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Parameter Identification Based on Chaotic Map Simulated
Annealing Genetic Algorithm for PMSWG

Yang Zhang1, Chao Zhang1, and Zhun Cheng2, *

Abstract—Traditional genetic algorithm identification of permanent magnet synchronous wind
generator (PMSWG) parameters is easy to fall into local optimum, resulting in low accuracy of
parameter identification results and slow convergence which reduces the accuracy of parameter tuning
of proportional-integral (PI) controller. Aiming at this problem, a chaotic mapping simulated annealing
genetic algorithm (CMSAGA) for identifying PMSWG parameters is proposed. The traditional genetic
algorithm (GA) has the ability of global random search, combined with the probability breakthrough
characteristic of the simulated annealing (SA) algorithm, which avoids the parameter identification
result falling into the local optimum and finally tends to the global optimum. With the increase of
iteration times, the initial population is mapped with tent chaos mapping theory, and the optimal value
of the population is disturbed in each iteration to increase the diversity of the population, making the
proposed algorithm converge faster and improve the accuracy. Experiments show that the proposed
algorithm has good accuracy and convergence speed, and PMSWG stator resistance, stator winding d-q
axis inductance and permanent magnet flux can be identified.

1. INTRODUCTION

Permanent magnet synchronous wind generator (PMSWG) has the advantages of small size, simple
structure, high operating efficiency, and high-power density [1–4], which is widely used in the field of
wind power generation. To achieve high-performance permanent magnet synchronous wind turbine
drive control, it is necessary to accurately obtain parameters such as motor stator winding resistance
and dq axis inductance which can realize the setting calculation of proportional-integral controller
parameters, and accurate acquisition of dq-axis inductance and flux linkage is beneficial for improving
the decoupling effect of motor control. Due to factors such as demagnetization, high temperature,
and magnetic saturation, the parameters are mismatched, which reduces the control performance and
reliability of the motor. For such issues, scholars have done a lot of research and proposed different
parameter identification methods [5].

The traditional parameter identification method, in [6] and [7], proposed an identification method
based on a model reference adaptive system (MRAS). Although it has a fast convergence speed and is
relatively easy to implement, it faces the problem of adaptive law selection, which has a great impact
on the results of parameter identification. The correct convergence speed of parameters depends on the
initial values of the parameters. Ref. [8] proposes an identification method based on the recursive least
square method. Although it has high identification accuracy, it has poor robustness to noise and needs
to process a large amount of data, so the design of the signal processing system is complicated, and
the parameters cannot be identified online in real time. In [9–11], an identification method based on
Extended Kalman Filter (EKF) is proposed, which is a recursive filtering method. Although it improves
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the accuracy of the system and solves noise-sensitive problems, it requires a lot of matrix calculations
during the calculation process, resulting in long convergence time.

Compared with traditional identification methods, artificial intelligence algorithm greatly improves
computational performance and identification accuracy, which is often used in the process of feature
data. In [12] and [13], an identification method based on a neural network (NN) is proposed. Although
it can reduce the steady-state error of the identification result and improve the convergence speed, the
speed of the algorithm depends on the selection of the appropriate convergence factor, and inappropriate
selection of convergence factor will lead to slow convergence. In [14], a Cauchy Mutation Particle
Swarm Optimization (CMPSO) for identifying parameters is proposed, which mutates the particles
so that the particle swarm deviates from the current position and searches for more information.
This method is too cumbersome, slow in convergence, and complicated in the process. In [15], a
coevolutionary particles warm optimization (PSO) algorithm associated with the artificial immune
principle is proposed, introducing the immune system mechanism into the particle swarm, although
it has better convergence speed and local fine search capability, and the computation process becomes
lengthy and computationally intensive. In [16], the application of GA to the parameter identification
of permanent magnet synchronous motor has improved the robustness, but it still has the defects
of cumbersome calculation and poor accuracy. The SA starts from a certain initial temperature,
accompanied by decreasing temperature parameters, and combines the probabilistic breakthrough
property to find the global optimal solution of the objective function randomly in the solution space.
In [17], SAGA is used for the identification of friction parameters, but it takes a longer time to anneal
all populations.

Considering the problems of GA and SAGA, a chaotic mapping simulated annealing genetic
algorithm (CMSAGA) is proposed in this paper to obtain better performance for PMSWG parameter
identification. The work of our paper is summarized as follows:

(1) In order to avoid rank-deficient in the mathematical model, vector control method of id = 0 will
be used, and a d-axis current of id = −2 is ejected to construct rank-full in the mathematical model.

(2) In order to improve the convergence speed, reduce the initial annealing temperature of SAGA,
and then perform tempering and chaos disturbance operations on the inferior population to ensure the
accuracy of the algorithm and improve the search accuracy.

(3) This paper adopts the method of resetting the number of iterations to make the termination
condition of the algorithm change with the change of system running time so that each sampling point
can be identified and meet the requirements of online identification.

(4) The simulation results and RT-LAB hardware-in-the-loop simulation results show that the four
parameters of stator resistance, stator winding d-q axis inductance, and rotor flux can be quickly and
accurately identified by the chaotic mapping simulated annealing genetic algorithm (CMSAGA).

The rest of this paper is as follows. Section 2 introduces the mathematical model of PMSWG.
Section 3 introduces the traditional genetic algorithm and improved genetic algorithm. Section 4
introduces the identification principle of the chaotic mapping simulated annealing genetic algorithm
(CMSAGA). Sections 5 and 6 show the simulated and experimental results. Finally, Section 7 briefly
summarizes this paper.

2. PMSWG MODEL

Due to the complex control of the motor, the system model of the PMSWG is simplified; therefore, the
equation of IPMSM in the d-q coordinate system is expressed as

ud=Rsid+
dφd

dt
− ωeφq

uq=Rsiq+
dφq

dt
+ωeφd

(1)

The flux linkage equation is {
φd = φf + Ldid
φq = Lqiq

(2)
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where ud, uq, id, iq are the voltages and currents of the d-axis and q-axis; Rs, Ld, Lq, φf are stator
resistance, d-q axis inductance, and permanent magnet flux linkage; ωe is the electrical angular velocity;
φd, φq are flux components on d-axis and q-axis, respectively.

When the motor is in steady state operation, the perturbations in id and iq are very small and are
regarded as (3) {

ud=Rsid − ωeLqiq
uq=Rsiq+ωe (φf+Ldid)

(3)

In order to avoid rank-deficiency in the mathematical model, vector control method of id = 0 will
be used, and a d-axis current of id = −2 is injected to construct rank-full in the mathematical model.
The data sampling diagram is shown in Fig. 1.
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Figure 1. Data sampling diagram.

The same amount of data is collected at id = 0 and id = −2, and the discrete equation for the
4th-order full-rank reference model is expressed as (4)

ud0 (k)=− ωe (k)Lqiq0 (k)

uq0 (k)=Rsiq0 (k)+ωe (k)φf

ud1 (k)=Rsid1 (k)− ωe (k)Lqiq1 (k)

uq1 (k)=Rsiq1 (k)+ωe (k) (φf+Ldid1 (k))

(4)

where ud0(k), uq0(k), iq0(k) are the data collected for the k-th time in time 0 to t1 in Fig. 1, and ud1(k),
uq1(k), id1(k), iq1(k) are the data collected for the k-th time in time t1 to t2.

3. CHAOTIC MAP SIMULATED ANNEALING GENETIC ALGORITHM

3.1. Basic Genetic Algorithm

GA is a method of simulating Darwin’s genetic selection and the biological evolution process of natural
elimination to simulate the search for optimal solutions. The basic process of GA: the initial population
is generated randomly, then through the fitness function to evaluate each individual, with higher fitness
value of individual participation in the genetic operation, low fitness of individuals is eliminated. The
individual sets to form a new generation of population genetic operation until meet the stop criterion
will be the best individual offspring as the results of GA [18].

The core parts of GA are selection, crossover and mutation.
(1) Selection
The core idea of the roulette selection method is that the probability of each individual being

selected is proportional to its fitness value; therefore, the selection probability pi of individual i is
expressed as

Fi = 1/fi (5)

pi =
Fi
n∑

j=1

Fj

(6)
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where fi is the fitness value of individual i; because smaller fitness values are better, the reciprocal of
the fitness value is taken before individual selection; n is the number of individuals in the population.

(2) Crossover
In this paper, the method of crossover operation is real number coding, and the crossover operation

method of the k-th chromosome αk and the l-th chromosome at the j position is expressed as{
αkj = αkj(1− β) + αljβ

αlj = αlj(1− β) + αkjβ
(7)

where β is a random number between [0, 1].
(3) Mutation
The j-th gene of the i-th individual is selected for mutation, and the mutation operation is expressed

as

αij =

{
αij − (αij − αmin) ∗ (1− f (g)) , r ≤ 0.5

αij + (αmax − αij) ∗ (1− f (g)) , r > 0.5
(8)

where αmax, αmin are upper and lower bounds for genes αij ; f(g) = r(1 − g/gmax)
2; g is the current

iteration number; gmax is the maximum number of evolutions; r is a random number.

3.2. Simulated Annealing Genetic Algorithm

SA algorithm comes from the principle of solid annealing, which is a probabilistic algorithm. The SA
algorithm starts from a certain high initial temperature, along with the decrease of the temperature
parameter, combined with the probability breakthrough characteristic, which finds the global optimal
solution of the objective function in the solution space randomly, i.e., the local optimal solution can
jump out probabilistically and eventually tend to the global optimum.

The steps of the SA algorithm:
(1) Given an initial temperature T0, an initial population x0 is randomly generated. The

corresponding objective function value f(x0) of length of Markov chain l (the number of iterations
at any temperature) is calculated.

(2) Make the current temperature T equal to the next value Ti in the cooling schedule.
(3) Generate a new population xj near the current population xi randomly, and calculate the

objective function value f(xj) of the new population.
(4) According to the Metropolis criterion, ∆f = f(xj)− f(xi) if ∆f < 0, accept the new solution

xj if ∆f > 0, calculate p = e−∆f/Ti , then generate a random number r on [0, 1], if r < p, accept the
new solution xj .

(5) At temperature Ti, repeat steps (3) and (4) li times.
(6) Judge whether the exit conditions are met. If so, exit the iteration, otherwise, go back to

Step (2) to continue the iteration.
Metropolis criterion — accept a new state with probability p which is expressed as

pl(i → j) =


1, f(i) ≥ f(j)

exp

(
f(i)− f(j)

T

)
, f(i) < f(j)

(9)

In order to solve the problem that the GA is easy to fall into the local optimum, and the SA
algorithm has poor convergence speed, the annealing process is integrated into the GA, so that the
simulated annealing genetic algorithm (SAGA) can converge to the global optimum quickly.

During the search, the genetic operator provides a set of initial solutions for the annealing process
at each temperature, which accepts each solution by Metropolis criterion until the equilibrium condition
is reached. The genetic operation continues to optimize in parallel using the solution found through the
annealing process. As the temperature decreases, the new solution accepted by the annealing process
between neighbors tends to decrease as the temperature decreases, and the iteration continues until the
end condition is satisfied [19]. The steps of the SAGA:

(1) Initial population P is randomly generated. Set the initial temperature T0, population number
n, crossover rate pc, mutation rate pm, temperature attenuation coefficient α, length l of Markov chain,
and build fitness function fitness [20].
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(2) Select the initial population.
(3) Cross operation and simulated annealing operation, P1, P2 crossover operation to generate

offspring c1, c2, calculate the fitness value f(Pi), f(ci) of Pi, ci, i = 1, 2. If f(ci) < f(Pi), replace ci
with Pi. If f(ci) > f(Pi), calculate the probability p = exp(−(f(ci) − f(Pi))/T ), generate a random
number r on 0, 1], and if r < p, accept ci.

(4) Mutation operation and SA operation are carried out in the same way as step (3).
(5) Iterate through the cooling formula T = T0 · αl, where l is the number of iterations.
(6) By judging the termination conditions of the algorithm, if the termination conditions are met,

the optimal solution is output, and the algorithm ends, otherwise, go to step (2) to continue the iteration.

3.3. Chaotic Map Simulated Annealing Genetic Algorithm

It is proved that Tent map can be used as a chaotic sequence to generate optimization algorithm;
therefore, tent chaos mapping adopts r to increase the initial population diversity of SAGA in this
paper, and at the same time, chaotic perturbation is performed on the optimal population value during
each iteration Chaotic sequence which is expressed as

tn+1 =

{
v ∗ tn, tn ≤ 0.5
v ∗ (1− tn), tn > 0.5

(10)

where tn, tn+1 ∈ [0, 1], v is a random number of (1, 2).
In order to increase the initial population diversity of the SAGA, use tent chaotic mapping to map

its initial population. Put the chaotic sequence carrier generated by Equation (10) into the space to be
solved, as shown in Equation (11).

xDim,New = (xmax − xmin) ∗ (t− 0.5) + (xmax + xmin) ∗ 0.5 (11)

where dim is the dimension of the chaotic sequence; xDim,New is the new value of chaotic sequence
carrier in the space to be solved; xmax and xmin are the maximum and minimum values of variables in
the sequence respectively.

The new value obtained by tent chaos mapping is used as the initial population distribution of
SAGA, which increases the diversity of population and improves the global searching ability of SAGA.
In order to further enrich the diversity of SAGA population, tent chaos perturbation is performed on
the optimal value of SAGA population after each SAGA iteration. The excellent individuals in the
population are disturbed by formula (12).

xNew = (x+ xDim,New)/2 (12)

where x is the individual that needs to be disturbed, and xNew is the new position of the excellent
individual after disturbance.

Judging the new position obtained after the disturbance, if it is better than the previous position,
update the original position with the new position, otherwise keep the original position unchanged.

4. IDENTIFICATION PRINCIPLE OF CMSAGA

The identification process of PMSWG is based on the difference between the output of its reference
model and the output of the adjustable model, and the parameters to be identified of the adjustable
model are modified according to the fitness function by an intelligent optimization algorithm to obtain
the parameters of PMSWG. Motor reference model is expressed as{

ẋ = f (θ, x, u)

y = Cx
(13)

where x is the state vector, u the input vector, θ the parameter vector to be identified, y a measurable
vector, C a constant matrix of suitable order. Motor adjustable model can be expressed as Equation (14),
and the variables in Equation (14) are similar to those in Equation (13).{

ˆ̇x = f
(
θ̂, x̂, u

)
ŷ = Cx̂

(14)
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where x̂ is the state vector of a motor adjustable model, θ̂ is an estimate of θ, ŷ is an estimate of y.
In order to identify the parameters, the fitness function is used to compare the reference model

with the adjustable model, which is expressed as

H(θ) = (y − ŷ)T (y − ŷ) (15)

The first-order forward Euler method is used for discretization which is expressed as

[
îd(k + 1)

îq(k + 1)

]
=


1− R̂s(k + 1)Ts

L̂d(k)
ωe(k)

L̂q(k)Ts

L̂d(k)

−ωe(k)
L̂d(k)Ts

L̂q(k)
1− R̂s(k)Ts

L̂q(k)


[
îd(k)

îq(k)

]
+


Ts

L̂d(k)
0

0
Ts

L̂q(k)

[ ud(k)

uq(k)− ωe(k)φ̂f (k)

]

(16)
According to (15), the fitness function is expressed as

f(Rs, Ld, Lq, φf ) =
(
id(k)− îd(k)

)2
+

(
iq(k)− îq(k)

)2
(17)

The inputs of the reference model and the adjustable model are ud, uq, id, iq, ωe, and the outputs
of the two are compared by fitness function. CMSAGA modifies the identified parameters through the
value of fitness function, and the modified parameters replace the parameters of the reference model
and repeat the process until the error between the reference model and the adjustable model output is
minimal. The principle of parameter estimation is shown in Fig. 2.

Measurement output

Calculate output

+

Adjustable model
ˆ ˆˆ

ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ

e q qs d
d d

d d d

q e fs e d d
d d

q q q

L iR u
pi = − i

L L L

uR L i
pi = i +

L L L

e q qs d
d d

d d d

q e fs e d d
q q

q q q

L iR u
pi = i + +

L L L

uR L i
pi = i +

L L L

Reference model

CMSAGA

Fitness function

y

ŷ
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Figure 2. Block diagram of parameter identification.

(1) Collect and save electrical signals under id = 0 and id = −2A, including ud, uq, id, iq, ωe.
(2) The range of parameters to be identified was set, and the population and related parameters

were initialized. Given the values of crossover rate and mutation rate, the maximum number of iterations
was set as 1000.

(3) Calculate the fitness value of individual through the mathematical model of the motor, refresh
the optimal individual of the population and the optimal individual constantly, and each individual
generates the next generation of individuals through CMSAGA, so that the fitness value of the next
generation of individuals is smaller than the previous generation. Judge whether the maximum number
of iterations is reached. If yes, identify the parameter output and end. If no, go ahead.

Figure 3 is the schematic diagram of CMSAGA.
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Figure 3. Flow chart of PMSWG parameter identification by CMSAGA.

5. SIMULINK SYSTEM SIMULATION

In order to verify the identification effect of CMSAGA, in the Matlab/Simulink environment, the vector
control system simulation model in the synchronous rotation coordinate system was built, as shown in
Fig. 4.

The PMSWG parameters used for the simulation are shown in Table 1.

Table 1. PMSWG parameter table.

Parameter Value Unit

Pole pairs 4 pairs

Resistance

Stator d-axis inductance

0.933

5.2

Ω

mH

Stator q-axis inductance

Permanent magnet flux

Moment of inertia

Rated power

11.5

0.175

0.003

1.0

mH

Wb

kg·m2

kW

Rated speed

Rated torque

100

1

rpm

N·m
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Figure 4. Simulation model of vector control system.

During simulation, rated speed is 1000 r/min; rated torque is 10N ·m; in the vector control strategy,
the data is collected in the two states of id = 0 and id = −2A; a total of 1000 sets of 40ms data were
collected and saved; sampling time is 1e-6 s. In order to ensure the comparison accuracy of the three
algorithms, all initial parameters are set to the same data; population is 20; the maximum number of
iterations is 1000; the crossover rate is 0.7; and the mutation rate is 0.1. In order to detect the global
optimization ability of the algorithm, the value range of the four parameters of motor identification is
between [0, 2], away from the reference value of the motor.

The identification results and errors in the operating state with the torque of 10N·m and the speed
of 1000 r/min are shown in Table 2.

Table 2. Comparison of three algorithms simulation.

Parameter GA SAGA CMSAGA

Resistance/Ω 0.972 0.962 0.941

Error/% 4.2 3.1 0.9

Ld/mH 5.63 4.96 5.26

Error/% 8.2 4.6 1.2

Lq/mH 12.3 11.86 11.41

Error/% 6.7 3.1 .8

Flux/Wb 0.182 0.171 0.173

Error/% 4.1 2.2 1.2

Fitness value 2.1 1.2 0.8

Recognition time/ms 32 3 11

6. EXPERIMENTAL VERIFICATION

In order to verify the feasibility of parameter identification of CMSAGA, the Simulink simulation model
was downloaded to RT-Lab to achieve the hardware-in-the-loop simulation experiment of PMSWG drive
system. The RT-LAB hardware-in-the-loop system configuration diagram of PMSWG is shown in Fig. 5.
The RT-LAB experiment platform is shown in Fig. 6.
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Figure 7. Identification curve of stator resistance. (a) GA. (b) SAGA. (c) CMSAGA.

When the speed is 1000 r/min and the load torque 10N ·m, the identification results of the three
methods are shown in Figs. 7–10. Because the values of d-axis inductance, q-axis inductance, and
permanent magnet flux are small, in order to better observe the identification results, the d-axis
inductance, q-axis inductance, and permanent magnet flux are amplified by 1000, 500, and 20 times
respectively, and the simulation time is 0.5 s.

Figures 7–8 show the identification results of the three algorithms of stator resistance and permanent
magnet flux, respectively. In stator resistance identification, the identification errors of GA, SAGA,
and CMSAGA are 3.1%, 2.9%, and 1.3%, respectively, and the identification accuracies of GA and
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Figure 8. Identification curve of permanent magnet flux. (a) GA. (b) SAGA. (c) CMSAGA.

SAGA are close, but the convergence speed of SAGA is faster than GA. In permanent magnet flux,
the identification errors of GA, SAGA, and CMSAGA are 3.7%, 3.5%, and 1.3%, respectively, and the
identification accuracies of GA and SAGA are close.

Figures 9–10 show the identification results of three algorithms for d-axis inductance and q-axis
inductance, respectively. In the d-axis inductance identification, the identification errors of GA, SAGA,
and CMSAGA are 2.1%, 1.54%, and 1.4%, respectively, and the identification accuracies of SAGA and
CMSAGA are almost the same. In the q-axis inductance, the identification errors of GA, SAGA, and
CMSAGA are 4.3%, 3.5%, and 1.7%, respectively, and the identification accuracy of CMSAGA is 51.4%
and 60.5% higher than that of SAGA and GA, respectively.
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Figure 9. Identification curve of Ld. (a) GA. (b) SAGA. (c) CMSAGA.
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Figure 10. Identification curve of Lq. (a) GA. (b) SAGA. (c) CMSAGA.
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GA completed the parameter identification of the motor at 67ms. SAGA completed motor
parameter identification at 52ms. CMSAGA completed the motor parameter identification at 34ms.
The convergence rate of CMSAGA is nearly twice that of GA and 53% faster than that of SAGA.

The identification accuracy and convergence speed of GA are poor, and the identification accuracies
of SAGA and GA in identifying stator resistance and permanent magnet flux are close. However, the
convergence speed of SAGA is faster than that of GA; the accuracy of parameter identification of
CMSAGA is higher; and the convergence speed is the fastest.

Figure 11 is the fitness function curves of the three algorithms. The fitness value of CMSAGA
converges to 1.8 at 34ms, while SAGA needs 52ms. GA converges to 2.9 at 64ms due to local
optimization and fluctuates greatly in the early experiment.

Fitness function (1.5/div) Fitness function (1.5/div)
Fitness function (1.5/div)

(a) (b) (c)

25.0k req/s
10k dot

25.0k req/s
10k dot

25.0k req/s
10k dot

Figure 11. Fitness function value curve. (a) GA. (b) SAGA. (c) CMSAGA.

The main reason that the identification speed and accuracy of the experiment have greater errors
than the simulation results is that the experimental noise, electromagnetic interference, hardware circuit
connection, and signal transmission errors will have a certain impact on the accuracy and convergence
speed of the parameter identification.

7. CONCLUSION

GA has poor accuracy, and SAGA has slow convergence speed. A motor parameter identification
method based on CMSAGA is proposed, which adds the randomness of SA and overcomes the defect
that GA is easy to fall into local optimum. In order to improve the convergence speed of the algorithm,
the initial SAGA annealing temperature was reduced, and then the inferior populations were tempered
and chaotic to ensure the accuracy of the algorithm. Conclusions from the experiments:

(1) The termination condition of the algorithm changes with the running time of the system, and
the motor stator resistance, d axis inductance, q axis inductance, and permanent magnet flux can be
identified online.

(2) The error of the proposed motor parameter identification method is less than 2%, and the
convergence speed is 34ms. The parameter identification accuracy and convergence speed are better
than traditional GA and SAGA.
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