI-based human sensing
technology, and only involves the information of the Wi-Fi physical layer. However, the IoE requires
the use of various available devices and technologies to collect information on any object that needs to
be monitored, connected, and interacted. In the future, the sensing device of ICAS can be extended to
multiple Wi-Fi devices or introduce a variety of different sensors to realize the ICAS. It is also possible
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to improve the entire ICAS system architecture by combining information from the upper layers of the
physical layer [112–114].

5.2.2. Waveform Design for Both Communication and Sensing

The OFDM technology widely used in WLAN and cellular systems are susceptible to severe Doppler
spread. Waveforms are susceptible to inter-carrier interference. Furthermore, OFDM is not as important
in sensing as it is in communication due to its ambiguous autocorrelation and high peak-to-average power
ratio (PAPR) [7]. The ICAS waveform design aims to find a dual-function waveform that takes both
communication and sensing performance into consideration.

In the radar communication system, to solve the hardware pressure caused by the high peak-average
ratio of the traditional OFDM waveform, the CE-OFDM based on OFDM in [115] is a new waveform
with high speed, anti-fading, and constant envelope for the RadCom system. One power minimization-
based robust radar waveform design criteria are proposed in [116]. The radar transmitted power can
be efficiently reduced by exploiting the communication signals scattered off the target at the radar
receiver. In addition, to achieve a favorable performance trade-off between radar and communications,
[117] derives a novel communications metric as a function of both subcarrier powers and forwarded
control information.

Modifying Frequency Modulated Continuous Wave (FMCW) technology, which is commonly used
in high-precision radar ranging, to enable communication has also become a research trend in ICAS
waveform design. FMCW has the characteristics of simple waveform and low PAPR, but cannot
modulate and transmit data. The phased coded FMCW proposed in [118] combines the communication
capabilities of PMCW and the sensing capabilities of FMCW. And PC-FMCW proposed by [119]
combines phase encoding with linear frequency modulation (LFM) continuous wave. And effectively
increase the interference suppression capability of the system. The PARC framework is extended to
FMCW operation in [120] which maximizes both data throughput and energy on target. In addition to
phase encoding, [121, 122] encodes information onto FMCW radar signals by amplitude modulation to
realize the transmission of communication data.

However, since the above designs are implemented by adding sensing or communication capabilities
to OFDM or FMCW, they cannot get rid of the constraints of the original framework. As a result,
these works cannot be well adapted to indoor scenarios with multiple access and high-speed data
transmission requirements, which are the main usage scenarios of ICAS in the future. In recent years, a
novel two-dimensional modulation scheme, the Orthogonal Time-Frequency Space (OTFS) modulation
technique [123], has been regarded as a promising candidate for high-mobility communications. OTFS
modulates information in the delay-Doppler (DD) domain rather than in the time-frequency (TF)
domain of classical OFDM modulation [124]. It applies a 2D inverse symplectic finite Fourier transform
(ISFFT) to the baseband data to transform it into the time-frequency domain and obtains the
transmitted signal through the Heisenberg transform. OTFS modulation can convert a time-varying
channel into a two-dimensional time-invariant channel in the DD domain, then exploit its properties. In
scenarios of high Doppler spread, OTFS can achieve better performance than OFDM [125]. Therefore,
OTFS is a feasible candidate in both sensing and future high-speed mobile communication scenarios.

5.2.3. Mutual Assistance of Communication and Sensing

To achieve a comprehensive integrated design of communication and sensing, communication and
sensing need to be fully integrated in all aspects, such as spectrum resources, hardware equipment,
waveform design, and networking collaboration. Communication and sensing functions are expected to
complement each other for mutual benefit and become endogenous functions of the system.

With the continuous evolution of mobile communications, the deployment of small cells envisioned
in the future Beyond 5G (B5G) and 6G systems offers unprecedented possibilities for ICAS [126]. In
particular, 6G systems consider perception as a key endogenous function. In the future, B5G and 6G
cellular systems will be able to provide ultra-high bandwidth and more abundant spectrum resources,
which provide more possibilities for high-resolution sensing. Besides, with the increase in the density
of cellular systems, future sensing will no longer be limited to indoor scenarios. And technologies such
as beamforming and massive MIMO greatly improve not only the performance of the communication



72 Shao et al.

system but also the sensing range and accuracy. Meanwhile, the combination of higher access numbers
and transmission rates combined with the AI introduced in 6G makes real-time sensing easier. The
introduction of new waveforms, such as the current 5GNR waveform [127], also provides convenience
for implementing ICAS [128].

Conversely, sensing can also assist communication in many ways. In vehicle-to-infrastructure (V2I)
communications, sensing-assisted beam prediction has gradually become a research direction [129–132].
Sensing can also improve user privacy security. [133] proposes to detect and track eavesdroppers and
send jamming signals to the eavesdropper while the user is communicating to improve the secrecy
performance of the communication. Furthermore, a sensing-aided inter-cell interference coordination
(ICIC) technique is proposed in [134] to assist UAV resource block allocation. To avoid the strong
interference problem caused by the UAV’s LoS communication characteristics. At present, most of the
research on sensing-assisted communication is in outdoor scenarios such as vehicle communication and
UAV communication. The gains brought by next-generation WLAN and B5G for indoor sensing, such
as indoor positioning and tracking and trajectory prediction, will provide reliable user information for
communication systems.

6. CONCLUSIONS

A comprehensive survey on the CSI-based ICAS has been provided. First, the sensing techniques using
the CSI of the IEEE 802.11 physical layer are described in detail. Next, the commercial devices and
tools that can be used to collect CSI are presented, and their corresponding protocol standards are also
given. Then, several commonly used physical models and machine learning algorithms are introduced,
and their respective advantages and disadvantages in ICAS applications are analyzed. Moreover, the
progress in various research aspects of CSI-based sensing combined with specific application examples is
reviewed. Finally, the main challenges for future work in ICAS are outlined. We hope that this survey
can help systematize existing ICAS works, inspire future directions, and stimulate wide applications.
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