
Progress In Electromagnetics Research M, Vol. 112, 55–65, 2022

Spatiotemporal Localized Waves and Accelerating Beams
in a Uniformly Moving Dielectric Medium

Ioannis M. Besieris*

Abstract—A study is presented of several types of nondiffracting and slowly diffracting
spatiotemporally localized waves supported by a simple dielectric medium moving uniformly with speed
smaller or larger than the phase speed of light in the rest frame of the medium. The Minkowski material
relations are not independent in the case that the speed of motion equals the phase speed of the medium;
hence, the electric displacement and magnetic induction vectors cannot be uniquely determined from
them. Following, however, a waveguide-theoretic approach, separate equations can be written for the
longitudinal and transverse (with respect to the direction of motion) electromagnetic field intensities.
The fundamental solutions associated with these equations provide a uniform transition between the
cases of ordinary and Čerenkov-Vavilov radiation. The equation satisfied by the longitudinal field
components in the absence of sources is examined in detail. In the temporal frequency domain one has an
exact parabolic equation which supports accelerating beam solutions. The space-time equation supports
several types of nondiffracting and slowly diffracting spatiotemporally localized waves. Comparisons are
also made with the acoustic pressure equation in the presence of a uniform flow.

1. INTRODUCTION

Within the framework of the Minkowski [1] formulation of electrodynamics of uniformly moving media
one considers Maxwell’s equations

∇× E⃗ (r⃗, t) = − ∂

∂t
B⃗ (r⃗, t) ,

∇× H⃗ (r⃗, t) =
∂

∂t
D⃗ (r⃗, t) + J⃗ (r⃗, t) ,

∇ · D⃗ (r⃗, t) = ρ (r⃗, t) ,

∇ · B⃗ (r⃗, t) = 0,

(1)

together with the constitutive relations

D⃗ +
1

c2
v⃗ × H⃗ = ε′

(
E⃗ + v⃗ × B⃗

)
,

B⃗ − 1

c2
v⃗ × E⃗ = µ′

(
H⃗ − v⃗ × D⃗

)
.

(2)

Here, ρ and J⃗ denote, respectively, the externally applied electric charge and current volume density
distributions; ε′ and µ′ are the permittivity and permeability of the medium in its rest frame; v⃗ is the
uniform velocity of the moving frame; and c is the speed of light in vacuo.
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For convenience, the velocity of the medium is taken along the positive z-direction, i.e., v⃗ = va⃗z.
(This restriction does not detract from the generality of the problem because a coordinate transformation
of the final solution can be used to treat the more general case.) If this is borne in mind, the constitutive
relations in the laboratory frame are found to be [2]

D⃗ = ε′ā · E⃗ + Ω⃗× H⃗,

B⃗ = −Ω⃗× E⃗ + µ′ā · H⃗,
(3)

accompanied by the following definitions:

ā = aĪt + a⃗za⃗z; Īt = a⃗xa⃗x + a⃗ya⃗y,

a =
(
1− β2

)
/
(
1− n2β2

)
, Ω⃗ = Ωa⃗z;

Ω = β
(
n2 − 1

)
/c
(
1− n2β2

)
; β = v/c,

n = c/v0; v0 (phase velocity) = 1/
√

ε′µ′.

(4)

Here, ā is a uniaxially anisotropic dyadic; Īt is the transverse (with respect to z) idemfactor; and the
parameters a and Ω depend on β, the ratio of the velocity of the medium and the speed of light in
vacuo, and the index of refraction n, i.e., the ratio of the speed of light in vacuo and the phase velocity
of light in the rest frame of the medium.

The constitutive relations in Eq. (3) indicate that the ‘effective medium” in the laboratory frame

is magnetoelectric in the sense that D⃗ and B⃗ depend on both E⃗ and H⃗. This is an induced anisotropy,
however, arising from the motion and should be contrasted to the natural magnetoelectricity exhibited
by several materials, even in the absence of motion.

Substituting the constitutive relations given in Eq. (3) into Maxwell’s equations [cf. Eq. (1)], one
obtains a definite form of the Maxwell-Minkowski equations which are written in the following convenient
form:

D⃗0 × E⃗ + (∂/∂t)µ′ā · H⃗ = 0,

D⃗0 × H⃗ − (∂/∂t) ε′ā · E⃗ = J⃗ ,

D⃗0 ·
(
ε′ā · E⃗

)
= ρ+ Ω⃗ · J⃗ ,

D⃗0 ·
(
µ′ā · H⃗

)
= 0.

(5)

D⃗0 stands for the differential operator ∇− Ω⃗(∂/∂t).

It is convenient at this stage to express the electromagnetic fields E⃗ and H⃗ in terms of the scalar

potential Φ and vector potential A⃗ as follows: E⃗ = −∂A⃗/∂t − D⃗0Φ and µ′ā · H⃗ = D⃗0 × A⃗. Using,

then, the operator D⃗a = (1/a)ā · D⃗0 and the definition A⃗0 = ā · A⃗, the “extended” Lorentz gauge

D⃗0 · A⃗0 + (a/v20)(∂Φ/∂t) = 0 yields the following uncoupled equations for the potential functions:[
D⃗a · D⃗0 −

(
a/v20

) (
∂2/∂t2

)]
Φ = −

(
ρ+ Ω⃗ · J⃗

)
/
(
aε′
)
,[

D⃗a · D⃗0 −
(
a/v20

) (
∂2/∂t2

)]
A⃗0 = −µ′aJ⃗.

(6)

These equations and the corresponding electromagnetic fields have been examined extensively in
the literature (see, e.g., [2, 3]). For 0 < v < v0, both a and Ω are positive, and one has ordinary
radiation. The support of the Green’s function corresponding to a unit source located at the origin at
some initial time, say t = 0, consists of an expanding wavefront which is an oblate spheroid with respect
to the z-axis. The center of the wavefront moves away from the origin with a constant velocity which
is smaller than the velocity of light in the medium. This shell always encloses the source point, i.e., the
source radiates in all directions. For v > v0, both a and Ω are negative. Although the basic equations
satisfied by the fields remain hyperbolic, a change occurs in the space-time signature, resulting in a new
type of radiation known as the Čerenkov-Vavilov radiation. In this case, the entire wavefront, which
is still an oblate spheroid, is “dragged” away from the source point. The point source is outside the
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shell, and the shell is at all times tangent to a circular cone of interior half-angle θ specified by the
relationship cos θ = [(n2β2 − 1)/β2(n2 − 1)]1/2. An observer outside the cone does not experience any
radiation effects. On the other hand, someone located within the conical region detects, in general, two
discontinuities caused first by one side of the expanding and moving wavefront, and then the other.

It is our specific intent in this article to present a detailed study of spatiotemporally localized waves
in a simple dielectric medium moving uniformly with speeds v < v0, v > v0 and v = v0, where v0 is the
speed of light in the medium at rest.

Luminal, or focus wave modes (FWM), superluminal, or X waves (XWs), and subluminal
spatiotemporally localized solutions to various hyperbolic equations governing acoustic, electromagnetic
and quantum wave phenomena have been studied intensively during the past few years (see [4–
17] for pertinent literature). Further details can be found in two recent edited monographs on
the subject [18, 19]. In general, both linear and nonlinear LW pulses exhibit distinct advantages
in comparison to conventional quasi-monochromatic signals. Their spatiotemporal confinement and
extended field depths render them especially useful in diverse physical applications.

2. SPATIOTEMPORALLY LOCALIZED WAVES I. v < v0

Consider the expanded form of the equation for the scalar potential Φ in the absence of sources;
specifically, [

∇2
t +

1

a

∂2

∂z2
− 2

Ω

a

∂2

∂z∂t
−
(

a

v20
− Ω2

a

)
∂2

∂t2

]
Φ(r⃗, t) = 0. (7)

It will be convenient to introduce the new wave function ϕ(r⃗, t) = Φ(r⃗, τ); τ = t+Ωz. The latter obeys
the simpler equation (

a∇2
t +

∂2

∂z2
− 1

v2ph

∂2

∂τ2

)
ϕ (r⃗, τ) = 0; vph =

v0
|a|

. (8)

If the speed of motion of the medium v is smaller from the phase velocity v0 of the light in the medium
at rest, it follows from Eq. (4) that a is positive. Eq. (8), then, corresponds to that associated with
a uniaxially anisotropic medium. Three types of nondiffracting, spatiotemporally localized waves are
associated with this equation.

The simplest “superluminal” localized wave is the X wave [8] given below:

ϕ (r⃗, τ) =

[
1

a
ρ2 + (a1 + iγsξ)

2

]−1/2

; ρ =
√
x2 + y2,

ξ = z − V τ, γs =
[
(V/vph)

2 − 1
]−1/2

; V > vph.

(9)

The effective group velocity is defined as the speed at which the complex envelope travels. It can be
determined by using the definition of the variable τ .

z − V τ = z − V (t+Ωz) = (1− V Ω)

(
z − V

1− V Ω
t

)
. (10)

Thus,

V eff
gr =

V

1− V Ω
=

V

1 +
vV

c2
c2 − v20
v2 − v20

. (11)

This velocity can range from −∞ to +∞. For a normalized speed c = 1 and with v0 = 2/3, v = 1/3,
the phase speed vph equals 9/16. The effective group speed approaches the minimum positive speed

9/11 as V → vph = 9/16 from above, V eff
gr → ∞ as V → 9/5 from below, V eff

gr → −∞ as V → 9/5 from
above, and tends to zero as V → ∞. It should be noted that if the medium in the stationary frame is

vacuum (free space), a = 1, Ω = 0, vph = v0 = c. Then, V eff
gr = V > c.
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An elementary “subluminal” nondiffracting localized wave is the MacKinnon wavepacket (cf. [11]
and references therein)

ϕ (r⃗, τ) = exp

[
−ikγb

V

vph

(
z −

v2ph
V

τ

)]
sin
[
k
√

ρ2/a+ γ2b ξ
2
]

√
ρ2/a+ γ2b ξ

2
;

ξ = z − V τ, γb =
[
1− (V/vph)

2
]−1/2

; V < vph,

(12)

where k is a positive parameter. The effective group velocity V eff
gr of the wavepacket is the same as that

in Eq. (11), with the difference that the velocity V must be smaller from the phase velocity vph. For

positive values of V, V eff
gr ranges from zero to a maximum positive value as V → vph from below. For

a normalized speed c = 1 and with v0 = 2/3, v = 1/3, the phase speed vph equals 9/16. The effective
group speed approaches the maximum positive speed 9/11 as V → vph = 9/16 from below, and becomes
zero for V = 0. It should be noted that if the medium in the stationary frame is vacuum (free space),

a = 1, Ω = 0, vph = v0 = c. Then, V eff
gr = V < c.

In addition to the “subluminal” group velocity of the envelope, the MacKinnon wavepacket has a
“superluminal” effective phase velocity. This is the speed appearing in the exponential term multiplying
the complex envelope. It is determined by using the definition of the variable τ .

z −
v2ph
V

τ = z −
v2ph
V

(t+Ωz) =

(
1− Ω

v2ph
V

)z − t

(
V

v2ph
− Ω

)−1
 . (13)

Thus,

V eff
ph =

(
V

v2ph
− Ω

)−1

=

(
V

v2ph
+

v

c2
c2 − v20
v2 − v20

)−1

. (14)

For a normalized speed c = 1 and with v0 = 2/3, v = 1/3, the phase speed vph equals 9/16. For positive
values of V , the effective phase speed has negative values and tends to −∞ as V → 45/256 from below.

V eff
ph → +∞ as V → 45/256 from above and becomes zero as V → vph = 9/16 from below. It should be

noted that if the medium in the stationary frame is vacuum (free space), a = 1, Ω = 0, vph = v0 = c.

Then, V eff
ph = c2/V > c.

The simplest “luminal” localized wave is the focus wave mode [4]

ϕ (r⃗, τ) =
1

a1 + i (z − vphτ)
eiβ(z+vphτ) exp

[
−β

a

ρ2

a1 + i (z − vphτ)

]
, (15)

where a1 and β are positive free parameters. The effective group speed of the envelope and the effective
phase are determined as follows:

z ∓ vphτ = z ∓ vph (t+Ωz) = (1∓ Ωvph)

(
z ∓

vph
1∓ Ωvph

t

)
. (16)

Thus,

V eff
gr =

vph

1−
vvph
c2

c2 − v20
v20 − v2

, V eff
ph =

vph

1 +
vvph
c2

c2 − v20
v20 − v2

. (17)

It is clear that V eff
ph is positive and smaller than vph. For a normalized speed c = 1 and with v0 = 2/3,

v = 1/3, the phase speed vph equals 9/16. In this case, V eff
ph = 3/7 < vph and V eff

gr = 9/11 > vph. If the

medium in the stationary frame is vacuum (free space), a = 1, Ω = 0, vph = v0 = c. Then, V eff
ph = −c

and V eff
gr = c.
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3. SPATIOTEMPORALLY LOCALIZED WAVES II. v > v0

It follows from Eq. (4) that a < 0 if the speed of motion v is smaller than the speed of light in vacuum
but v > v0. Under these conditions, the character of the equation governing the wave function in
Eq. (18) changes since the transverse variables become time-like, and it is given by(

−ā∇2
t +

∂2

∂z2
− 1

v2ph

∂2

∂τ2

)
ϕ (r⃗, τ) = 0; vph =

v0
|a|

, ā = |a| . (18)

The simplest localized wave X wave to this equation assumes the form

ϕ (r⃗, τ) =

[
1

ā
ρ2 + (a1 + iγbξ)

2

]−1/2

,

ξ = z − V τ, γb =
[
1− (V/vph)

2
]−1/2

; V < vph.

(19)

The effective group velocity of the wavepacket is given by

V eff
gr =

V

1− V Ω
=

V

1 +
vV

c2
c2 − v20
v2 − v20

. (20)

It is clear from this expression that V eff
gr < V < vph.

A MacKinnon wavepacket solution to Eq. (18) is given by

ϕ (ρ, z, τ) = exp

[
−ik

V

vph
γs

(
z −

v2ph
V

τ

)]
sin
[
k
√

ρ2/ā+ γ2sξ
2
]

√
ρ2/ā+ γ2sξ

2
;

ξ = z − V τ, γs =
[
(V/vph)

2 − 1
]−1/2

; V > vph.

(21)

The form is identical to that in Eq. (12), except that γb is replaced by γs with V > vph. The effective
group velocity of the wavepacket is given by

V eff
gr =

V

1− V Ω
=

V

1 +
vV

c2
c2 − v20
v2 − v20

. (22)

It follows, then, that V eff
gr < V > vph. On the other hand, the effective phase speed is given by

veffph =
v2ph/V

1 +
v2ph
V c

c2 − v20
v2 − v20

. (23)

It follows from this expression that V eff
ph < v2ph/V > vph.

A simple “luminal” localized wave to Eq. (18) is the FWM

ϕ (r⃗, τ) =
1

a1 − i (z − vphτ)
eiβ(z+vphτ) exp

[
−β

ā

ρ2

a1 − i (z − vphτ)

]
. (24)

The only difference from the expression in Eq. (15) is a complex conjugation in the term a1+i(z − vphτ).
The effective group and phase speeds are given by

V eff
gr =

vph

1 +
vvph
c2

c2 − v20
v2 − v20

, V eff
ph =

vph

1−
vvph
c2

c2 − v20
v2 − v20

. (25)

The effective group speed is positive and smaller than the phase speed vph. On the other hand, the
effective phase speed assumes negative values. For a normalized speed c = 1 and v0 = 1/3, v = 2/3, the

phase speed vph equals 9/5. In this case, V eff
ph = −9/11 and V eff

gr = 3/7 < vph.
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4. SPATIOTEMPORALLY LOCALIZED WAVES III. v = v0

4.1. Waveguide-Theoretic Approach: Equations for the Longitudinal and Transverse
Fields

The conventional Minkowski formalism cannot be used in this case because of inherent singularities;
specifically, both a and Ω become unbounded as v → v0. As a consequence, the material equations (3)

are not independent and cannot be used to determine D⃗ and B⃗ uniquely in terms of E⃗ and H⃗. This
means, in turn, that in contradistinction to the sublumimal (v < v0) and superluminal (v > v0) cases,
one is unable in this situation to obtain separate differential equations for the electromagnetic field

intensities E⃗ and H⃗. Following, however, a waveguide-theory approach, separate equations can be
derived for the longitudinal and transverse (with respect to the direction of motion) electromagnetic
field intensities. This possibility has been pointed out by Sen Gupta [20].

Owing to the uniaxial anisotropy of space induced by the motion of the medium, it will be useful
to separate the variables and operators in Maxwell’s equations (1) into their axial and transverse parts
according to the conventional waveguide-theory approach [21]. The following identities will be used:

∇× F⃗ = ∇t × F⃗t − a⃗z ×∇tFz + a⃗z ×
∂

∂z
F⃗t,

∇ · F⃗ = ∇t · F⃗t +
∂

∂z
Fz.

(26)

The subscripts “z” and “t” indicate the axial and transverse directions. The first two equations in (1)
will now be written in a separate form as follows:

− a⃗z ×∇tEz + a⃗z ×
∂

∂z
E⃗t = − ∂

∂t
B⃗t,

∇t × E⃗t = −a⃗z
∂

∂t
Bz,

− a⃗z ×∇tHz + a⃗z ×
∂

∂z
H⃗t =

∂

∂t
D⃗t + J⃗t,

∇t × H⃗t = a⃗z
∂

∂t
Dz + a⃗zJz.

(27)

(The separate equations for the divergence equations in (1) are not included in this list because they
will play no role at all in the case v = v0). The constitutive relations (2) similarly yield

D⃗t − ε′va⃗z × B⃗t = ε′E⃗t −
1

c2
va⃗z × H⃗t,

Dz = ε′Ez,

B⃗t + µ′va⃗z × D⃗t = µ′H⃗t +
1

c2
va⃗z × E⃗t,

Bz = µ′Hz.

(28)

Also, as a direct consequence of the condition v = v0, one has the relations

a⃗z × E⃗ = −βµ′ca⃗z ×
(
a⃗z × H⃗

)
,

a⃗z × H⃗ = βε′ca⃗z ×
(
a⃗z × E⃗

)
,

(29)

or, equivalently,

a⃗z × E⃗t = −βµ′cH⃗t,

a⃗z × H⃗t = −βε′cE⃗t.
(30)

According to Eqs. (28) and (29), E⃗ and H⃗, as well as E⃗t and H⃗t, are always orthogonal to each other
in the case of the “transition” radiation (v = v0).
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The separated forms of Maxwell’s equations and the constitutive relations can now be used to

obtain the following equations for the longitudinal fields Ez,Hz and the transverse fields E⃗t, H⃗t:(
∇2

t −
2

v0

∂2

∂t∂z
− 1 + β2

v20

∂2

∂t2

)
Ez = µ′v0

(
∇ · J⃗ +

∂Jz
∂z

+
1 + β2

v20

∂Jz
∂t

)
,(

∇2
t −

2

v0

∂2

∂t∂z
− 1 + β2

v20

∂2

∂t2

)
Hz = ∇ ·

(
a⃗z × J⃗

)
,(

2
∂

∂z
+

1 + β2

v0

∂

∂t

)
E⃗t =

(
−βcε′

)−1
(
J⃗t + a⃗z ×∇tHz − ε′v0∇tEz

)
,(

2
∂

∂z
+

1 + β2

v0

∂

∂t

)
H⃗t =

(
βcµ′)−1

(
−µ′v0a⃗z × J⃗t + a⃗z ×∇tEz + µ′v0∇tHz

)
.

(31)

The equations for the transverse electromagnetic field intensities are first order in both space and time.
Therefore, with knowledge of the axial components [obtained by integrating the first two equations
in (31)] and the current density distribution, they are reduced to quadratures.

4.2. The Time-Dependent Green’s Function for the Longitudinal Fields

On the basis of the findings in the previous section one need only investigate the equations for the
longitudinal fields Ez and Hz. The causal time-dependent fundamental solution, denoted by G(r⃗, t),
associated with these fields is defined as follows:(

∇2
t −

2

v0

∂2

∂t∂z
− 1 + β2

v20

∂2

∂t2

)
G (r⃗, t) = δ (r⃗) δ (t) , t ≥ 0,

G (r⃗, t) = 0, t < 0.

(32)

(By virtue of the space-time translational invariance of Eq. (32), the Green’s function G(r⃗, t/r⃗′, t′)
corresponding to the source δ(r⃗ − r⃗′)δ(t− t′) is given by G(r⃗, t/r⃗′, t′) = G(r⃗ − r⃗′, t− t′), t ≥ t′, with
G(r⃗, t/r⃗, t′) = 0, t < 0 in order to satisfy causality).

Equation (32) can be brought into a canonical form by means of the Galilean-type transformation

ξ =
v0t√
1 + β2

, ς =
√

1 + β2

(
z − v0t

1 + β2

)
. (33)

In the process of this transformation the source term in Eq. (32) must be multiplied by the inverse of
the determinant of the Jacobian of the transformation (33), which in this case equals v0. Therefore,(

∇2
t +

∂2

∂ς2
− ∂2

∂ξ2

)
G
(
R⃗, ξ

)
= v0δ

(
R⃗
)
δ (ξ) ; R⃗ = xa⃗x + ya⃗y + ςa⃗z. (34)

The solution to this equation is well known:

G
(
R⃗, ξ

)
= − v0

4πR
δ (R− ξ) ; R =

∣∣∣R⃗∣∣∣ . (35)

In terms of the original variables one has

G (r⃗, t) = − 1

4π

√
1 + β2

[
x2 + y2 +

(
1 + β2

)(
z − v0t

1 + β2

)2
]−1/2

×δ

(
t−

√
1 + β2

v0

[
x2 + y2 +

(
1 + β2

)(
z − v0t

1 + β2

)2
])

. (36)

The fundamental solution (36) can be interpreted as an expanding wavefront that arrives at R = ut;

u = v0(1 + β2)−1/2 diminished by the geometrical factor 1/R. R can be taken as the radial distance from
the point

{
0, 0, t/(1 + β2)

}
and the observation point r⃗(x, y, z), with a scaling of the z-axis dimension by

the factor
√

1 + β2 due to the Lorentz contraction. The equation obeyed by the wavefront is determined
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by setting the argument of the Dirac delta function to zero; thus, R = ut. For constant values of t the
wavefront is an oblate spheroid with semiaxes ut, ut, ut(1 + β2)−1/2 along the directions of the x, y, and
z axes, respectively. The wavefront center moves along the z-direction at the speed v0/(1 + β2) which
is seen to be smaller than v0 and, hence, v. It is important to note in this case that the z-direction
semiaxis is equal to the distance of the center of the shell from the position of the source. This means
that the wavefront is always tangent to the x-y plane at the source point.

4.3. Accelerating Monochromatic Beam

Consider, for simplicity, the (2 + 1)D version of the homogeneous (in the absence of sources)
equation (32), viz., (

∂2

∂x2
− 2

v0

∂2

∂t∂z
− 1 + β2

v20

∂2

∂t2

)
u (x, z, t) = 0. (37)

The ansatz

f (x, z, t) = g(x, z) exp

[
iω

1 + β2

2v0

(
z − 2v0

1 + β2
t

)]
(38)

gives rise to the equation (
i
ω

v0

∂

∂z
+

1

2

∂2

∂x2

)
g (x, z) = 0. (39)

This is an exact parabolic equation in contradistinction to the paraxial approximation of the Helmholtz
equation associated with the temporal Fourier transform of the ordinary scalar wave equation. In
addition to the well-known beam solutions of the usual paraxial equation, Eq. (18) has the following
“accelerating” one [22, 23]:

g (x, z) = exp

[
− 1

12
(2a+ iz)

(
2a2 − i4az + z2 − 6x

√
ω/v0

)]
Ai

(
x
√

ω/v0 −
z2

4
+ iaz

)
. (40)

Here, Ai(·) denotes the Airy function, and the positive parameter a ensures finite energy for the
monochromatic solution. The beam follows a parabolic trajectory upon propagation. Finite-energy
broadband solutions can be obtained by using the solution (40) together with the ansatz (38) and
undertaking appropriate superpositions with respect to the frequency ω (see, e.g., Ref. [24]).

4.4. Nondiffracting Spatiotemporally Localized Waves

Consider, next, Eq. (34) in the absence of sources, viz.,(
∇2

t +
∂2

∂ς2
− ∂2

∂ξ2

)
f (x, y, ς, ξ) = 0, (41)

with the variables ς and ξ defined in Eq. (33). This expression has the form of a scalar wave
equation, which is known to have a variety of nondiffracting localized wave solutions (see collective
monographs [18, 19]. One such solution is the focus wave mode (FWM)

f (x, y, ς, ξ) =
1

a+ i (ς − ξ)
exp [ib (ς + ξ)] exp

[
−b

x2 + y2

a+ i (ς − ξ)

]
, (42)

where a and b are positive free parameters. Written in terms of the original variables, (42) becomes

f (x, y, z, t) =
exp

(
ib
√

1 + β2z
)

a+ i

(√
1 + β2

(
z − 2v0

1 + β2
t

)) exp

−b
x2 + y2

a+ i

(√
1 + β2

(
z − 2v0

1 + β2
t

))
 . (43)

In contradistinction to the FWM solution of the ordinary scalar wave equation, which is bidirectional
— it involves the terms z ± v0t, this is an infinite-energy unidirectional nondiffracting localized wave
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solution. Superposition over the free parameter b can result in finite-energy wavepackets. On such
solution is a variation of the splash wave mode [11]; specifically,

f (x, y, z, t) =
1

a1 + i

(√
1 + β2

(
z − 2v0

1 + β2
t

))

×

a2 − i
√

1 + β2z +
x2 + y2

a1 + i

(√
1 + β2

(
z − 2v0

1 + β2
t

))

−q

. (44)

Here, a1,2 and q are positive parameters. The solution is confined both transversely and longitudinally
(in time). As it propagates along the z-direction with speed 2v0/(1 + β2), it sustains distortion; the
latter can be moderated by choosing the condition a2 ≫ a1.

Another nondiffracting localized solution to Eq. (41) is the infinite-energy unidirectional X wave

f(x, y, ς, ξ) =
1√

x2 + y2 + [a+ iγ(ς − λξ]2
; γ =

1√
λ2 − 1

, λ > 1, (45)

with a > 0. Written in terms of the original variables, one has

f (x, y, z, t) =
1√

x2 + y2 +

[
a+ iγ

√
1 + β2

(
z − (1 + λ) v0

1 + β2
t

)] 2 . (46)

4.5. Comparisons with the Convective Equation in Acoustics

The equation of acoustic pressure under conditions of uniform flow is given as follows:[
∇2 − 1

u20

(
∂

∂t
+ u⃗ · ∇

)2
]
p (r⃗, t) = 0. (47)

Here, u0 is the speed of sound in the rest frame of the medium, and u⃗ is the uniform velocity of the
background flow. In the special case where u⃗ = ua⃗z and u = u0 the resulting equation for the acoustic
pressure is isomorphic to the equation for the longitudinal components Ez and Hz in the absence of
sources [see Eq. (31)].

Under the assumption that u⃗ = ua⃗z Eq. (47) has several exact analytical infinite-energy
nondiffracting and finite-energy slowly nondiffracting spatiotemporally localized wave solutions. One
such solution is the finite-energy splash mode

p (ρ, Z+, Z−) =
1

a1 + iΓ (1− u/u0)Z+

(
a2 − iΓ (1 + u/u0)Z− +

ρ2

a1 + iΓ (1− u/u0)Z+

)−q

;

Z± = z − (u0 ∓ u)t, Γ = 1/

√
1− (u/u0)

2, ρ =
√

x2 + y2.

(48)

Here, a1,2 are positive parameters. This solution is valid for u < u0.
An X-shaped infinite-energy nondiffracting solution is given

p (ρ, z, t) =
1√√√√√ρ2 +

(a± i (z − V t))2(
u− V

u0

)2

− 1

, (49)

with the condition (u− V )2 > u20. If the speeds u and V are assumed to be positive, this means that
the wavepacket moves along the z-direction with a speed V which is smaller from the flow speed u, and
the difference u− V is larger from the speed of sound u0 in the rest frame of the medium.
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5. CONCLUDING REMARKS

A detailed study has been undertaken of spatiotemporally localized waves in a simple dielectric medium
moving uniformly with speeds v < v0, v > v0, and v = v0, where v0 is the speed of light in the medium
at rest. A uniform transition has been provided between the cases of ordinary and Čerenkov-Vavilov
radiation. As v → v−0 , the omnidirectional radiation in the former case is concentrated in the region

z ≥ 0, whereas, as v → v+0 , Čerenkov-Vavilov radiation takes place in a conical region with half-angle
equal to π/2. The equation satisfied by the longitudinal components in the absence of sources has
been examined in detail. In the temporal frequency domain the latter becomes an exact parabolic
equation which supports accelerating beam solutions. The space-time equation supports several types
of nondiffracting and slowly diffracting spatiotemporally localized waves. Comparisons have also made
with the acoustic pressure equation in the presence of a uniform flow.
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