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Abstract—We demonstrate the recovery of simple geometric and permittivity information of breast
models in an experimental microwave breast imaging system using a synthetically trained machine
learning workflow. The recovered information consists of simple models of adipose and fibroglandular
regions. The machine learning model is trained on a labelled synthetic dataset constructed over a range
of possible adipose and fibroglandular regions and the trained neural network predicts the geometry and
average permittivty of the adipose and fibroglandular regions from calibrated experimental data. The
proposed workflow is tested on two different experimental models of the human breast. The first model
is comprised of two simple, symmetric phantoms representing the adipose and fibroglandular regions of
the breast that match the model used to train the neural network. The second, more realistic model
replaces the symmetric fibroglandular phantom with an irregularly shaped, MRI-derived fibroglandular
phantom. We demonstrate the ability of the machine learning workflow to accurately recover geometry
and complex valued average permittivity of the fibroglandular region for the simple case, and to predict
a symmetric convex hull that is a reasonable approximation to the proportions of the MRI-derived
fibroglandular phantom.

1. INTRODUCTION

Microwave imaging of the human breast continues to be investigated as a technology that may be used for
the detection of breast cancer and for monitoring tumor response to treatment. Ongoing research in the
inverse scattering and microwave imaging communities has shown that the reconstruction of models of
the human breast can provide information on the structure and material properties of breast tissue both
synthetically and experimentally [1, 2]. Microwave imaging technologies do not generate high resolution
images like those obtained from x-ray or computed tomography (CT), but by using microwaves rather
than x-rays, the technology is beneficial as it relies on non-ionizing radiation and may have utility as
a lower-cost screening tool [3]. An effective screening tool would provide information to characterize
different tissue regions within the breast based on location, geometry, and physical properties of the
tissue. In the case of electromagnetic imaging, the complex-valued permittivity, ε, of the tissue is of
interest, as different tissue types (adipose, fibroglandular, and tumor) can be differentiated by their
permittivities at microwave frequencies [4].

Historically, inversion of the data collected using a microwave imaging system has been
accomplished using iterative optimization algorithms such as the Contrast Source Inversion method
(CSI) [5, 6] or Gauss Newton Inversion [7–9]. Having accurate prior information about the region of
interest can greatly improve the quality of reconstructions obtained using such inversion algorithms [10–
13]. In the case of CSI, this prior information serves as the background for full-phase inversion, reducing
the non-linearity of the inverse problem and improving the quality of the result [12, 14].
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In recent years, significant attention has been paid to applying machine learning for enabling,
assisting, and improving electromagnetic imaging. Machine learning approaches include obtaining
prior information from the data [15], improving conventional microwave imaging results with neural
networks [16–18], and data-to-image reconstructions with assumed prior information [19]. In cases
where the output of the machine learning model is an image, most experimental results are 2D, and
benefit from initial early iterations of imaging algorithms [17, 20]. 3D inversion results are discussed
in [21, 18, 19]. Regardless of the method of inversion (iterative optimization or machine learning),
acquiring the prior information in some form is a beneficial step for successful image reconstruction.
It is also possible to consider the addition of accurate prior information about the target as a way of
reaching the correct Riemann sheet for the phase of the recovered scattered field [9]. However it is viewed,
the addition of this information improves the inversion results. This benefit is not limited to biomedical
applications [22] but extends to other application areas including agricultural [23], remote sensing [24],
and geophysical imaging [25], where machine learning has also been widely applied [16, 26, 27]. While
the present work focuses specifically on machine learning applied to our microwave breast imaging
system [2, 28], the reader is referred to [29–31] for additional review material covering a wider range of
applications.

Our recent efforts have been focused on exploring the various potential applications of machine
learning for 3D image reconstruction of data from electromagnetic imaging systems. We have applied
these techniques to both stored grain monitoring [15, 19], and microwave breast imaging [32, 33] and
have demonstrated that machine-learning-assisted parametric inversion can be an efficient way to obtain
prior information about the region of interest. This approach has been successfully used to calibrate
experimental data to a computational model for full phase inversion.

In this paper we focus on extracting parametric prior information from relatively simple 3D
experimental breast phantoms using a fully connected neural network, but consider the specific case
where the physical tissues do not match our simple model well. This work is an extension of [33] which
focused primarily on synthetic tests. Here we expand upon previous synthetic tests by performing
parametric inversion on synthetic data where the geometry of the phantom is not modeled by the
synthetic training data. We use a synthetically trained neural network to perform a phaseless parametric
inversion on calibrated experimental data that predicts a set of parameters describing the fibroglandular
region of the breast.

2. THE EXPERIMENTAL BREAST MICROWAVE IMAGING SYSTEM

The experimental system adopted for this work, shown in Figure 1, is a faceted, 24-transceiver imaging
system designed for tumor monitoring and detection in the human breast [28]. The chamber has metal
walls (facets) with an open-air top, creating a quasi-resonant, air-filled chamber for imaging. The
transceivers (magnetic field probes), are arranged along the interior of the chamber walls, perpendicular
to the flat surface of the facets. The opening at the top of the chamber is 22 cm in diameter, and we
assume that the position of the breast can be fixed within the chamber to a known location prior to
imaging.

2.1. Experimental Breast Model

In this work we consider two different models of the human breast. The first model, the simpler of the
two, consists of two 3D-printed symmetric cups, one larger cup to represent the adipose tissue and a
second smaller cup to represent the fibroglandular tissue. The smaller cup is placed within the larger
cup inside the chamber, shown in Figure 2. When taking a measurement, the larger cup is filled with
canola oil (ε = 3 − 0.6j) to represent an approximate value of the permittivity of adipose tissue over
the range of frequencies measured [18], while the smaller cup is filled with a mixture of water and
glycerin with a measured permittivity of ε = 20 − 12j representing fibroglandular tissue. The second
model is a 3D-printed realistic geometry fibroglandular phantom that was created from MRI data [34].
This MRI-derived fibroglandular phantom can be placed inside the large symmetric cup in place of the
smaller symmetric cup for data collection. These breast models are simplified representations of the
human breast, but are suitable for evaluating parametric prior information recovery.
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Figure 1. Empty faceted chamber with an open-top and a clear plastic holder used to fix the position
of the phantoms.

2.2. Experimental Data Collection

During experimental measurements, the fluid-filled breast phantoms are placed within the faceted
chamber at a known, fixed position in the center of the chamber. The phantoms are held in place
with a clear plastic holder, which is omitted from synthetic models of the system for simplicity. The
experimental data is collected with the top of the chamber open to the air, the consequence of this is
that unlike in a clinical setting, there is no boundary equivalent to the chest wall of the patient. To
align with the experimental setup, the computational model of the system is designed such that the top
of the chamber is open, as described in Section 3.1.

The field probes are designed to measure the ϕ-component of the magnetic fields, Hϕ, tangent to
the chamber wall [28] and are connected to a vector network analyzer (VNA) through coaxial cables. A
24-port VNA was used to collect the experimental data used in this work. Measurements consist of the
data from each transmitter, i = 1 . . . 24, measured at each receiver, j = 1 . . . 24, at a single frequency,
resulting in a 24× 24 matrix of S-parameters which we refer to as an S-matrix.

3. SYSTEM MODEL AND CALIBRATION

3.1. Synthetic Model

Complementary to the experimental system, a synthetic model of the setup is created, such that
computational forward solvers can be used to generate synthetic data representative of the faceted
chamber with the model of the human breast [35, 36]. This synthetic model represents the chamber
walls as a perfect electric conductor (PEC), and models a dome top above the chamber opening with
an absorbing boundary condition. To reduce the size of the computations for the forward problem, the
dome top is placed in relatively close proximity to the chamber opening (Figure 3), which may reduce
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Figure 2. Top row: (a) Photo of the experimental setup and (b) computational render of the chamber
with symmetric fibroglandular phantom. Bottom row: (c) Photo of the experimental setup and (d)
computational render of the chamber with the 3D-printed MRI-derived fibroglandular phantom. The
larger blue symmetric region in both photos and renders represents adipose tissue, and the smaller grey
(photos) and purple (renders) regions represent fibroglandular tissue.

the accuracy of the simulation. As with the experimental setup, the breast phantoms are centered in
the chamber in the synthetic model.

A Discontinuous Galerkin Method forward solver [36] was used to generate the synthetic data
based on the model of the experimental setup. The chamber transceivers are modeled as point sources,
centered on the corresponding flat facet, 7mm above the inner face. As noted previously, the synthetic
model of the system omits the clear plastic holder, as well as switch and cable losses, which are accounted
for during calibration of the experimental data to the synthetic model.

We define the synthetic data equivalent of the experimental S-matrix as the H-matrix. Each
element in theH-matrix represents the ϕ-component of the model magnetic field intensity corresponding
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Figure 3. (a) 3D model of the experimental system, with symmetric adipose (light blue) and
fibroglandular (purple) phantoms. The PEC surface of the faceted chamber is shown in blue, and
the open-top dome shaped absorbing boundary (ABC) surface is shown in grey. (b) A 2D slice of the
model, showing the air filled region (grey), bounded by the absorbing boundary (blue) and the PEC
boundary (black).

to each transmitter-receiver pair. Converting measured S-parameters to model-compatible magnetic
field measurements is accomplished through calibration. During parametric inversion, we choose to
omit the back-scattering measurements (Sii or Hii), for an overall data vector of length 552 (24× 23).

3.2. Calibration

While we have previously demonstrated the ability to apply a phaseless parametric inversion workflow
to uncalibrated experimental data in uncooperative systems (i.e., where traditional calibration using
a known target is not possible) such as for stored grain monitoring [15], experience has shown that
calibration is beneficial when evaluating data from the experimental breast microwave imaging system.
The experimental breast system is cooperative in the sense that it is easy to introduce a calibration
target. In this work we have chosen the calibration target as a homogeneous adipose background.
Experimentally, this is achieved by placing the large symmetric (blue) 3D-printed breast phantom in
the chamber and filling it with our model adipose fluid (canola oil). Synthetically, the permittivity of
the entire breast tissue within the model is set to that of the model adipose fluid. We then perform an
incident field calibration of the data according to:

Hij,target =
Hij,adipose

Sij,adipose
(Sij,target − Sij,adipose) (1)

where Htarget are the calibrated experimental scattered fields; Hadipose and Sadipose are the synthetic and
raw experimental fields of the adipose-only model, respectively; and Starget are the raw experimental
fields of the adipose tissue and the target. The target is the phantom representing the fibroglandular
tissue in the model of the breast.

4. THE PARAMETER SET

When attempting to solve the inverse scattering problem, it is generally beneficial to choose the
background medium for the scattered field problem to incorporate as much knowledge of the target
as possible. Considering the case of tumor detection/monitoring in the human breast, we are concerned
with recovering the tumor as a high-contrast target embedded within the breast tissue. To accomplish
this, we aim to to determine a small set of general properties of the fibroglandular tissues of the breast,
within an assumed known adipose region. The experimental system design presented in Section 2 is
such that the location of the breast within the chamber, as well as the boundary of the breast can
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be fixed within a holder. It remains to recover knowledge of the fibroglandular region. We limit this
recovery to a simple geometry and the average complex-valued permittivity of the fibroglandular tissues.
This leads to a set of four parameters, p

4
, that consists of the radius (r), height (h), and the average

complex-valued permittivity (ε = ε′+ jε′′) of the fibroglandular region. That is to say, p
4
= [r, h, ε′, ε′′].

It should be noted that, by design, this parameter set does not allow for the reconstruction of tumor-
like targets with the hopes that the recovered parameters will largely represent the average adipose and
fibroglandular tissues, even if a tumor is present within the breast. Choosing the background for any
subsequent inversion problem to be the adipose and fibroglandular regions of the breast (assuming they
are known accurately), reduces the overall contrast and simplifies the inverse scattering problem when
attempting to detect and/or monitor tumors.

5. MACHINE LEARNING ENABLED PARAMETRIC INVERSION

Full details on the neural network and the overall proposed workflow are presented in our previous
work [33], but are summarized here for convenience.

5.1. Machine Learning Model

To obtain p
4
from experimental data, a 4-hidden-layer, fully-connected neural network accepts phaseless,

calibrated S-parameter data in the form of 552 point data vector, d, and produces a four parameter
estimate of the fibroglandular region (Figure 4). The network is trained on 4621 examples, with a batch
size of 1000 for a maximum of 100 epochs, and using a residual sum of squares loss function.

Figure 4. The 4-hidden-layer fully connected neural network. The number of neurons in each layer is
given by the number below the layer. The 552-element input layer is shown in blue, hidden layers (with
ReLU activation) are shown in yellow, and the 4-parameter output layer is shown in green. Horizontal
arrows denote full connectivity between network layers.
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5.2. Synthetic Training Data

The synthetic model described in Section 3.1 is used to generate the training set for machine learning.
Each of the p

4
parameters is varied to construct a training set of synthetic data that represents a

variety of different breast densities based on the fixed adipose size of the breast phantom, with a height
of 10.9 cm and a radius of 4.8 cm, and to cover a range of fibroglandular tissue permittivities. The
complete labelled dataset consists of 18,122 synthetic examples, covering the range of geometry (height
and radius) and complex-valued permittivity (ε = ε′ + jε′′) parameters for the fibroglandular tissue
which are given in Table 1.

Table 1. Parameter ranges comprising the synthetic training set.

Parameter Minimum Maximum

Radius [cm] 2.8 4.1

Height [cm] 5.3 9.8

ε′ 5.0 25.0

ε′′ −25.0 −5.0

A small subset of the total labeled dataset is used for training. 30% of the dataset is randomly
selected at training time, and partitioned 85%, 10%, and 5% into training, validation, and test data,
respectively. As a result, the network is trained on 4621 examples.

6. RESULTS

In [33] we showed the ability of this network architecture to accurately predict p
4
(permittivity and

geometry) of symmetric fibroglandular regions (Figure 3) from noisy synthetic data, and showed that
the combination of adipose and fibroglandular tissues can be used as an appropriate background for
tumor detection. In our previous attempts to recover the same parameters from calibrated experimental
data for the same symmetric fibroglandular phantom used in this work we were able to accurately
recover geometry information, but struggled to recover reasonable estimates for the permittivity of the
fibroglandular tissue.

6.1. Experimental Symmetric Fibroglandular Region

Here, we demonstrate successful recovery of p
4
from calibrated experimental data. Two recent changes

made to the parametric inversion process are 1) a 25% reduction in the size of the training set and
2) an expansion of the parameter ranges for the bulk complex-valued permittivity in the training set.
In [33] our preliminary tests with experimental data produced permittivity predictions that were near
the boundary or outside of the range of permittivities used within the training set. The errors in these
predictions led us to increase the range of permittivities used for training the neural network used in
this work. Following these changes we are able to maintain height and radius predictions that are
accurate to within 2mm, while reducing the error in the real part of the permittivity to within 2.0 and
the complex valued permittivity to within 0.5 (Table 2), where previously the predicted errors were as
large as 8.4 and 7.4, for real and imaginary permittivities, respectively [33].

Table 2. Predictions for the symmetric fibroglandular region experimental data.

Example Radius [cm] Height [cm] ε′ ε′′

True 3.4 8.5 20.0 −12.0

Measurement 1 3.5 8.6 20.1 −12.4

Measurement 2 3.4 8.6 22.0 −12.1
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6.2. Synthetic Asymmetric and Off-Center Fibroglandular Region

In addition to the two experimental breast phantoms analyzed, two synthetic examples were evaluated to
assess the performance of the neural network for fibroglandular regions not represented by the training
set. The training set assumes fibroglandular regions are symmetric and centered, as shown in Figure 3.
Synthetic measurement data was generated for an off-center fibroglandular region, as well as for an
off-center and asymmetric fibroglandular region (Figure 5).

(a) (b)

Figure 5. (a) Off-center fibroglandular phantom relative to the adipose region and (b) asymmetric and
off-center fibroglandular phantom relative relative to the adipose region. Fibroglandular phantoms are
shown in dark blue, with adipose regions superimposed in light blue.

Parameter predictions for these two synthetic examples are given in Table 3. The network is able
to accurately recover the geometry of the fibroglandular region to within 1mm for radius and 3mm for
height. The permittivity predictions obtained are reasonable, but not as accurate as for the centered,
symmetric experimental examples given in Section 6.1; the permittivity values for the symmetric, off-
center fibroglandular region are better than those for the asymmetric, off-center region, as expected.

Table 3. Predictions for the asymmetric and off-center fibroglandular region synthetic data.

Example Radius [cm] Height [cm] ε′ ε′′

True 3.5 8.6 20.0 −12.0

Symmetric, off-center 3.5 8.5 21.3 −11.3

Asymmetric, off-center 3.6 8.3 23.5 −8.0

6.3. Experimental MRI Derived Fibroglandular Region

To expand on the practical use of this synthetically trained neural network, we evaluate the ability to
predict the convex hull geometry of an asymmetric fibroglandular region with an irregular (both convex
and concave) surface. Specifically, a 3D-printed phantom of a fibroglandular region obtained from MRI
data [34] was used in place of the symmetric fibroglandular phantom. Figures 2(c) and (d) show the
experimental system and its computational model with the MRI derived fibroglandular region within
the symmetric adipose phantom.

The results in Table 4 suggest that the neural network is able to detect the convex hull geometry of
an asymmetric fibroglandular region, but struggles to accurately estimate the average complex-valued
permittivity of the tissue. While focusing on the geometry predictions, upon initial inspection it appears
that the radius prediction for the fibroglandular region is unacceptably low, however it is important
to consider that the neural network was trained on a set of radially symmetric, smooth fibroglandular
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Table 4. Predictions for the MRI-derived fibroglandular region experimental data.

Example Radius [cm] Height [cm] ε′ ε′′

True 3.9 7.2 20.0 −12.0

Measurement 1 3.0 6.9 10.9 −15.2

Measurement 2 2.9 6.9 10.7 −15.1

tissues, and the MRI-derived fibroglandular region is irregular, not radially symmetric, and does not
have a consistent radius along its height. While we have chosen one measurement from the approximate
center axis to an outer surface of this phantom as the “true” radius, there is no guarantee that the neural
network is predicting this same distance. For these reasons, it is difficult to quantitatively assess the
accuracy of p

4
and it is thus helpful to visualize the superposition of the predicted symmetric convex

hull on the MRI-derived fibroglandular region to qualitatively assess the performance of the neural
network. Figure 6 shows the predicted convex hull superimposed on the MRI-derived fibroglandular
region, depicting how the predicted radius and height of the convex hull fits the MRI-derived phantom.
While it is clear that the permittivity predictions for this phantom do not line up with the measured
value for the experimental fluid, this is not completely unexpected. We speculate that the network
may be predicting permittivity values that compensate for structural features that were not part of the
training set such as the asymmetry and irregular surface profile of the phantom.

(a) (b)

Figure 6. Predicted convex hull overlaid against the asymmetric MRI-derived fibroglandular region
viewed from the (a) x-direction and (b) z-direction.

Although this realistic fibroglandular region cannot be accurately represented by only two geometry
parameters, the ability to predict a convex hull which approximates the overall proportion and size of the
region is valuable as prior information for eventual full inversion of data collected with this measurement
system.

7. CONCLUSION

In this work we have demonstrated the ability for a synthetically trained neural network to perform
parametric inversion on experimental data to recover prior information, in the form of geometry and
average complex-valued permittivity, characterizing the fibroglandular tissue within a simple model of
the human breast. In addition to accurately recovering both geometry and permittivity information
from a symmetric fibroglandular phantom, we showed that the neural network can reasonably predict
the convex hull geometry of a realistic, MRI-derived fibroglandular phantom. The ability to recover a
reasonable estimate of the symmetric convex hull approximating an irregularly shaped fibroglandular
phantom is significant in spite of the ongoing challenges in recovering the permittivity of this region.
Research is ongoing to determine whether accurately predicted geometry alongside literature values for
the permittivity of fibroglandular tissue is sufficient prior information for full inversion.
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