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Low Profile/Single Layer X-Band Circularly Polarized Reflectarray
with a Linearly Polarized Feed

Shimaa A. M. Soliman1, 2, *, Ahmed M. Attiya1, and Yahia M. Antar3

Abstract—This paper presents a design of a right hand circularly polarized x-band reflectarray antenna
(RA) at a center frequency 12GHz. The reflectarray is fed by a linearly polarized dipole antenna. The
proposed reflectarray antenna can be used for CubeSat applications. The reflecting elements have
the shape of a pentagon. This shape is chosen to convert the incident linearly polarized fields to the
required circular polarization. A dipole antenna is used as linearly polarized (LP) feeding element for
the proposed reflectarray. This dipole antenna is tilted w.r.t the x-axis by an angle 45◦ to introduce
nearly equal polarizations in x and y directions on the aperture of the reflectarray. Each reflecting
element is adjusted to produce a phase shift 90◦ between the reflection coefficients in x and y directions.
The required reflected phase is realized by adjusting a scaling factor (SF) for the pentagonal patch in
x direction to the corresponding SF in y axis. This phase difference is responsible for polarization
conversion of the incident plane wave into circularly polarized reflected wave. The reflectarray is
designed with focal to-diameter (F/D) ratio equals unity. In this work, an efficient technique is discussed
for modelling the reflectarray designed. This technique is based on developing a Visual Basic Script
file for allocating the reflecting elements with their corresponding dimensions in their location on the
simulation tool. This script file is used directly by the simulation tool (HFSS) to draw the complete
model automatically. This procedure has a significant role on simplifying the modeling of complicated
structure like the proposed reflectarray. The proposed reflectarray antenna is simulated at 12GHz. The
obtained axial ratio (AR) is found to be 2.1 dB, and peak gain is 18 dBi. The antenna is also fabricated
and measured for verification.

1. INTRODUCTION

CubeSats are mall satellites, light weight and low cost which provide access to space with possibilities
to realize Internet of Space (IoS), and aim to provide global network access, especially for remote areas.
Due to the small size, there are a limited volume in the spacecraft to mount the antenna systems required
for remote sensing applications and data transmission links [1–3]. The establishment of a high-data-rate
communication link between a CubeSat and the Earth requires a planar and high-gain antenna.

A reflectarray antenna consists of a planar array of reflecting elements which are illuminated by
a feeding antenna, in a similar way to a parabolic reflector antenna. To generate a collimated or
a shaped beam, the reflecting elements are designed to introduce the required phase distribution on
aperture of the reflectarray [4, 5]. Linear-to-circular polarization conversion can also be obtained by
adjusting the geometry of the reflecting element. Various reflectarrays have been proposed to achieve
linear polarizations (LP) by using reflecting elements with the required phase of reflection over a wide
frequency range [6, 7]. However, in many applications, circular polarization (CP) may be preferred to

Received 1 July 2022, Accepted 29 August 2022, Scheduled 11 September 2022
* Corresponding author: Shimaa Ahmed Megahed Soliman (shimaa megahed@eri.sci.eg).
1 Microwave Engineering Department, Electronics Research Institute (ERI), Cairo, Egypt. 2 Department of Electrical and Computer
Engineering, Queen’s University, Kingston, ON, Canada. 3 Department of Electrical and Computer Engineering, Royal Military
College of Canada, Kingston, ON, Canada.



88 Soliman, Attiya, and Antar

reduce losses caused by multipath fading, Faraday rotation, and polarization mismatch [8]. The design
of CP reflectarrays is considered a challenging task. Several CP reflectarrays have been designed with
remarkable performance in terms of gain, power, bandwidth, cross-polarization levels, and axial ratio
(AR) [9, 10].

A CP reflectarray can be obtained by two different methods. The first one is by using a CP feeding
source with a reflectarray composed of angularly rotated reflecting elements to obtain the phase delay for
the CP reflectarrays [11, 12]. The second method is by applying an LP feed to illuminate the reflectarray
elements which convert the incident linearly polarized field into circularly polarized fields [13, 14]. In this
case, the reflecting elements are designed to transform LP incident waves into CP reflected waves and to
collimate the resulting radiated fields in the far field. Different shapes of reflecting elements were used
to design CP reflectarrays with an LP feed [15–17]. On the other hand, horn antenna is usually used as
an LP feed for reflectarray. However, in this paper, a dipole antenna is used as the feeding antenna for
the proposed reflectarray to reduce the blockage effect of the feeding element. This dipole antenna also
has the advantages of less weight and lower profile than a standard horn antenna [18, 19]. In this paper,
a new design of a CP reflectarray composed of pentagon-shaped patches reflecting elements illuminated
by an LP dipole antenna is proposed. The proposed CP reflectarray covers the satellite communication
which operates at the X-band at frequency 12GHz. The flat surface of the RA simplifies the mounting
of the antenna on a small spacecraft.

Figure 1 shows the geometry of the proposed reflectarray antenna. It consists of a reflectarray
centered at the origin at the x-y plane. The reflectarray is composed of pentagonal reflecting elements
printed on a grounded dielectric substrate. This reflectarray is fed by a dipole antenna which is located
at the focal point along the z axis. The dipole antenna is parallel to the x-y plane, and it is tilted
by an angle 45◦ w.r.t the x-axis. This orientation introduces nearly equal field components in x and
y directions on the aperture of the reflectarray. On the other hand, by controlling a scaling factor
of reflecting pentagonal patches in x direction, it would be possible to adjust the phase distribution
of the reflected waves in x direction to introduce the required radiation pattern of the reflectarray.
Moreover, by adjusting the aspect ratio of the scaling factor (SF) for the pentagon in x direction to
the corresponding SF in y axis, it would be possible to adjust the phase shift between the reflection
coefficient in x direction and the reflection coefficient in y direction to be 90◦. Thus, by adjusting the
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Figure 1. Geometry of the proposed reflectarray antenna.
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phase shift between the x and y components of the reflected fields, it would be possible to convert the
linearly polarized incident plane wave of the feeding dipole antenna to a collimated circularly polarized
radiation pattern from the reflectarray.

This paper is organized as follows. Section 2 discusses the design of the pentagon reflecting element.
Section 3 presents the design of the complete structure of the CP reflectarray with an LP feeding dipole
antenna. Section 4 presents the automation method for modeling the layout of the proposed reflectarray.
Section 5 presents the results and discussions. The concluding remarks are presented in Section 6.

2. ANALYSIS AND DESIGN OF THE SINGLE ELEMENT

The reflecting element has a pentagon-shaped patch. The advantage of this pentagon shape is that
it enables circular polarization through excitation of orthogonal modes in the introduced cavity under
the patch. This pentagon shape was used before in designing circularly polarized microstrip patch
antenna [20]. However, up to our best knowledge, it was not used before as a reflecting element in
reflectarray antenna. Figure 2(a) shows the geometry of the reflecting element. The dimensions of
the unit cell are dx × dy. For the case of circularly polarized patch antenna, the required conditions
to introduce circular polarization are b/a = 1.0603, c/a = 0.3061 [20]. The reflectarray elements are
arranged in a rectangular cell. The periodicity of this unit cell is chosen to be half the free space
wavelength at the center operating frequency f0 = 12GHz. Thus, the periodicity in x-y plane is
dx=dy = 12.5mm. Hence, the maximum allowable value for the length of the reflecting element is
chosen to be a = 12mm. The remaining dimensions of the reflecting patch are obtained in terms of the
length a. The reflecting elements are printed on a grounded FR4 substrate with a dielectric constant
εr= 4.4 and a dielectric thickness h = 1.5mm.
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Figure 2. (a) Geometry of the pentagon patch reflecting element. (b) Simulation model of a reflecting
element inside periodic boundary conditions.

The phase of the reflected fields from a reflecting element is obtained by simulating the reflecting
element in periodic boundaries to model an infinite periodic structure. The model of the reflecting
element unit cell inside periodic boundary conditions is shown in Figure 2(b). A Floquet port with a
normal incident wave is used to excite the LP incident plane wave for both x- and y-polarizations. The
reflection coefficients of these two orthogonal LP incident waves can be controlled to generate reflected
CP plane waves by adjusting the scaling factor of the pentagon in x and y directions.

Figure 3 shows the phase of the reflection coefficient as a function of the SF at the center frequency
f0. It can be noted that the phase of the reflected field can be controlled over a range from 0◦ to 320◦
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(a) (b)

Figure 3. (a) Decomposition of the incident LP at 45◦ slant into two orthogonal components in the
direction of the x and y. (b) Decomposition of the reflected wave in the direction of thex and y.

corresponding to SF ranging from 0.3 to 0.8 which is considered a suitable and wide range of phase
for obtaining the required phase distribution. Whereas, the pentagonal patch is characterized by its
two scaling factors SF x and SF y, in x and y directions, respectively. To convert an incident linearly
polarized wave to a circularly polarized wave, the incident polarization should be tilted by an angle π/4
w.r.t the x axis to obtain two equal linearly polarized components in x and y directions on the plane
of the reflectarray as shown in Figure 3. In addition, it is required to maintain the phase shift between
the reflection coefficients of these two components to be π/2 to obtain circular polarization. Thus,
from Figure 4, a single point is chosen where the phase difference between the phases of the reflection
coefficients of the x polarized and the y polarized components is π/2. This procedure is repeated for
different values of the SF y in the y direction to obtain the corresponding value of SF x in the x direction
which satisfies this condition. Then, a lookup table is generated for the phase of the reflection coefficient
of the y polarized wave as a function of the value of SF y and the corresponding value of SF x which
introduce a phase shift π/2 in the reflection coefficient of the x polarized wave.

0.3 0.4 0.5 0.6 0.7 0.8

Figure 4. Phase of the reflection coefficient of the reflected signal from the reflecting element in periodic
boundaries as a function of the scaling factor.

3. DESIGN OF THE REFLECTARRAY ANTENNA STRUCTURE

The CP reflectarray antenna is designed by using the proposed pentagonal reflecting element presented
earlier in Section 2. The structure is composed of an array of reflecting elements organized on planar
circular disk in front of an LP dipole antenna. The diameter of the reflectarray is 26.25 cm which
is equivalent to 10.5λo at the center frequency 12GHz. The reflectarray is designed with a focal to
diameter ratio (F/D) equals unity. The reflectarray is fed at its focal point by a λo/2 dipole antenna
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which radiates a linearly polarized field. The dipole is rotated 45◦ with respect to the x-axis to introduce
nearly equal excitations in x and y polarizations at the plane of the reflectarray. The required phase
distribution along the aperture of the reflectarray to achieve a simple broadside pencil beam can be
obtained as:

∆φm,n = 2πN ′ − k
(
rm,n − R⃗ · r̂o

)
(1)

where N ′ = 1, 2, 3, . . . , r(m,n) is the distance from the dipole to the m,n reflecting element; R⃗ is the
position vector from each element to the center of the array (0, 0, 0); and r̂o is the position vector in
the direction of the main beam of the reflectarray. Figure 5 shows the required phase distribution
of the reflected fields along the aperture of the RA to provide a broadside radiation in θo = 0◦ and
φo = 0◦ direction. This phase distribution is implemented by arranging the reflecting elements with
the corresponding SF for each element according to the required phases of the reflected fields at the
position of these elements.

Figure 5. Phase distribution along the aperture of the reflectarray to provide a broadside radiation in
θo = 0◦ and φo = 0◦ direction.

4. AUTOMATION OF THE LAYOUT MODEL

To model the complete reflectarray assembly, it is required to allocate different reflecting elements in
their positions according to the phase distribution shown in Figure 5. It should be noted that direct
method for placing all reflecting elements with their corresponding dimensions in their locations would
be quite complicated. One advantage of HFSS is that the geometry of the simulated structure can be
presented by a Visual Basic Script (VBS), which can be loaded directly by HFSS to draw the required
structure. This tool is quite useful for modeling complicated structures like the proposed reflectarray.

In the present case, we calculate the phase shift of the reflected fields for both x and y polarized
fields as functions of the two scaling factors SF x and SF y as discussed in Section 2. By using these
values, we generate a lookup table for different values of the phase shift ϕy in y direction as functions
of SF y and the corresponding values of SF x which introduce simultaneous phase shift ϕx = ϕy − 90◦.
Then we calculate the required phase distribution for the x polarized reflect fields from the aperture of
the reflectarray as discussed in Section 3. According to this phase distribution and the center locations
of the reflecting elements on the reflectarray, we determine the required values of SF x and SF y for each
reflecting pentagonal patch on the aperture of the reflectarray. By using a loop algorithm, we can write
the script line for drawing pentagon with a specific center location and scaling of its dimensions. The
output of this loop algorithm would be the required Visual Basic Script which can be loaded by HFSS
to draw the required reflectarray automatically.

This procedure presents a significant improvement in developing the model of the reflectarray. The
array is built according to the following steps and simplified in the block diagram in Figure 6:
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Figure 6. Block diagram for developing the simulation model of the reflectarray.

- Generate two dimensional arrays for φx(SF x, SF y) and φy(SF xSF y) as a function of the two-
dimensional parameters of the pentagon shape patch a and b.

- Achieving all array elements which satisfy that the phase difference ∆φ = |φx−φy| = 90◦.

- Loop is executed using VBS for each element in an array, each element constructed with the
dimensions of SF x and SF y, corresponding to the required phase distribution of the fields along
the aperture of the RA to provide a broadside radiation.

- Naming and locating each elliptical patch from its center to its horizontal location on the aperture
of the reflectarray.

- The reflectarray is ready to be simulated with the proposed feeding and the surrounding radiation
boundaries.

5. RESULTS AND DISCUSSIONS

Figure 7 shows the layout of the designed reflectarray by using 316 pentagonal reflecting elements and
the feeding dipole antenna at distance 262.5mm and rotated by 45◦ with x-axis. Figure 8 shows the
obtained 3D radiation pattern of the designed reflectarray at the center frequency 12GHz. It has a
broadside radiation with main beam in the direction θo = 0◦ and peak gain 18.8 dB. Figure 9(a) and
Figure 9(b) show the RHCP and LHCP components of this radiation pattern in the xz-plane (φo = 0◦)
and (φo = 90◦), respectively. It can be noted that the designed array transmits RHCP wave. In
Figure 10, the obtained axial ratio in the direction of the main beam is 2.1 dB. The cross-polarized

Figure 7. Layout of the proposed CP reflectarray antenna using the pentagon patches and the LP
dipole antenna rotated 45◦ with x-axis.
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Figure 8. The simulated 3D radiation pattern of broadside pencil beam obtained by the proposed
reflectarray antenna.

(a) (b)

Figure 9. Plot of the simulated radiation pattern RHCP and LHCP at 12GHz and in the xz-plane.
(a) (φ = 0◦). (b) (φ = 90◦).

LHCP component is less than the co-polarized component by more than 15 dB in the direction of the
main beam. The obtained results are quite suitable for the required application for the x-band satellite
system.

For the sake of measuring the bandwidth performance of the proposed antenna array, it is simulated
at two different frequencies ±0.5GHz. The results presented in Figure 11 show the broadside beam, the
LHCP and RHCP components of the transmitted wave, at φ = 0◦ and φ = 90◦, and the axial ratio at
two frequencies 11.5GHz and 12.5GHz. As noticed in the presented results, the antenna exhibits good
performance with a wide bandwidth.

For verification the reflectarray antenna with a linearly polarized feeding is fabricated and measured.
Figure 12 shows the measured |S11| for the feed antenna. It can be noted that |S11| at the required
operating frequency 12GHz is less than−20 dB. Figure 13 shows the fabricated reflectarray antenna with
the feeding dipole antenna. The radiation pattern of the fabricated reflectarray antenna is measured as
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shown in the setup in Figure 14. Figure 15 shows the measured normalized gain pattern in two different
planes φ = 0◦ and φ = 90◦, respectively compared to the simulated results of the radiation with a
peak gain 18 dBi. Figure 16 shows the measured and simulated cross polarization. The measured cross-

Figure 10. Plot of the simulated axial ratio at φ = 0◦ and φ = 90◦.
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(a) (b)

Figure 11. The radiation pattern, the LHCP and RHCP component, and the axial ratio at two
frequencies. (a) 11.5GHz and (b) 12.5GHz.

Figure 12. Variation of the measured magnitude of the reflection coefficient of the dipole antenna with
frequency.
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(a) (b)

Figure 13. The fabricated prototype of the proposed reflectarray antenna with the feeding dipole
antenna. (a) Top layer. (b) Bottom layer.

Figure 14. Fabricated reflectarray antenna
inside the anechoic chamber for the radiation
measurement.

Figure 15. The measured radiation pattern of
broadside pencil beam obtained by the proposed
reflectarray antenna compared to the simulated
results.

polarized LHCP component is less than the co-polarized component by more than 15 dB in the direction
of the main beam. The difference between the measurement and simulation results can be explained
due to the available measurement facility which is based on near field measurements with fixed dipole
at discrete angles in azimuth direction. Then, the discretized near field measurements are converted
to far field. In addition, the alignment and fixing procedure is done manually, which has some effect
on the final measurements. Despite all these effects, the obtained measured results satisfy the required
specifications. On the other hand, Figure 17 shows that the measured axial ratio in the direction of
the main beam is 2.5 dB. Good agreements between the simulated and measured results can be noted.
The simulated aperture efficiency is found to be 69.74% while the measured aperture efficiency is found
to be 63.36%, which is quite acceptable. The aperture efficiency of the proposed antenna is quite low.
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(a) (b)

Figure 16. Plot of the measured and simulated radiation pattern RHCP and LHCP at 12GHz and in
the xz-plane. (a) (φ = 0◦). (b) (φ = 90◦).

Figure 17. Plot of the measured axial ratio at φ = 0◦ and φ = 90◦.

The main reason for this is not the reflectarray but the feeding element. The simple dipole feeding
element has a wide beam width, thus there is a lot of spill over. However, we preferred using dipole
antenna instead of a standard horn antenna for two purposes: the first is to reduce the size and weight
of the feeding element, and the second is to reduce the blockage effect. However, the main purpose of
the present paper is to introduce an appropriate reflecting element for linear to circular polarization
conversion.

6. CONCLUSION

A new design of single layer pentagonal shape reflecting element is used to construct an RA antenna to
focus a high-gain beam at 12GHz while converting the incident polarization from linear into circular
polarization. This reflectarray antenna is suitable for small satellite applications. The proposed array
consisting of 316 pentagonal reflecting elements arranged in circular aperture in two dimensions on
planar surface with equal spacing equals λ/2 at the center frequency 12GHz. The reflectarray is
fed by a linearly polarized dipole antenna. Each reflecting element is adjusted to provide a 90◦
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phase difference between the reflection phases of the x and y polarizations to convert the linearly
polarized wave into circularly polarized reflected wave. The complicated layout of the proposed model
is developed automatically using VBS script. This procedure has a significant role in simplifying the
simulation procedure. The designed reflectarray has an RHCP radiation with a peak gain 18.8 dBi,
axial ratio 2.1 dB, and cross polarization level more than 15 dB at the center frequency 12GHz. The
proposed reflectarray was fabricated and measured for the verification of polarization conversion. The
experimental results of the designed reflectarray are in good agreement with the simulation ones.
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