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Self-Dual Integral Equation for Scattering Analysis from Bodies
of Revolution with Multiple Impedance Boundary Conditions
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Abstract—In this paper, electromagnetic scattering from multi-impedance body of revolutions (BORs)
is formulated using self-dual integral equations (SDIEs) and is solved numerically by the method of
moments using BOR basis functions. Using the axial symmetry advantage of BORs, a 3D problem
is converted to a 2D one, and a significant reduction in unknowns is obtained. This in turn leads to
an increase in the speed of scattering problem solving. Numerical results show that monostatic and
bistatic RCS calculation with the proposed method is about 85 and 18 times faster than the commercial
software, respectively.

1. INTRODUCTION

Radar Cross Section (RCS) is one of the most important parameters in detecting an object by radar.
Therefore, the calculation of this quantity plays an important role in the scattering problems and enables
engineers to have a proper assessment of the behavior of the structure against electromagnetic fields
before construction, which helps them in optimal design. Scattering problems are often described by
integral equations. These equations are obtained by applying boundary conditions to the tangential
fields. Usually, Method of Moments (MOM) is used to convert integral equations into a linear system
of equations that can be solved numerically using the computer [1]. By applying the boundary
conditions for tangential electric and magnetic fields on the surface of a perfect electric conductor
(PEC), the electric-field integral equation (EFIE) and magnetic-field integral equation (MFIE) are
obtained, respectively, and by their linear combination, combined-field integral equation (CFIE) is
obtained. However, PEC is an ideal model for lossless, impenetrable scatterers, structures with infinite
conductivity and materials with zero surface impedance. But there are cases that are better described
with non-zero impedance or limited conductivity, so another model is needed for these situations. A
suitable model is impedance boundary condition (IBC) [2]. In addition to modeling the losses and finite
conductivity of the metals, IBC is used to model coated conducting bodies, rough surfaces [3], corrugated
surfaces [4], and other configurations [5–7]. In the IBC model, electric and magnetic fields on the surface
of an object are related to each other by surface impedance [8]. This model simplifies the analysis of
scattering problems because surface electric and magnetic currents are related by surface impedance,
and there is no need to calculate the fields within the structure. After obtaining the equivalent surface
impedance and the surface integral equation for the scattering problem, a common approach is to
eliminate the equivalent electric or magnetic current using IBC [9]. But similar to the PEC scattering
problems, IBC-EFIE and IBC-MFIE have problems with the resonant frequency when being applied
to closed surfaces, and therefore IBC-CFIE is usually preferred [10–12]. But when the method of
moment is used to discretize and convert IBC-CFIE to matrix equations, this formulation faces some
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challenges. When the surface impedance approaches the free space impedance, an ill-conditioned matrix
is obtained [13]. Also, if the RWG functions are used to expand the magnetic current, a contour integral
of artificial line charge is created [14]. The ill-conditioned matrix and contour integral cause instability
and slow convergence of the matrix system, in which case the answer of the numerical method will be
unreliable. Many studies have been done to solve these problems [15–19]. In [20], a novel surface integral
equation formulation is proposed by including both the electric and magnetic currents as individual
unknown quantities, and the impedance boundary condition is used implicitly in the surface integral
equations rather than imposed explicitly. It is also demonstrated that the proposed formulation in [20]
is well posed in terms of different surface impedances and different mesh densities.

Among various types of geometries, axial symmetry geometry has been used in many applications,
which is called body of revolution. Bodies of revolution (BORs) are generated by rotating a generating
arc around the axis of symmetry. These structures are of particular importance due to their application
in measurement calibration, modeling of real targets, and use as benchmark targets to validate new
methods. Until now extensive efforts have been made to analyze the scattering from BORs [21–24].
In order to calculate the radar cross section of BOR structures, the surface integral equation is first
written in terms of equivalent electric and magnetic currents. Then by using rotationally symmetrical
property, the integral equation is discretized by a set of basis functions that are local on the boundary
curve along the longitudinal direction and a Fourier series in the azimuthal direction. Because different
Fourier modes are independent, the system of equations is solved separately for each mode. Therefore,
both the memory requirement and calculation time can be reduced greatly compared to traditional
methods (method of moment (MoM) based on sub-domain basis functions, such as Rao-Wilton-Glisson
(RWG) basis functions).

In this paper, the radar cross section of multi-impedance BORs is calculated using the SDIE
formulation by the current expansion with BOR basis functions, which causes significant reduction
of unknowns. Therefore, the memory requirement and CPU time for obtaining the RCS of BORs
are improved greatly than [20]. Several examples are given to verify the validity and efficiency of
the proposed method. The rest of the paper is organized as follows. The formulation of SDIE for
scattering by arbitrarily IBC is proposed in Section 2. In Section 3, the method of moment and BOR
basis functions are used to convert integral equations to a linear system of equations. The formulation
for scattering from bodies of revolution with multi-impedance boundary conditions is obtained in this
section. In Section 4, several numerical examples are presented to illustrate the accuracy and efficiency
of the proposed method. At last, a brief conclusion is given in Section 5.

2. FORMULATION

In this section, the formulation of SDIE for scattering by arbitrarily IBC objects is first proposed. The
proposed formulation is then used to calculate the scattering from BOR with impedance boundary
conditions.

2.1. Self-Dual Integral Equations

Consider electromagnetic scattering from an impedance object with boundary S, which is immersed in
a free space with intrinsic impedance of η and illuminated by an incident plane wave (Einc, Hinc). The
electric and magnetic field integral equations (EFIE, MFIE) on the surface can be formulated in terms

of the equivalent surface electric current J̃ = ηJ and magnetic current M in matrix form as Γ −I

2
+ Ψ

I

2
−Ψ Γ

[
J̃
M

]
=

[
n̂×Einc

n̂× H̃inc

]
(1)

where H̃inc = ηHinc, I denotes the identity operator, and Ψ and Γ are the integral operators defined as

Γ(X) = ikn̂×
∫
S

[
I +

1

k2
∇∇·

]
G(r, r′)X(r′)dr′ (2)
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Ψ(X) = n̂× P.V.

∫
S
∇G(r, r′)×X(r′)dr′ (3)

where G(r, r′) = e−ik|r−r′|/4π|r− r′| is the free space Green’s function with the wave number k; X

represents either J̃ or M; and P.V. stands for the Cauchy principal value integration.
The EFIE and MFIE formulas in (1) are dependent in essence. So another independent equation is

needed to determine J̃ and M uniquely. For structures that can be modeled with the surface impedance,
which are the interest in this article, according to the impedance boundary condition [2], the relation
between J and M is given as

M = −Zsn̂× J (4)

Or equivalently

J =
1

Zs
n̂×M (5)

which can be written in terms of J̃ and M as[
zsn̂× I I

−I
1

zs
n̂× I

][
J̃
M

]
=

[
0
0

]
(6)

where zs is the normalized surface impedance (zs = Zs/η). Therefore, (1) equipped with (6) gives rise
to a complete set of equations for IBC problems[

zsn̂× I + Γ I/2 + Ψ

−I/2−Ψ
1

zs
n̂× I + Γ

][
J̃
M

]
=

[
n̂×Einc

n̂× H̃inc

]
(7)

However, since the magnitudes of the diagonal blocks in the above operator matrix are proportional
to zs, the condition number of the matrix is highly dependent on the zs changes. To overcome this
problem, the first line in (6) is divided into

√
zs, and the second line is multiplied by

√
zs to obtain[ √

zsn̂× I I

−√
zsI n̂× I

] [
J̃

M̃

]
=

[
0
0

]
(8)

where M̃ = M/
√
zs, and Equation (1) can then be rewritten as Γ −I

2
+ Ψ

I

2
−Ψ Γ

[
J̃√
zsM̃

]
=

[
n̂×Einc

n̂× H̃inc

]
(9)

In the case where the normalized surface impedance is a constant, Equation (9) becomes Γ −
√
zs
2

+
√
zsΨ

1

2
−Ψ

√
zs Γ

[
J̃

M̃

]
=

[
n̂×Einc

n̂× H̃inc

]
(10)

The summation of (8) and (10) then yields √
zsn̂× I + Γ −

√
zs
2

+ 1 +
√
zsΨ

1

2
−√

zs −Ψ n̂× I +
√
zsΓ

[
J̃

M̃

]
=

[
n̂×Einc

n̂× H̃inc

]
(11)

Since the magnitudes of all the blocks of the operator matrix are proportional to
√
zs, the condition

of the matrix equation is much less sensitive to zs.
Equation (11) is known as the self-dual integral equation (SDIE) for uniform surface impedance

cases. In the case where the normalized impedance is a function of position, Equation (11) can only be
written as  √

zsn̂× I + Γ −
√
zs
2

+ 1 + Ψ(
√
zs)

1

2
−√

zs −Ψ n̂× I + Γ(
√
zs)

[
J̃

M̃

]
=

[
n̂×Einc

n̂× H̃inc

]
(12)
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Since zs is a function of position in this case, and the calculations will be complicated, the
summation of (8) and (9) in terms of J̃ and M yields

√
zsn̂× I + Γ −1

2
+

1
√
zs

+Ψ

1

2
−√

zs −Ψ
1

√
zs
n̂× I + Γ

[
J̃

M

]
=

[
n̂×Einc

n̂× H̃inc

]
(13)

Equation (13) is known as the self-dual integral equation (SDIE) for nonuniform surface impedance
cases.

3. BOR-MOM

To obtain scattering from bodies of revolution with impedance boundary conditions, we use method of
moments (MOM) to convert (11) or (13) into a linear system of equations that can be solved numerically
using a computer. In this process, we use the axial symmetry feature of BORs to simplify calculations.

A BOR object is generated by rotating a generating arc around an axis of symmetry. Therefore,
we define such an object in the cylindrical coordinate system as shown in Fig. 1.

Figure 1. BOR surface outline.

We next define the longitudinal vector t̂(r), which, along with the cylindrical vector ϕ̂(r), is
everywhere tangent to the surface and forms the orthogonal set with the surface normal n̂(r):

n̂ (r) = ϕ̂ (r)× t̂ (r) (14)

As t̂(r) and ϕ̂(r) are everywhere normal to each other, we will represent the surface currents using

t̂(r) and ϕ̂(r) oriented basis functions. Because of the rotational symmetry, these functions are local in
the longitudinal dimension and a Fourier series in the azimuthal dimension

J (r) =

∞∑
α=−∞

N∑
n=1

[
atαnf

t
αn (r) + aϕαnf

ϕ
αn (r)

]
(15)

M (r) =

∞∑
α=−∞

N∑
n=1

[
Kt

αnf
t
αn (r) +Kϕ

αnf
ϕ
αn (r)

]
(16)
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where Itαn, K
t
αn are the longitudinal expansion coefficients of basis function n for Fourier mode α, and

Iϕαn and Kϕ
αn are the azimuthal expansion coefficients for mode α and basis function n.

The expansion functions f t,ϕαn (r) are

f tαn (r) = fn (t) e
jαϕt̂ (r)

fϕαn (r) = fn (t) e
jαϕϕ̂ (r)

(17)

where fn(t) = Tn(t)/ρ(t), and Tn(t) is the triangular function. In the expansion of surface currents for
BORs, the various Fourier modes are perpendicular to each other. This property is very useful, so the
system of equations can be solved separately for each mode, and the final solution is obtained by adding
the answers for each mode.

Method of moment is used to convert (11) and (13) into a matrix system. Surface currents from (15),

(16) are substituted, and then SDIEs will be tested using testing functions f t,ϕβm(r).

f tβm (r) = fm (t) e−jβϕt̂ (r)

fϕβm (r) = fm (t) e−jβϕϕ̂ (r)
(18)

In (11), (13), there are in total four operators namely, Γ, Ψ, I, and n̂×I which are discretized as follows

Γpq
mn = jk

∫∫
f t,ϕβm

∫∫
f t,ϕαn

f t,ϕβm (r) ·
[
n̂ (r)× f t,ϕαn

(
r′
)]e−jkr

4πr
dr′dr

− j

k

∫∫
f t,ϕβm

∫∫
f t,ϕαn

[
∇ ·

(
f t,ϕβm (r)× n̂ (r)

)] [
∇′ · f t,ϕαn

(
r′
)] e−jkr

4πr
dr′dr (19)

Ψpq
mn =

1

4

∫∫
f t,ϕβm

∫∫
f t,ϕαn

f t,ϕβm (r) · n̂ (r)

×
[
−
(
r− r′

)
× f t,ϕαn

(
r′
)]

· [1 + jkr]
e−jkr

r3
dr′dr (20)

Ipqmn =

∫
f t,ϕβm

f t,ϕβm(r)·f t,ϕαn (r)dr (21)

(n̂× I)pqmn =

∫
f t,ϕβm

f t,ϕβm(r)·n̂× f t,ϕαn (r)dr (22)

where p and q may be either t or ϕ.

Applying the testing functions f t,ϕβm(r) to the right-hand side of (11) or (13) yields a column vector

of the form

V =


Vt

E

Vϕ
E

Vt
M

Vϕ
M

 (23)

where

Vt,ϕ
E (m) =

∫
tm

∫ 2π

0
f t,ϕαm(r) ·

(
n̂×Einc (r)

)
ρdϕdt (24)

Vt,ϕ
M (m) =

∫
tm

∫ 2π

0
f t,ϕαm(r) ·

(
n̂× H̃inc (r)

)
ρdϕdt (25)

After solving the matrix equations and obtaining the unknown coefficients of surface currents, the
scattered far electric field will be as follows

E(r) = −jω
(
[Aθ(r) + ηFϕ(r)] θ̂ + [Aϕ(r)− ηFθ(r)] ϕ̂

)
(26)
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where in the far field, the vector potentials are written as follows

A(r) = µ
e−jkr

4πr

∫
V
J(r′)ejkr

′·r̂dr′ (27)

F(r) = ε
e−jkr

4πr

∫
V
M(r′)ejkr

′·r̂dr′ (28)

Finally, the radar cross section for the object is calculated from:

σ3D = 4πr2
|Es|2

|Einc|2
(29)

4. NUMERICAL RESULT

In this section, several numerical examples are presented to illustrate the accuracy and efficiency of
proposed approach. Responses of the proposed method in bistatic mode, in addition to IE-based
commercial software, have also been verified by time domain solver of CST that is based on the finite
integration technique (FIT). All problems are solved on the same computer (Intel(R) Core(TM) i7-7500,
2.7GHz and 8GB RAM) in order to make a fair comparison.

4.1. Uniform Cases

In this section, in order to show the performance of the proposed formulation, the radar cross section
is calculated in two modes, monostatic and bistatic. The two structures shown in Fig. 2 are studied
at two frequencies of f1 = 0.5GHz and f2 = 1GHz with θ̂ and ϕ̂ polarization. The results are shown
in Fig. 3 to Fig. 6. Other specifications of the analyzed structures are mentioned in the caption of
the figures. The results are compared with the solutions from commercial software. Figures show that
an excellent agreement is achieved between the solution of the proposed approach and the commercial
software solution.

Figure 2. Mono-impedance objects.

4.2. Nonuniform Cases

To demonstrate the performance of the proposed method, scattering problems from BORs with
nonuniform surface impedance, such as Fig. 7, are presented in this section. The radar cross section is
calculated in two modes, monostatic and bistatic. Structures have been studied at two frequencies of
f1 = 0.5GHz and f2 = 1GHz with θ̂ and ϕ̂ polarization. Specifications of the analyzed structures are
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Figure 3. Monostatic RCS of mono-impedance Hemisphere-Cone at f1 = 0.5GHz. when R = 0.3m =
0.5λ1, h = 1.3m = 2.16λ1 and Zs = 5.
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Figure 4. Monostatic RCS of mono-impedance Hemisphere-Cylinder f2 = 1GHz. when R = 0.3m =
λ2, h = 1.3m = 4.32λ2 and Zs = 0.4− 2i.

mentioned in the caption of the figures. The results are compared with the solutions from commercial
software (Fig. 8 to Fig. 11).

As can be seen, the results of the numerical implementation of the integral equations with the
expansion of currents in terms of BOR basic functions are in excellent agreement with the simulation
results of commercial software.
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(a) (b)

Figure 5. Bistatic RCS of mono-impedance Hemisphere-Cone at f2 = 1GHz. when R = 0.3m = λ2,
h = 1.3m = 4.32λ2, θ

i = 30, ϕi = 45, ϕs = 60 and Zs = 0.5+0.5i. (a) ϕ polarization. (b) θ polarization.

(a) (b)

Figure 6. Bistatic RCS of mono-impedance Hemisphere-Cylinder at f1 = 0.5GHz. when R = 0.3m =
0.5λ1, h = 1.3m = 2.16λ1, θ

i = 45, ϕi = 180, ϕs = 45 and Zs = 0.1 + 0.2i. (a) ϕ polarization. (b) θ
polarization.

4.3. Efficiency Comparison

In order to demonstrate the efficiency of the presented method in this paper, for several problems, the
computation time of RCS using the presented method and that of commercial software (CST Microwave
Studio) are compared in Table 1 for mono-impedance Hemisphere-cone and Table 2 for multi-impedance
Hemisphere-cylinder.

In the first example, the monostatic RCS for a Hemisphere-Cone with dimensions R = 0.3 = λ2

and h = 1.3 = 4.32λ2, once with a surface impedance of Zs = 5 and again with a surface impedance of
Zs = 0.4 − i is evaluated at the frequency of f2 = 1GHz. The results in Table 1 show that the time
required to calculate RCS using commercial software is on average 85 times that calculated using the
SDIE-BOR method.

In the second example, a hemisphere-cylinder with dimensions R = 0.3 = λ2, h = 1.3 = 4.32λ2 and
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Figure 7. Multi-impedance objects.
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Figure 8. Monostatic RCS of multi-impedance Hemisphere-Cone at f2 = 1GHz. when R = 0.3m = λ2,
h = 1.3m = 4.32λ2 and Zs1 = 4, Zs2 = 0.5 + 0.5i.

Table 1. Time comparison of the SDIE-BOR method with CST Microwave Studio for mono-impedance
Hemisphere-cone.

Hemisphere-Cone Zs = 5 Zs = 5 Zs = 0.4− i Zs = 0.4− i

θ pol ϕ pol θ pol ϕ pol

CST 663 s 614 s 615 s 682 s

SDIE-BOR 7.36 s 7.41 s 7.86 s 7.46 s

Ratio 90.1 82.9 78.2 91.4

(tCST /tSDIE−BOR)

surface impedance of Zs1 = 3, Zs2 = 0.2 is evaluated. The bistatic RCS is computed at f2 = 1GHz in
two cases, once with θi = 60 ϕi = 30 ϕs = 90 and again with θi = 45 ϕi = 90 ϕs = 45. Table 2
gives the calculation time for the proposed method and commercial software. The time required to
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Figure 9. Monostatic RCS of multi-impedance Hemisphere-Cylinder at f1 = 0.5GHz. when
R = 0.3m = 0.5λ1, h = 1.3m = 2.16λ1 and Zs1 = 5 + 1.5i, Zs2 = 1 + 2i.

(a) (b)

Figure 10. Bistatic RCS of multi-impedance Hemisphere-Cone at f1 = 0.5GHz. when R = 0.3m =
0.5λ1, h = 1.3m = 2.16λ1, θ

i = 60, ϕi = 30, ϕs = 45 and Zs1 = 1.2, Zs2 = 2 + 3i. (a) ϕ polarization.
(b) θ polarization.

calculate RCS using commercial software is on average 18 times that calculated using the SDIE-BOR
method.

The last example was performed to compare the efficiency of presented method with respect to
the one of [20]. In this example, the bistatic RCS of a Hemisphere-Cone (Fig. 7) is computed for θ-
polarization at f2 = 1GHz with θi = 45 , ϕi = 0 and ϕs = 0. It must be noticed that in this example a
sector of hemisphere is selected as the bottom part of object. The cone dimensions are R = 0.5 = 1.67λ2,
h = 1 = 3.33λ2 while the sphere radius is R = 1.12 = 3.73λ2. The surface impedances are Zs1 = 0.25
and Zs2 = 0.75. Again, the RCSs from two methods are in very good agreement as shown in Fig. 12,
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(a) (b)

Figure 11. Bistatic RCS of multi-impedance Hemisphere-Cylinder at f2 = 1GHz. when R = 0.3m =
λ2, h = 1.3m = 4.32λ2, θ

i = 45, ϕi = 90, ϕs = 45 and Zs1 = 3, Zs2 = 0.2. (a) ϕ polarization. (b) θ
polarization.

Table 2. Time comparison of the SDIE-BOR method with CST Microwave Studio for multi-impedance
Hemisphere-cylinder.

Hemisphere-cylinder case1 case1 case2 case2

θ pol ϕ pol θ pol ϕ pol

CST 23 s 31 s 27 s 27 s

SDIE-BOR 1.55 s 1.43 s 1.42 s 1.42 s

Ratio 14.8 21.7 19 19

(tCST /tSDIE−BOR)

but our presented method is 180 times faster than the method of [20]. Furthermore, the required peak
memory for our method is about 1000 times lower than [20]. The details of comparison are shown in
Table 3.

Table 3. Time and memory comparison of the SDIE-BOR method with method of [20] for multi-
impedance Hemisphere-cone (Fig. 12).

Hemisphere-cone Time Memory

This paper 7 s 1.62MB

[20] 1261 s 1356MB

Ratio ([20]/This paper) 180 1000

Finally to illustrate the well posedness of the matrix equations obtained using the proposed method,
one of the examples presented in [20] is evaluated using the SDIE formulation and the BOR basis
functions, and the condition number diagram is plotted in terms of mesh density (Fig. 13). The object
is an IBC sphere with a radius of 1.0m and a normalized surface impedance zs = 2 − 0.5i, and the
frequency of the incident plane wave is 75MHz. As can be observed, the proposed method has a very
small condition number, which increases linearly with respect to the mesh density.
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Figure 12. Bistatic RCS of multi-impedance Hemisphere-Cone at f2 = 1GHz. when R = 0.3m = λ2,
h = 1.3m = 4.32λ2, θ

i = 45, ϕi = 0, ϕs = 0 and Zs1 = 0.25, Zs2 = 0.75.
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Figure 13. Condition number of the system matrix obtained from the discretization of the SDIE using
BOR basis functions versus the mesh density. The object is an IBC sphere with a radius of 1.0m and
a normalized surface impedance zs = 2− 0.5i. The frequency of the incident plane wave is 75MHz.



Progress In Electromagnetics Research C, Vol. 121, 2022 219

5. CONCLUSION

In this paper, SDIE-BOR method is proposed to analyze scattering from multi-impedance BORs. In
order to avoid the problems of EFIE-IBC, MFIE-IBC, and CFIE-IBC formulations, self-dual integral
equations are used to calculate the scattering of structures with impedance surfaces. In this formulation,
both electric and magnetic surface currents were considered as unknown, and the impedance boundary
condition was implicitly embedded in the equations. These equations were discretized using the method
of moment and BOR basis functions. Using BOR basis functions, a 3D problem is converted to
a 2D problem. Therefore, both the memory requirement and CPU time can be reduced greatly.
The performance of the proposed method was demonstrated by some numerical examples. Excellent
agreement was obtained between the results using the proposed method and commercial software. In
addition, the RCS calculation time and memory were significantly reduced, which is more noticeable
for large electrical structures.

REFERENCES

1. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2014.

2. Hoppe, D. J., Impedance Boundary Conditions in Electromagnetics, CRC Press, 2018.

3. Senior, T., “Impedance boundary conditions for statistically rough surfaces,” Applied Scientific
Research, Section B, Vol. 8, No. 1, 437–462, 1960.

4. Iskander, K., L. Shafai, A. Frandsen, and J. Hansen, “Application of impedance boundary
conditions to numerical solution of corrugated circular horns,” IEEE Transactions on Antennas
and Propagation, Vol. 30, No. 3, 366–372, 1982.

5. Senior, T., “Combined resistive and conductive sheets,” IEEE Transactions on Antennas and
Propagation, Vol. 33, No. 5, 577–579, 1985.

6. Mitzner, K., “Effective boundary conditions for reflection and transmission by an absorbing shell of
arbitrary shape,” IEEE Transactions on Antennas and propagation, Vol. 16, No. 6, 706–712, 1968.

7. Lindell, I. V. and A. H. Sihvola, “Realization of impedance boundary,” IEEE Transactions on
Antennas and Propagation, Vol. 54, No. 12, 3669–3676, 2006.

8. Yuferev, S. V. and N. Ida, Surface Impedance Boundary Conditions: A Comprehensive Approach,
CRC Press, 2018.

9. Glisson, A. W., “Electromagnetic scattering by arbitrarily shaped surfaces with impedance
boundary conditions,” Radio Science, Vol. 27, No. 06, 935–943, 1992.

10. Sebak, A. and L. Shafai, “Scattering from arbitrarily-shaped objects with impedance boundary
conditions,” IEE Proceedings H — Microwaves, Antennas and Propagation, Vol. 136, No. 5, 371–
376, IET, 1989.

11. Heath, G., “Impedance boundary condition integral equations,” 1984 Antennas and Propagation
Society International Symposium, Vol. 22, 697–700, IEEE, 1984.
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