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Uncertainty Analysis Method of Computational Electromagnetics
Based on Clustering Method of Moments

Jinjun Bai*, Mingzhao Wang, and Xiaolong Li

Abstract—Uncertainty analysis is one of the hot research issues in the field of computational
electromagnetics in the past five years. The Method of Moments is a non-embedded uncertainty analysis
method with relatively high computational efficiency and has the unique advantage of not being affected
by the “curse of dimensionality”. However, when the nonlinearity between the simulation input and
output is large, the accuracy of the Method of Moments is not ideal, which severely limits its application
in the field of computational electromagnetics. In this paper, an improved strategy based on the central
clustering algorithm is proposed to improve the expected value prediction results of the Method of
Moments, thereby improving the accuracy of the overall uncertainty analysis. At the same time, the
co-simulation technology of MATLAB software and COMSOL software is completed, then the accuracy
and computational efficiency of the proposed algorithm in this paper are quantitatively verified. In
this case, the clustering Method of Moments is effectively popularized in commercial electromagnetic
simulation software.

1. INTRODUCTION

Uncertainty analysis is a hot topic in the field of computational electromagnetics in recent five years, in
order to accurately describe the random factors caused by vibration [1, 2], manufacturing tolerance [3, 4],
and lack of knowledge [5–7] in the actual electromagnetic engineering environment.

Monte Carlo Method (MCM) is the most widely used uncertainty analysis method, and it has
attracted the attention of computational electromagnetism for its advantages of high calculation
accuracy and easy programming [8–10]. MCM is based on the law of weak large numbers, which reflects
the researchers’ cognition of the concept of uncertainty, that is, considering all possible situations.
Therefore, in theoretical research, MCM simulation results are usually used as standard data to verify
the accuracy of other uncertainty analysis methods, rather than test data. In other words, the difference
between the simulation results of the MCM and the measured results is the basis for judging whether
the uncertainty analysis method is effective, while the difference between the simulation results of other
methods and the MCM is the basis for judging the effectiveness of the uncertainty analysis method itself.
However, the computational efficiency of the MCM is very low, and it is completely uncompetitive in
solving complex electromagnetic simulation problems.

Subsequently, some efficient uncertainty analysis methods, such as Direct Solution Technique
(DST) [11], Unscented Transforms (UT) [12, 13], and Perturbation Method (PM) [14], have received
increasing attention, but they have not been widely applied due to their poor accuracy.

In 2014, the generalized polynomial chaos theory was gradually improved in the field of
computational fluid dynamics and introduced into the field of computational electromagnetics. The
theory includes two kinds of uncertainty analysis methods, namely Stochastic Galerkin Method
(SGM) [15, 16] and Stochastic Collocation Method (SCM) [17, 18]. The convergence of chaotic
polynomial is relatively high, so SGM and SCM have the dual advantages of high calculation accuracy
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and high calculation efficiency. However, when the number of random variables increases, the number
of chaotic polynomials required by the SGM and the number of matching points required by the SCM
increase exponentially, which seriously reduces the computational efficiency. When the number of
random variables is more than 20, the computational efficiency is not even as good as that of the MCM,
resulting in long simulation time that cannot be realized, which is the “curse of dimensionality” problem.
In 2018, a new sparse grid strategy was introduced to the generalized polynomial chaos theory, but its
effect was only to alleviate the “curse of dimensionality” problem. The application scope is increased
to 30 random variables, but the essence of exponential growth is not changed [19].

Since 2019, the “curse of dimensionality” of uncertainty analysis method has been a bottleneck
problem that needs to be solved urgently in the field of computational electromagnetics. The
representative research results are the Stochastic Reduced Order Models (SROM) of Liverpool
University [20] and the Method of Moments (MoM) of York University [21]. SROM carries out
deterministic electromagnetic simulation at specific sampling points and completes uncertainty analysis
based on statistical methods to avoid the occurrence of “curse of dimensionality”. However, at this
stage, there is no method to effectively determine the number of specific sampling points required for
SROM, so its accuracy cannot be guaranteed. MoM expands the expression by approximating the Taylor
formula between the simulation input and simulation output, and characterizes uncertainty analysis by
using the expected value results and the standard deviation results [21]. However, when the nonlinearity
between simulation input and output is large, the accuracy of the algorithm is difficult to guarantee.
In [22], an Improved MoM (IMoM) based on Richardson extrapolation method is proposed to improve
the accuracy of the MoM in calculating the standard deviation results, but the accuracy of the expected
value results has not been solved.

When dealing with the computational electromagnetic simulation problem with a large number
of random variables, other methods cannot be realized due to the long simulation time, so it is still
necessary to choose one of the SROM and IMoM to complete the simulation.

At the same time, many simulations in computational electromagnetics need to be completed by
the finite element method in commercial electromagnetic simulation software, such as FEKO, CST, and
COMSOL. How to promote the uncertainty analysis method in commercial electromagnetic simulation
software is another research hotspot in recent years. In January 2022, COMSOL company released
version 6.0 software, which introduced uncertainty analysis module into commercial electromagnetic
simulation software for the first time. However, its module is based on the MCM and SCM as the
core, unable to solve the “curse of dimensionality” problem, which will cause trouble to users. The
most intuitive problem is that when the user introduces too many uncertain parameters, it will lead to
that the construction cannot be solved within the specified time, resulting in a waste of time cost, and
more seriously, the user is often not clear about the specific reasons for that the program can not be
completed, resulting in further waste of computing resources.

In this paper, an improved strategy based on central clustering algorithm is proposed to improve
the accuracy of the expected simulation results of method of moments, so as to completely solve the
problem of “curse of dimensionality”. At the same time, the proposed method is applied to COMSOL
commercial electromagnetic simulation software to achieve efficient uncertainty analysis under high-
dimensional random variables, and further expand the application scope of uncertainty analysis method
in computational electromagnetics.

2. MOM AND ITS RICHARDSON EXTRAPOLATION METHOD IMPROVEMENT

In uncertainty analysis, the input of electromagnetic simulation is no longer deterministic parameters,
and it must be modeled by random variables, as shown in formula (1), where ξi represents the random
variable, and ξ is the set of random variables, which is the uncertainty input of the whole simulation.

ξ = {ξ1, ξ2, ..., ξn} (1)

MoM is based on the Taylor formula expansion theory. Assuming that the simulation input has a
unique random variable ξ1, the relationship between the simulation output and the input is:

y(ξ1) = y(ξ1 ) +
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where ξ1 represents the expected value of a random variable. y(ξ1) represents the simulation output
related to random variable ξ1 and ignores the high order expansion. The approximate calculation results
of expected value and variance are as follows:

E(y) ≈ y(ξ1) (3)

σ2(y) = E(y2)− E2(y) ≈
(

dy

dξ1

)2

σ2
ξ1 (4)

When n random variables are considered in formula (1), the approximate calculation results of
expected value and standard difference are:

E(y) ≈ yEM
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(5)
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The output parameter sensitivity dy
dξi

in formula (6) can be calculated by differential calculation in the

following formula:

dy

dξi
=

yEM

(
ξ1, · · · ξi + δi · · · , ξn

)
− yEM

(
ξ1, · · · , ξi, · · · , ξn

)
δi

(7)

Among them, perturbation δi is the step size in the difference formula; the value is δi =
max(ξi)−min(ξi)

2 ;
max(ξi) is the maximum of random variable ξ1; min(ξi) is the minimum of random variable ξ1; yEM ( )
is the result of deterministic electromagnetic simulation at a specific point.

Obviously, when the nonlinearity between input and output of electromagnetic simulation is large,
the approximate error in formula (2) will seriously affect the calculation accuracy of MoM. In order to
improve the accuracy of standard deviation simulation results, [22] proposes an approximate method
of sensitivity difference formula based on Richardson extrapolation, which solves the influence of
nonlinearity on calculation accuracy in the calculation process of standard deviation. The principle
is as follows:
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However, the accuracy of the expected value in formula (5) is still affected by nonlinearity, and the
calculation accuracy of the IMoM needs to be improved.

3. CLUSTERING METHOD OF MOMENTS

In order to improve the accuracy of MoM in predicting the expected value, this paper proposes a
clustering method of moments based on central clustering algorithm. In the process of center clustering,
the optimization algorithm is needed to find the cluster center. Because the constructed optimization
problem is relatively simple, the general intelligent optimization algorithm can be realized. In this paper,
genetic algorithm [23, 24] is used to optimize. The concrete steps of clustering method of moments are
as follows:

Step 1, similar to the MCM, the random variable set ξ = {ξ1, ξ2, ..., ξn} in formula (1) is sampled; the

number of sampling points is Kξ; and the form of a single sampling point is Mi =
{
M i

ξ1
,M i

ξ2
, ...,M i

ξn

}
.

Based on the law of weak large number, the sampling point is convergent, that is, a large number of
sampling points can fully characterize the uncertainty of simulation input parameters.
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Step 2, to describe similarity, define the Euclidean distance between two chromosomes L(Mi,Mj),
as follows:

L(Mi,Mj) =

√√√√ n∑
k=1

(
M i

ξk
−M j

ξk

)2
. (9)

Step 3, several representative sampling points are selected to replace all the sampling points
Mi, i = 1, 2, ...,Kξ. The number of representative sampling points is tξ. Each representative sampling
point Ni, i = 1, 2, ..., tξ is an n-dimensional data, which can represent the proportion of the original
sampling points, and the percentage is supposed to be Pi, i = 1, 2, ..., tξ.

Step 4, sorting the original sampling points from 1 to Kξ, the parameters to be identified of genetic
algorithm are the serial numbers of the representative sampling points, and their values are all in
the range of [1, Kξ]. The minimum Euclidean distance Lmin(Mi) between each sampling point and tξ
representative sampling points is calculated, and the calculation formula is as follows:

min
{
L(Mi,MN1), L(Mi,MN2), ..., L(Mi,MNtξ

)
}
. (10)

Step 5, the fitness function value of chromosome Mi can be calculated as Fin(Mi) =
Kξ∑
i=1

Lmin(Mi).

Step 6, through the conventional selection, crossover and mutation operation of genetic algorithm,

the optimal solution representing the number of sampling points is obtained
{
N best

1 , N best
2 , ..., N best

tξ

}
.

Step 7, with the minimum Euclidean distance as the standard, the percentage
{
P best
1 , P best

2 , ..., P best
tξ

}
of the number of sampling points represented by tξ sampling points is counted, and it is obvious that

each percentage P best
i is greater than zero, and the sum is 1.

Step 8, deterministic electromagnetic simulation is carried out at each sampling point N best
i , and

the output value of simulation results is denoted as yEM (N best
i ).

Step 9, the expected value of uncertainty analysis results is calculated as follows

E(y) =

tξ∑
i=1

[
yEM (N best

i )× P best
i

]
. (11)

Step 10, redetermine the center point (ξ1, · · · , ξi, · · · , ξn) of random variable model

(
ξ1, · · · , ξi, · · · , ξn

)
=

tξ∑
i=1

[
P best
i ×N best

i

]
. (12)

Step 11, formula (6) and formula (8) are applied to predict the standard deviation results of
uncertainty analysis.

Compared with the IMoM, the clustering method of moments adds tξ times of deterministic
electromagnetic simulation calculations, and the impact of this increase in simulation time can be
almost ignored. In other words, the clustering method of moments not only improves the accuracy
of uncertainty analysis, but also retains the unique advantages of the MoM to solve the “curse of
dimensionality” problem.

It is worth noting that the optimization problem only needs to find the number of sampling points,
so the problem to be optimized is relatively simple. When the genetic algebra is sufficient, the genetic
algorithm can inevitably solve the optimal solution without considering the convergence problem or
suboptimal solution of the genetic algorithm itself.

4. PARALLEL CABLE CROSSTALK SIMULATION EXAMPLE

In order to verify the accuracy of the clustering method of moments proposed in this paper, the
simulation example of parallel cable crosstalk proposed in [18] is used to complete the uncertainty
analysis, and the model is shown in Figure 1. The figure shows two cables with a length of 0.5 meters
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Figure 1. Model diagram of parallel cable crosstalk simulation example [18].

and a parallel distance of 0.03 meters. These two cables have geometric parameter uncertainty at the
height from the ground. The random variable model is as follows:{

h1(ξ1) = 0.045 + 0.005× ξ1 [m]

h2(ξ2) = 0.03 + 0.005× ξ2 [m]
(13)

ξ1 and ξ2 are random variables satisfying uniform distribution in [−1, 1]. The excitation source is an AC
power supply with amplitude of 1V, and its frequency range is from 1MHz to 100MHz. The resistance
of the model is 50Ω, and the simulation output is the crosstalk voltage value of the disturbed load end.
Other parameters of the model are consistent with [18].

According to the clustering method of moments, the random variable set {ξ1, ξ2} is sampled.
The number of sampling points is 6400, which represents Kξ in Section 3. The number of selected
representative sampling points is 8, which is tξ in Section 3. Obviously, L(Mi,Mj) is the Euclidean
distance of two-dimensional data. The genetic algorithm is carried out, and the results are shown in
Table 1.

Table 1. Representative sampling points and their percentages for the clustering method of moments.

Representative sampling points Corresponding percentage

1 N best
1 = {−0.6338, 0.5835} P best

1 = 0.1327

2 N best
2 = {−0.6862,−0.1864} P best

2 = 0.1248

3 N best
3 = {0.7271,−0.2957} P best

3 = 0.1106

4 N best
4 = {−0.4472,−0.6906} P best

4 = 0.1397

5 N best
5 = {−0.0385, 0.8603} P best

5 = 0.0933

6 N best
6 = {0.4329,−0.7173} P best

6 = 0.1244

7 N best
7 = {0.8643, 0.7700} P best

7 = 0.1045

8 N best
8 = {0.1176, 0.1859} P best

8 = 0.1700

According to formula (6), formula (8), and formula (11), the uncertainty analysis results can be
obtained, as shown in Figure 2(a) and Figure 2(b). Figure 2(a) is the expected value of crosstalk
voltage, while Figure 2(b) is the standard deviation. The deterministic electromagnetic simulation was
completed on the original 6400 sampling points, and the obtained the MCM uncertainty analysis results
were used as standard data to verify the effectiveness of the proposed method.

Feature Selective Validation (FSV) method is used to determine the effectiveness of the simulation
results. The FSV value provided by this method can quantitatively evaluate the difference between
the simulation data and standard data, and the FSV value corresponds to the qualitative evaluation
standard. More details about the FSV method can be referred to [25–27]. With the results of the MCM
as the standard data, the FSV values of different uncertainty analysts are shown in Table 2. For the
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(a) (b)

Figure 2. Uncertainty analysis of crosstalk voltage. (a) Expected value result. (b) Standard deviation
results.

Table 2. The FSV values of uncertainty analysis results.

MoM IMoM Clustering MoM

Expected results 0.2328 0.2328 0.0017

Standard deviation results 0.1061 0.0295 0.0327

expected value results, the results of the MoM and theIMoM are calculated by formula (5). The FSV
value is 0.2328, which is only the evaluation grade of ‘Good’, while the FSV value of Clustering MoM is
0.0017, which is the evaluation grade of ‘Excellent’. The effectiveness of the proposed Clustering MoM in
improving the calculation accuracy of the expected value is verified. For the standard deviation results,
the FSV value of IMoM and Clustering MoM has little difference, which belongs to the ‘Excellent’
qualitative evaluation grade, slightly better than the ‘Very Good’ qualitative evaluation grade of the
MoM.

To sum up, with the quantitative evaluation results of the FSV method, the accuracy of the
clustering method of moments proposed in this paper can be verified in the simulation example of
parallel cable crosstalk, especially in the calculation accuracy of expected value.

5. PROMOTION OF CLUSTERING METHOD OF MOMENTS IN COMSOL
SOFTWARE

In order to apply clustering method of moments to COMSOL commercial electromagnetic simulation
software, it is necessary to call COMSOL software automatically. At this time, COMSOL software
needs to be regarded as a black box model; the deterministic simulation input parameters are given;
and the uncertainty analysis post-processing is completed through the clustering method of moments.
In this paper, the co-simulation platform of COMSOL software and MATLAB software is built to solve
this problem, and the implementation process is shown in Figure 3.

Firstly, there are two sources of deterministic electromagnetic simulation input parameters. One
is the optimization result

{
N1, N2, ..., Ntξ

}
of genetic algorithm, and the other is the input parameter

with perturbation δi in formula (8). Secondly, the sub-function of MATLAB is generated by COMSOL
software, and the input parameters are modified. At the same time, TXT file is used for data
transmission. When the MATLAB software reads the TXT file, the pointer programming method
can be used to eliminate the useless information rows generated by COMSOL software. For example:

(1) ——fid = fopen (strcat(‘EM simulation result’, ‘.txt’));
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Figure 3. Construction of a co-simulation platform between COMSOL software and MATLAB
software.

(2) ——data = textscan (fid, ‘%f’, ‘HeaderLines’, 8);

Finally, the calculation results of the expected value are obtained by formula (11), and the calculation
results of the standard deviation are obtained by formula (6) and formula (8).

Next, the “Antenna Crosstalk Simulation on Aircraft Fuselage” case in COMSOL official website
(Figure 4) is used to verify the effectiveness of the proposed joint simulation scheme [28]. The detailed
model of the case and the download link can be referenced. In order to reflect the advantages of
clustering method of moments in solving high dimensional random variable model, a transmitting
antenna (Antenna 3) is added to the original model, and its parameters are completely consistent
with Antenna 1, only different in position.

Figure 4. Screenshot of the case of aircraft antenna crosstalk in COMSOL software.
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In this case, eight random variables are introduced, and the specific uncertainty is as follows:{
εr(ξ)=4.3× (1 + 0.1× ξ3), µr(ξ)=1 + 0.02× ξ4, P2,x(ξ)=0.05× ξ5 [m], P2,y(ξ)=−2.5 + 0.2× ξ6 [m],

P2,z(ξ)=0.05× ξ7 [m], P3,x(ξ)=0.05× ξ8 [m], P3,y(ξ)=−4.5 + 0.2× ξ9 [m], P3,z(ξ)=0.05× ξ10 [m].
(14)

where random variable ξ3 satisfies the following probability density function relationship:

pdf(ξ3) =


1

2
sin

(
3π

2
ξ3

)
+

(
1− 1

3π

)
, 0 ≤ ξ3 ≤ 1

0, ξ3 is other values

(15)

The random variables ξi (i = 4, ..., 10) are uniformly distributed random variables of interval [−1,
1]. εr(ξ) represents the relative dielectric constant in the antenna material, and µr(ξ) represents the
relative permeability in the antenna material. P2,x(ξ), P2,y(ξ), and P2,z(ξ) represent the offsets on each
coordinate axis during the ‘mirror’ operation of Antenna 2 in geometric construction. Similarly, P3,x(ξ),
P3,y(ξ), and P3,z(ξ) represent the offset of Antenna 3.

The electric field intensity at z = 5m is selected as the simulation output, as shown in Figure 5(a).
In order to show the results more clearly, it is expressed in the form of decibel.

Efinal = 20× log10(Enorm) [dBV/m] (16)

Efinal is the final electric field strength.
When the parameters satisfy εr = 4.3, µr = 1, P2,x = 0m, P2,y = −2.5m, P2,z = 0m, P3,x = 0m,

P3,y = −4.5m, and P3,z = 0m, the simulation results of single deterministic electric field intensity
are shown in Figure 5(b). It can be seen that the variation range of electric field intensity is close to
100 dBV/m. Therefore, when considering the uncertainty input parameters, the probability density
distributions of the maximum, minimum, and average values are calculated and analyzed as the
uncertainty analysis results.

(a) (b)

Figure 5. Electric field strength results at z = 5m in software. (a) Screenshot. (b) Values.

In this case, L(Mi,Mj) is the Euclidean distance of 8-dimensional data. Other settings of the
algorithm are completely consistent with those in Section 4, which also shows the unique advantages of
non-embedded uncertainty analysis methods. Figure 6(a) is the prediction result of probability density
distribution of maximum electric field intensity, while Figure 6(b) and Figure 6(c) are the prediction
results of minimum and average respectively.

According to the principle of probability theory, the common area between the two probability
density curves can be used as an important basis for evaluating their similarity. The closer the value
is to 1, the higher the similarity is. With the MCM results as standard data, the common area values
of other uncertainty analysis methods are shown in Table 3. For the clustering method of moments
proposed in this paper, the public area values are all higher than 0.8, and even higher than 0.9 at the
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(a) (b) (c)

Figure 6. Probability density results. (a) Maximum electric field strength. (b) Minimum value of
electric field strength. (c) Mean value of electric field strength.

Table 3. Calculation of common area of probability density curves between uncertainty analysis results
and the MCM results.

MoM IMoM Clustering MoM

maximum value 0.6288 0.6316 0.9090

minimum value 0.7386 0.7623 0.8510

mean value 0.6960 0.6808 0.8112

maximum value, which fully illustrates that the accuracy of its uncertainty analysis is high, far better
than that of the MoM and IMoM.

Table 4 shows the comparison of the computational efficiency, and the MCM needs 12800
deterministic electromagnetic simulations for 15.7 days. The clustering method of moments only needs
sub-deterministic electromagnetic simulation; the simulation time is only 0.96 hours; and the calculation
time is less than 0.3% of the MCM, which proves that the clustering method of moments has great
advantages in dealing with high-dimensional random variable problems.

Table 4. Comparison of computational efficiency of uncertainty analysis methods.

MCM MoM IMoM Clustering MoM

Number of deterministic simulations 12800 9 17 25

Total simulation time 15.7 days 0.27 hours 0.5 hours 0.96 hours

6. CONCLUSION

Aiming at the field of computational electromagnetics, this paper proposes a non-embedded uncertainty
analysis method called clustering method of moments, which improves the prediction accuracy of the
expected value of the traditional method of moments, and then improves the accuracy of the overall
uncertainty analysis. Based on the clustering method of moments, the crosstalk simulation of parallel
cables with random geometric parameters is realized. With the quantitative evaluation criteria of the
FSV method, the effectiveness of the proposed algorithm is verified. The joint simulation platform
of MATLAB software and COMSOL software is constructed to realize the promotion of clustering
method of moments in commercial electromagnetic simulation software, and its unique advantages in
dealing with high dimensional random variable models are verified. The combination of clustering
method of moments and COMSOL software is a further promotion of the application of uncertainty
analysis method, which solves the problem of “curse of dimensionality” of uncertain input parameters in
commercial electromagnetic simulation software and realizes the leading technology to a certain extent.
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