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A Fast Computation Method of Bands and Band Field Solutions
of 3D Periodic Structures Using Broadband Green’s

Function-Multiple Scattering Theory

Leung Tsang1, Tien-Hao Liao2, *, and Shurun Tan3, 4, 5

Abstract—We extended the previous 2D method of BBGF-MST (Broadband Green’s function-Multiple
Scattering Theory) approach to 3D problems in periodic structures. Band Structures and Band Field
Solutions are calculated. A feature of BBGF is that the lattice Green’s functions are broadband so that
the coefficients of the spherical wave expansions are calculated rapidly for many frequencies. These
are then used for speedy calculations of the matrix elements of the KKR (Korringa-Kohn-Rostoker)
eigenvalue equation. Using BBGF-MST, a low order matrix eigenvalue equation for the bands is derived.
For the first two bands, the dimension of the KKR matrix equation is only 4 by 4. With the use of
BBGF, the CPU requirement for the BBGF-MST technique is 0.27 seconds on a standard laptop for
solving the KKR eigenvalue equation. Numerical results of the band diagrams are illustrated. Higher
order spherical waves are next used to calculate the normalized band field solutions for the entire cell.

1. INTRODUCTION

The calculations of band diagrams and band field solutions are of current interests for applications to
photonic crystals, topological photonics and topological acoustics [1–8]. The advantage of the plane
wave expansion method for such calculations [9–12] is that the eigenvalue problem is a linear eigenvalue
problem. The disadvantage of the method is the poor convergence of the plane waves requiring a
large number of plane waves. It requires many plane waves to achieve convergence particularly for
large contrasts between the scatterer and the background host materials. Discrete methods such as the
finite element method (FEM) [13, 14] and the finite difference method (FDM) [6] have been used. The
commercial software COMSOL, which is based on FEM, has also been used by researchers. A common
advantage of FEM and FDM is that the Bloch boundary conditions can be readily imposed on the cell
boundary of the (0, 0, 0) reference cell so that the FEM or the FDM required solution is reduced to the
single (0, 0, 0) cell. The disadvantages of the FDM and FEM methods are that volumetric discretization
of the unit cell is required. It requires large number of elements for volumetric discretization, particularly
for 3D problems, giving an eigenvalue problem of relatively large matrix dimension in FEM and FDM.

Recently we developed Broadband Green’s functions (BBGF) method [7, 8, 15–18] for band diagram
calculations with two distinct features. Firstly, after an initial setup is completed, the calculations for
many frequencies are performed rapidly, making the method broadband. Secondly, unlike classical
expansions of Green’s functions which are poorly convergent, the BBGF expansions are rapidly
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convergent by making use of imaginary wavenumber extractions [19–21]. We have implemented BBGF
for band calculations in two methods. In the first method, the solutions were obtained by combining the
BBGF with the integral equation as solved by the method of moment (MoM). The method is labelled the
BBGF-MoM method [7, 15, 16]. More recently, we proposed the second method [8, 17, 18] in which we
combined the Broadband Green’s function (BBGF) method with the KKR (Korringa-Kohn-Rostoker)
method [22, 23] and the Multiple Scattering Theory (MST). We label the method as BBGF-MST. In
the usual KKR method [24–28], the convergence of the lattice Green’s function is accelerated by the
Ewald method which is a single frequency method. Single frequency method of accelerated convergence
is not efficient since the search for eigenvalues is required for the nonlinear eigenvalue problem and that
calculations of the matrix elements are required for many frequencies. The KKR method has been used
for decades. In 1960s, Kambe studied the periodical problem using spherical expansion and derived the
connection with multiple scattering [29–31]. In the past, the numerical solution of the KKR is based
on lattice Green’s function computed with the Ewald’s method. However, in the recent decade, the
Finite element method (FEM) has become attractive because of the easiness of introducing the Bloch
condition on opposite sides of the center (0, 0, 0) cell. Thus, the commercial software COMSOL has
become the state of the art. Numerous researchers have used COMSOL. A weakness of the traditional
KKR is that the Ewald method is a single frequency method so that computation is not efficient as one
has to compute the KKR for many frequencies in order to search the eigenvalues. We have developed
the Broadband Green’s function (BBGF) which accelerates the computation over frequencies. As shown
in our papers, the computation of 1000 frequencies is slightly more than that of just one frequency. In
papers 2 and 3, we have shown that using BBGF-MST, our method is at least 2 orders of magnitude
faster than COMSOL. In this paper we have extended the BBGF-MST method for scalar 3D. We show
the method of fast broadband calculations of lattice Green’s functions and the broadband coefficients
of D̃nm(k, k̄i) for the scalar 3D case.

In BBGF, we use the Broadband Green’s function to derive analytic expressions of the broadband
transformation to cylindrical waves [8, 17, 18]. The method requires a setup after which the determinant
for many frequencies is computed readily. For broadband calculations, the BBGF method is much
faster than the Ewald method [19–21]. Other numerical methods include hybrid finite element method-
boundary element method (FEM-BEM) [32]. However, if the calculation is one frequency at a time, it
will be slow for broadband usage. This is unlike BBGF which is for broadband simulations of the KKR
equation.

In the formulation, we utilize the MST in which the band eigenvalue problem is expressed in terms
of the single scatterer T matrix of the scatterer. The size of the matrix of the KKR eigenvalue equation
is made small because in deriving the matrix equation, the exciting fields are in the extinction region
of the scatterer so that low order cylindrical waves can be used. After the eigenvalues are solved, the
field throughout the entire cell are calculated by higher order cylindrical waves. We have previously
developed the BBGF-MST method to two-dimensional (2D) topological photonics and 2D topological
acoustics. It was shown that for the case of 2D problem the BBGF-MST method is many times faster
than COMSOL [8, 18, 19].

The previous papers of BBGF-MST were for 2D problems [8, 18, 19]. In this paper, we extend
BBGF-MST to three-dimensional (3D) problem of scalar waves with scatterers embedded in a 3D
lattice. Three dimensional problems in photonic crystals are much more computation intensive than
2D problems. The size of unit cell is about 0.5 wavelength to 1 wavelength in photonic crystal for
the first few bands. The embedded scatterers have high permittivity. To solve the 3D problem, the
plane wave expansion method requires many plane waves. Many tetrahedral elements are required in
3D FEM and many points of discretization are required in 3D FDM. In this paper, we use BBGF to
derive broadband expressions of the coefficients of spherical waves for the 3D lattice Green’s functions.
Imaginary extractions are used so that spherical wave coefficients are rapidly convergent. The spherical
wave coefficients are then used for speedy calculation of the matrix of the KKR (Korringa-Kohn-
Rostoker) eigenvalue equation. In the example in this paper, for the first two bands, the dimension of the
KKR matrix equation is only 4 by 4. The low order matrix makes the CPU time as small as 0.27 seconds
on a standard laptop for the 3D periodic structure problem. After the eigenvalue is calculated, higher
order spherical waves are next used to calculate the normalized band field solutions for the entire cell.
Numerical results of the band diagrams are also illustrated. For 2D band problems, all methods such
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as FEM, FD, COMSOL, plane waves, and KKR methods are sufficiently fast so that solutions can
be obtained in relatively modest CPU. However, 3D band problems are much more computationally
intensive. Thus, it is important that in this paper using BBGF-MST, the band eigenvalues of 3D
problems require CPU of only 0.27 second using standard laptop.

The organization of this paper is as follows. In Section 2, we describe the BBGF in spherical wave
expansions with broad band coefficients calculated with imaginary extractions. In Section 3, we describe
the integral equations of exciting field and scattered field in Multiple Scattering Theory. In Section 4,
using the spherical wave coefficients and the integral equations, we derive the KKR eigenvalue equation.
In Section 5, we use the T matrix of an isolated scatterer in the KKR equation. In Section 6, using the
eigenvalue determined, we calculate the coefficients of the higher order spherical waves. In Section 7,
we derive the normalization of the bandfield solutions. We illustrate numerical results and the CPU
requirements in Section 8. Section 9 is the conclusion.

2. BBGF 3D IN SPHERICAL WAVE EXPANSIONS WITH IMAGINARY
EXTRACTIONS

Consider a 3D periodic structure in Figure 1. Let the lattice vector be given by

R̄mnl = mā1 + nā2 + lā3; m,n, l = 0,±1, ... (1)

where ā1, ā2 and ā3 are the primitive translation vectors. Then Ω0 = ā1 × ā2 · ā3 is the size of the cell.
The region occupied by the (m,n, l) cell is denoted by Ωmnl. The extent of the (0, 0, 0) cell are − ā1

2 to
ā1
2 in ā1 direction, − ā2

2 to ā2
2 in ā2 direction, and − ā3

2 to ā3
2 in ā3 direction.

Figure 1. 3D simple cubic (SC) lattice.

The reciprocal lattice vectors are

Ḡmnl = mb̄1 + nb̄2 + lb̄3; m,n, l = 0,±1, ... (2)

where

b̄1 = 2π
ā2 × ā3
Ω0

; b̄2 = 2π
ā3 × ā1
Ω0

; b̄3 = 2π
ā1 × ā2
Ω0

(3)

Let k̄i be a wave vector in the first Brillouin zone

k̄i = β1b̄1 + β2b̄2 + β3b̄3; −1

2
≤ β1, β2, β3 ≤

1

2
(4)
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Let
k̄imnl = k̄i + Ḡmnl (5)

be the Bloch vector in the (m,n, l) Brillouin zone. To abbreviate, we replace (m,n, l) by a single index
s, so that (m,n, l) → s and

∑
s =

∑
m,n,l. The lattice Green’s function can be written in spectral form

and in spatial form. In spectral form

gP
(
k, k̄i, r̄

)
=

1

Ω0

∑
s

eik̄is·r̄

k2is − k2
(6)

with kis =
∣∣k̄imnl

∣∣ = ∣∣k̄is∣∣.
Let

g0 (k, r) =
eikr

4πr
(7)

be the free space Green’s function. The lattice Green’s function in spatial form is

gP
(
k, k̄i, r̄

)
=
∑
s

g0
(
k,
∣∣r̄ − R̄s

∣∣) eik̄i·R̄s =
∑
s

eik|r̄−R̄s|

4π
∣∣r̄ − R̄s

∣∣ eik̄i·R̄s (8)

BBGF consists of broadband calculations of periodic Green’s functions for many wavenumbers k or
frequencies with accelerated convergence using imaginary extractions. BBGF with 8th order convergence
is

gP
(
k, k̄i, r̄

)
= gP

(
iξ, k̄i, r̄

)
− ξ2 + k2

2ξ

(
d

dξ

)
gP
(
iξ, k̄i, r̄

)
+

(
ξ2 + k2

)2
8ξ

(
d

dξ

1

ξ

d

dξ

)
gP
(
iξ, k̄i, r̄

)
+

(
ξ2 + k2

)3
Ω0

∑
s

eik̄is·r̄

 1(
k2is + ξ

2
)3 (

k2is − k
2
)
 (9)

where gP (iξ, k̄i, r̄) is represented in spatial form

gP
(
iξ, k̄i, r̄

)
=
∑
s

e−ξ|r̄−R̄s|

4π
∣∣r̄ − R̄s

∣∣ eik̄i·R̄s (10)

Then (
d

dξ

)
gP
(
iξ, k̄i, r̄

)
=
∑
s

(−
∣∣r̄ − R̄s

∣∣) e−ξ|r̄−R̄s|

4π
∣∣r̄ − R̄s

∣∣ eik̄i·R̄s (11)

(
d2

dξ2

)
gP
(
iξ, k̄i, r̄

)
=
∑
s

∣∣r̄ − R̄s

∣∣2 e−ξ|r̄−R̄s|

4π
∣∣r̄ − R̄s

∣∣ eik̄i·R̄s (12)

and (
d

dξ

(
1

ξ

d

dξ

))
gP
(
iξ, k̄i, r̄

)
= − 1

ξ2

(
d

dξ

)
gP
(
iξ, k̄i, r̄

)
+

1

ξ

(
d2

dξ2

)
gP
(
iξ, k̄i, r̄

)
(13)

In Equation (9), the spatial expansion series in the first 3 terms are independent of wave numbers
and are fast exponentially convergent with R̄s because of the use of imaginary wave number iξ.

The spectral expansion series in the 4th term in Equation (9) has an 8th order convergence because
of the asymptotic k−8

is dependence. The 4th term is broadband because the dependence on k is merely
(ξ2 + k2)3(k2is − k2)−1 with the rest of the expression being independent of k.

We shall illustrate in the numerical results section, the band field solutions in the unit cell are well
represented by spherical waves. We then seek solutions of the band fields in terms of spherical waves.
Let (r, θ, ϕ) denote spherical coordinates. The spherical wave functions for scalar waves are

Rgψnm (kr̄) = jn (kr)Y
(N)m
n (θ, ϕ) ; m = 0,±1, ...,±n (14)

ψnm (kr) = h(1)n (kr)Y (N)m
n (θ, ϕ) = (jn (kr) + inn(kr))Y

(N)m
n (θ, ϕ) ; m = 0,±1, ...,±n (15)
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where Y
(N)m
n (θ, ϕ) are spherical harmonics, with (N) denoting normalized as defined in Appendix A,

jn(kr), nn(kr) and h
(1)
n (kr) are respectively the spherical Bessel function, the spherical Neuman function

and the spherical Hankel function of first kind, all of order n. Rg in Equation (14) stands for “regular”

indicating jn is used. Otherwise, without specifying Rg, h
(1)
n will be used. The spherical harmonics

defined are different from Tsang et al. Vol. 1 [33]. The lattice Green’s functions are expanded in terms

of spherical waves with coefficients D̃nm(k, k̄i)

gP
(
k, k̄i, r̄

)
=

ik√
4π

ψ00(kr) +
ik√
4π

∑
nm

D̃nm

(
k, k̄i

)
Rgψnm (kr̄) (16)

We next derive broadband expressions for the coefficients D̃nm(k, k̄i) so that they can be computed
fast for many wavenumbers k.

Consider a spherical surface with radius R, where the spherical surface is inside cell (0, 0, 0). Let

the r̄ in Equation (16) be (R, θ, ϕ). Multiply Equation (16) by complex conjugate (Y
(N)m′

n′ (θ, ϕ))∗ and

integrate over
∫ π
0 dθ sin θ

∫ 2π
0 dϕ. Use orthonormal relation of spherical harmonics (Appendix A). Then

D̃nm

(
k, k̄i

)
=

1

ik√
4π
jn (kR)

{
k√
4π

n0 (kR) δm0δn0

+

∫ π

0
dθ sin θ

∫ 2π

0
dϕgP

(
k, k̄i, |r̄| = R

) (
Y (N)m
n (θ, ϕ)

)∗}
− δm0δn0 (17)

where n0(kR) is the spherical Neumann function of order 0. Substitute the 8th order Green’s function
of Equation (9) in Equation (17), we obtain

D̃nm

(
k, k̄i

)
= −h

(1)
0 (kR)

j0 (kR)
δn0δm0 +

√
4π

ikjn (kR)
I1
(
n,m, iξ, k̄i

)
−

√
4π

ikjn (kR)

ξ2 + k2

2ξ
I2(n,m, iξ, k̄i)

+

√
4π

ikjn (kR)

(
ξ2 + k2

)2
8ξ

I3
(
n,m, iξ, k̄i

)
+

√
4π

ikjn (kR)

(
ξ2 + k2

)3
Ω0

∑
s

I4
(
n,m, iξ, k̄i

) 1(
k2is + ξ

2
)3 (

k2is − k
2
)
 (18)

where

I1
(
n,m, iξ, k̄i

)
=

∫ π

0
dθ sin θ

∫ 2π

0
dϕ
(
Y (N)m
n (θ, ϕ)

)∗
gP
(
iξ, k̄i, r̄

)
(19)

I2
(
n,m, iξ, k̄i

)
=

∫ π

0
dθ sin θ

∫ 2π

0
dϕ
(
Y (N)m
n (θ, ϕ)

)∗( d

dξ

)
gP
(
iξ, k̄i, r̄

)
=

(
d

dξ

)
I1
(
n,m, iξ, k̄i

)
(20)

I3
(
n,m, iξ, k̄i

)
=

∫ π

0
dθ sin θ

∫ 2π

0
dϕ
(
Y (N)m
n (θ, ϕ)

)∗( d

dξ

(
1

ξ

d

dξ

))
gP
(
iξ, k̄i, r̄

)
=

1

ξ

d

dξ
I2
(
n,m, iξ, k̄i

)
− 1

ξ2
I2
(
n,m, iξ, k̄i

)
(21)

I4
(
n,m, iξ, k̄i

)
=

∫ π

0
dθ sin θ

∫ 2π

0
dϕ
(
Y (N)m
n (θ, ϕ)

)∗
eik̄is·r̄ (22)

The 2-dimensional integrals
∫ π
0 dθ sin θ

∫ 2π
0 dϕ can be evaluated analytically. In spatial domain, we

abbreviate
∑

m,n,l →
∑

s. Let s = 0 term denote the (0, 0, 0) cell. Since r̄ is inside the (0, 0, 0) cell, we
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have, for other cells with s ̸= 0, Rs =
∣∣R̄s

∣∣ > r. We decompose
∑

s = terms=0 +
∑

s ̸=0 term. Then

gP
(
iξ, k̄i, r̄

)
=

(−ξ)√
4π

h
(1)
0 (iξr)

1√
4π

+
∑
s ̸=0

(−ξ)√
4π

h
(1)
0

(
iξ
∣∣r̄ − R̄s

∣∣) 1√
4π

eik̄i·R̄s (23)

For s ̸= 0, let R̄s = (Rs, θRs , ϕRs) in spherical coordinates. Using addition theorem replace

h
(1)
0

(
−ξ
∣∣r̄ − R̄s

∣∣) 1√
4π
, with Rs > r for the second term in Equation (23), we have

gP
(
iξ, k̄i, r̄

)
=

(−ξ)√
4π

h
(1)
0 (iξr)

1√
4π

+
∑
s ̸=0

(−ξ)√
4π

eik̄i·R̄s
√
4π

∑
n′,m′

(−1)m
′
hn′ (iξRs)Y

(N)m′

n′ (θRs , ϕRs) jn′ (iξr)Y
(N)(−m′)
n′ (θ, ϕ)

 (24)

Substituting in the integral and using orthonormality of spherical harmonics, we obtain

I1
(
n,m, iξ, k̄i

)
=

1√
4π

e−ξR

R
δn0δm0 − ξjn (iξR)∑

s ̸=0

eik̄i·R̄s (−1)(m) hn (iξRs)Y
(N)(−m)
n (θRs , ϕRs) (25)

Taking derivative with respect to ξ, we have

I2
(
n,m, iξ, k̄i

)
=− 1√

4π
e−ξR δn0δm0 −

[
jn (iξR) + iξRj′n (iξR)

]
∑
s ̸=0

eik̄i·R̄s (−1)m hn (iξRs)Y
(N)(−m)
n (θRs , ϕRs)

−ξjn (iξR)
∑
s ̸=0

iRse
ik̄i·R̄s (−1)m h′n (iξRs)Y

(N)(−m)
n (θRs , ϕRs) (26)

Another derivative with ξ for I3(n,m, iξ, k̄i) gives

d

dξ
I2
(
n,m, iξ, k̄i

)
=

R√
4π

e−ξR δn0δm0

−
[
2iRj′n (iξR)− ξR2j′′n (iξR)

]∑
s ̸=0

eik̄i·R̄s (−1)m hn (iξRs)Y
(N)(−m)
n (θRs , ϕRs)

−2
[
jn (iξR) + iξRj′n (iξR)

]∑
s ̸=0

iRse
ik̄i·R̄s (−1)m h′n (iξRs)Y

(N)(−m)
n (θRs , ϕRs)

−ξjn (iξR)
∑
s̸=0

(
−R2

s

)
eik̄i·R̄s (−1)m h′′n (iξRs)Y

(N)(−m)
n (θRs , ϕRs) (27)

For I4(n,m, iξ, k̄i), let k̄is be represented by
∣∣k̄is∣∣ and the angular directions (θkis , ϕkis)

k̄is =
∣∣k̄is∣∣ (sin θkis cosϕkis x̂+ sin θkis sinϕkis ŷ + cos θkis ẑ) (28)

The plane wave expansion in spherical waves is [33]

eik̄is·r̄ = 4π
∑
n′,m′

in
′
jn′
(∣∣k̄is∣∣R)Y (N)m′

n′ (θ, ϕ)Y
(N)(m′)∗

n′ (θkis , ϕkis) (29)

Substitute in the integral, we have

I4
(
n,m, k̄is, k̄i

)
= 4πinjn

(∣∣k̄is∣∣R)Y (N)m∗
n (θkis , ϕkis) (30)
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Substitute in (18) we have

D̃nm

(
k, k̄i

)
= −h

(1)
0 (kR)

j0 (kR)
δn0δm0 +

√
4π

ikjn (kR)
I1
(
n,m, iξ, k̄i

)
−

√
4π

ikjn (kR)

ξ2 + k2

2ξ
I2
(
n,m, iξ, k̄i

)
+

√
4π

ikjn (kR)

(
ξ2+k2

)2
8ξ

I3
(
n,m, iξ, k̄i

)
+

√
4π

ikjn (kR)

(
ξ2 + k2

)3∑
s

 Qm
4n

(
k̄is
)(

k2is − k
2
)
 (31)

where

Qm
4n

(
k̄is
)
=

4π

Ω0
injn

(∣∣k̄is∣∣R)Y (N)(m)∗
n (θkis , ϕkis)

 1(
k2is + ξ

2
)3
 (32)

Note that we have used the index (n′,m′) to denote D̃n′m′(k, k̄i) to be consistent with the coefficients

of exciting field and scattered field. The D̃n′m′(k, k̄i) can be computed rapidly for many wavenumbers
k.

All the expansions are fast convergent. The expansion in I1(n,m, iξ, k̄i), I2(n,m, iξ, k̄i),
I3(n,m, iξ, k̄i) have exponential convergence since we have imaginary wavenumber iξ. The last term
has 8th order convergence in k−8

is .

In the above expression of D̃n′m′(k, k̄i) in Equation (31), I1(n,m, iξ, k̄i), I2(n,m, iξ, k̄i),

I3(n,m, iξ, k̄i) and Q
m′
4n′(k̄is) are independent of k, making the expressions broadband as these quantities

are computed once in the setup step. For wave expansions, the coefficients of the expansions are
independent of R. For a given problem, the choice of R is such that all the required coefficients for the
problem contribute to the wave expansion at that R. The choice of R in this paper is indicated in the
section on numerical results. It has been shown in Tan and Tsang paper [19] that 8th order convergence
gives Green’s function accuracies to 3 to 4 significant figures which are sufficient for problems of interest.
It was shown that for 3 to 4 significant figures of accuracies, the BBGF is much faster than Ewald’s
method for broadband calculations.

3. INTEGRAL EQUATIONS OF EXCITING FIELD AND SCATTERED FIELD IN
MULTIPLE SCATTERING THEORY

The MST formulation is used to derive the integral equations. The derivations are done without the
specifics of the scatterers. In Figure 2, consider a periodic lattice and let the lattice constant be a. Let
the cells be labeled as (m,n, l). All the cells have the same scatterer placed in a background medium.
Consider the (0, 0, 0) cell. The scatterer is of arbitrary shape and is enclosed by a circular boundary
SB of radius b. Let SC be the boundary of the (0, 0, 0) cell. We use V1 to denote region inside SB and
V0 be the region outside the scatterer but within the cell (0, 0, 0). Let ψ be the wave function in V0. It
satisfies the wave equation (

∇2 + k2
)
ψ (r̄) = 0 (33)

where k = ω/c is the wavenumber of the background medium, ω is the angular frequency and c is
the wave velocity in the background medium. Setting c equal to unity, the normalized frequency is
fN = k/(2π).

Based on multiple scattering theory (MST) [34–41], the wave function ψ is the sum of ψex, the
“final” exciting field, and ψs the “final” scattered field. Both ψex and ψs refer to that of the “single
scatterer” inside V1. The self-consistent equations of MST allow ψex and ψs to be calculated in a
self-consistent manner.

ψ (r̄) = ψex (r̄) + ψs (r̄) ; for r̄ inV0 (34)

Because of extinction theorem ψex(r̄) is also defined in V1. Thus, ψex(r̄) exists in V0 and in V1:
The exciting field obeys the equation with the wavenumber k even though r̄ can be in V1.(

∇2 + k2
)
ψex (r̄) = 0 for r̄ in V0 or in V1 (35)
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(a) (b)

Figure 2. (a) The scatterer is of an arbitrary shape and is enclosed by a spherical boundary SB of
radius b about the origin. The origin is the center of the (0, 0, 0) cell. Let SC be the boundary of
the (0, 0, 0) cell. We use V1 to denote region inside SB and V0 be the region outside the scatterer but
within the cell (0, 0, 0). (b) Periodic cubical cells with identical scatterers.

Because ψs(r̄) is the scattered field from the single scatterer, it exists outside the scatterer. It
exists in V0 and outside the cell all the way to infinity.(

∇2 + k2
)
ψs (r̄) = 0 for r̄ in V0 and to infinity (36)

We have the lattice Green’s function gP (k, k̄i, r̄, r̄
′) in Equations (9) and (16). In cell (0, 0, 0), the lattice

Green’s function gP (k, k̄i, r̄, r̄
′) can be written as a sum of the free space Green’s function g0(k, r̄, r̄

′)
and the response Green’s function gR(k, k̄i, r̄, r̄

′). The gP (k, k̄i, r̄, r̄
′) is the periodic Green’s function for

an empty lattice where the field point r̄ and source point r̄′ can be in V0 or V1.

gP
(
k, k̄i, r̄, r̄

′) = g0
(
k, r̄, r̄′

)
+ gR

(
k, k̄i, r̄, r̄

′) (37)

We derived in [8] that for r̄ in V1 or in V0.

ψex (r̄) =

∫
SB

dS′ [ψs
(
r̄′
)
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)− gR
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′ψs
(
r̄′
)]

(38)

The physical interpretation of Equation (38) is that the scattering from other cells into cell (0, 0,
0) gives the exciting field on the scatterer in cell (0, 0, 0). This agrees with what is stated in MST
that the exciting field is the sum of incident field and scattered field from all other scatterers except
itself [34–41]. For the band eigenvalue and band field problem, there is no incident field.

To solve the integral equation, we use spherical wave expansions of the exciting field and the
scattered field. The final scattered field, in V0 and all the way to infinity, can be expressed as outgoing
spherical waves.

ψs (r̄) =

NL∑
n1=0

∑
m1

asn1m1
ψn1m1 (kr̄) (39)

The summation of the expansion is to |n| = NL. The key in MST is the convergence of the final
scattered field. We note that the band eigen-frequencies are usually in the range of 0 ≤ fN ≤ 1.5.
In photonic crystal, the size of the scatterer is of small or moderate size compared with wavelength.
Thus, the maximum spherical wave index NL is not large. The exciting field, as given in Equations (13)
and (20) are in two regions V1 and V0. The expansions are in two regions. For r̄ in V1

ψex (r̄) =

NL∑
n=0

∑
m

anmRgψnm (kr̄) (40)
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The exciting field expansion, because of the Bessel function jn(kr), is a non-uniform convergent
series. Since r̄ is in V1 in Equation (38), we need only to match to the scattered field with the maximum
index to NL.

For r̄ in V0, the r is much larger as it extends to the cell boundary. The argument of the Bessel
function can be much larger. We need to have more terms with a larger upper index of Nsph in the
expansion. Thus, we have

ψex (r̄) =

Nsph∑
n=0

∑
m

aCnmRgψnm (kr̄) for r̄ in V0 (41)

where Nsph ≥ NL. We use two different symbols for the coefficients, anm and aCnm, to distinguish the
two regions. Note that in Equation (39) we use index (n1,m1) for scattered field coefficients asn1m1

and
the summation over n1 up to NL.

For the exciting field coefficients, we use index (n,m). The summation for exciting field over n is
to NL for V1, meaning that the exciting field and scattered field have the same number of coefficients
when applied to extinction theorem. For exciting field in V0 the summation over n is to Nsph, where
Nsph ≥ NL.

In view of Equation (16),

gP
(
k, k̄i, r̄, r̄

′) = ik√
4π

ψ00(k(r̄ − r̄′)) +
ik√
4π

∑
nm

D̃nm

(
k, k̄i

)
Rgψnm

(
k(r̄ − r̄′)

)
(42)

The response Green’s function is

gR
(
k, k̄i, r̄, r̄

′) = ik√
4π

∑
nm

D̃nm

(
k, k̄i

)
Rgψnm

(
k(r̄ − r̄′)

)
(43)

4. THE KKR EIGEN VALUE EQUATION

To perform the surface integral
∫
SB
dS′ with r′ = b which is over the spherical surface of radius b, we

make use of the addition theorem [38–40, 42–45].

Rgψnm

(
k,
(
r̄−r̄′

))∣∣
r̄=̄r′′−r̄′

=
√
4π
∑
n′,m′

∑
n′′,m′′

(−1)m
′
P
(
n′′,m′′, n′,−m′, n,m

)
Rgψn′m′

(
kr̄′
)
Rgψn′′m′′ (kr̄)

(44)
where

P
(
n′′,m′′, n′,−m′, n,m

)
= (−1)m

′
(−1)m(−1)n

′
in

′+n′′−n
√

(2n+ 1) (2n′ + 1) (2n′′ + 1)

(
n n′ n′′

0 0 0

)(
n n′ n′′

−m m′ m′′

)
(45)

In Equation (45),

(
n n′ n′′

−m m′ m′′

)
denotes the Wigner 3j symbols [39, 40, 42–45]. More details of

P (n,m, n1,m1, n
′,m′) are given in Appendix B.

The response Green’s function and normal derivative on the surface of SB, with |r̄′| = b are
respectively

gR
(
k, k̄i, r̄, r̄

′)∣∣
|r̄′|=b

= ik
∑
nm

D̃nm

(
k, k̄i

) ∑
n′,m′

∑
n′′,m′′

(−1)m
′
P
(
n′′,m′′, n′,−m′, n,m

)
jn′ (kb)

Y
(N)m′

n′
(
θ′, ϕ′

)
jn′′ (kr)Y

(N)m′′

n′′ (θ, ϕ) (46)

n̂′ · ∇′ gR
(
k, k̄i, r̄, r̄

′)∣∣
|r̄′|=b

= ik2
∑
nm

D̃nm

(
k, k̄i

) ∑
n′,m′

∑
n′′,m′′

(−1)m
′
P
(
n′′,m′′, n′,−m′, n,m

)
j′n′ (kb)

Y
(N)m′

n′
(
θ′, ϕ′

)
jn′′ (kr)Y

(N)m′′

n′′ (θ, ϕ) (47)
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For the scattered field on the surface and the normal derivatives, we have

ψs
(
r̄′
)∣∣

|r̄′|=b
=
∑
n1,m1

asn1m1
h(1)n1

(kb)Y (N)m1
n1

(
θ′, ϕ′

)
(48)

n̂′ · ∇′ψs
(
r̄′
)∣∣

|r̄′|=b
=
∑
n1,m1

asn1m1
h(1)

′

n1
(kb)Y (N)m1

n1

(
θ′, ϕ′

)
(49)

Note that for ψs, we use index (n1,m1) for coefficients.

Substitute in and carry out the integration
∫
SB
dS′ = b2

∫ π
0 dθ

′ sin θ′
∫ 2π
0 dϕ′. We also use

orthonormality of spherical harmonics.∫
S
dS′ ψs

(
r̄′
) [
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)]∣∣
|r̄′|=b

= ik2b2
∑
n1,m1

asn1m1
h(1)n1

(kb)
∑
nm

D̃nm

(
k, k̄i

) ∑
n′′,m′′

P
(
n′′,m′′, n1,m1, n,m

)
j′n1

(kb) jn′′ (kr)Y
(N)m′′

n′′ (θ, ϕ) (50)

Similarly

−
∫
SB

dS′ gR
(
k, k̄i, r̄, r̄

′) [n̂′ · ∇′ψs
(
r̄′
)]∣∣

|r̄′|=b

= −ik2b2
∑
n1,m1

asn1m1
h(1)

′

n1
(kb)

∑
nm

D̃nm

(
k, k̄i

) ∑
n′′,m′′

P
(
n′′,m′′, n1,m1, n,m

)
jn1 (kb) jn′′ (kr)Y

(N)m′′

n′′ (θ, ϕ) (51)

Adding the two terms and making use of the Wronskian [46], h
(1)
n (ω) j′n (ω)− h

(1)′

n (ω) jn (ω) = − i
ω2 .∫

S
dS′ ψs

(
r̄′
) [
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)]∣∣
|r̄′|=b

−
∫
SB

dS′ gR
(
k, k̄i, r̄, r̄

′) [n̂′ · ∇′ψs
(
r̄′
)]∣∣

|r̄′|=b

=
∑
n1,m1

asn1m1

∑
nm

D̃nm

(
k, k̄i

) ∑
n′′,m′′

P
(
n′′,m′′, n1,m1, n,m

)
jn′′ (kr)Y

(N)m′′

n′′ (θ, ϕ) (52)

From Equation (38), for r̄ in V1 or in V0 Equation (52) is the exciting field of the scatterer in cell
(0, 0, 0). The exciting field is the scattered field from scatterers of all other cells except (0, 0, 0) into
cell (0, 0, 0). Thus, the number of terms differ whether r̄ is in region V0 or in V1.

ψex (r̄) =

∫
SB

dS′ [ψs
(
r̄′
)
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)− gR
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′ψs
(
r̄′
)]

=
∑

n′′,m′′

[ ∑
n1,m1

asn1m1

∑
nm

D̃nm

(
k, k̄i

)
P
(
n′′,m′′, n1,m1, n,m

)]
jn′′ (kr)Y

(N)m′′

n′′ (θ, ϕ)

=



NL∑
n′′=0

∑
m′′

an′′m′′jn′′ (kr)Y
(N)m′′

n′′ (θ, ϕ) for r̄ in V1

Nsph∑
n′′=0

∑
m′′

aCnmjn′′ (kr)Y
(N)m′′

n′′ (θ, ϕ) for r̄ in V0

(53)

For the eigenvalue equation, which is the KKR equation, we apply extinction theorem for r̄ in V1.

For r̄ in V1, we write ψex(r̄) =
∑

n′′,m′′ an′′m′′jn′′(kr)Y
(N)m′′

n′′ (θ, ϕ). We then balance the coefficients of

spherical waves of jn′′(kr)Y
(N)m′′

n′′ (θ, ϕ).

an′′m′′ =
∑
n1,m1

asn1m1

∑
nm

P
(
n′′,m′′, n1,m1, n,m

)
D̃nm

(
k, k̄i

)
(54)
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Let
dnmn1m1

(
k, k̄i

)
=
∑
n′m′

P
(
n,m, n1,m1, n

′,m′) D̃n′m′
(
k, k̄i

)
(55)

Changing dummy variables gives

anm =

NL∑
n1=0

n1∑
m1=−n1

dnmn1m1

(
k, k̄i

)
asn1m1

; n = 0, 1, ..., NL; m = 0,±1, ...,±n (56)

Equation (56) is labelled as the KKR eigenvalue equation. Note that although the right-hand sides
of Equations (55) and (56) require summation of

∑
n1,m1

∑
n′m′ , there are relatively few terms in the

summation. This is because in photonic crystal the size of the scatterer is not large. Equation (54)
is a result of extinction theorem inside V1 of the scatterer. We only need to limit to n = NL with
m = 0,±1, ...,±n. In photonic crystals, NL is usually at most 4.

In the KKR eigenvalue equation the index n for the exciting field is up to NL. The index for
the scattered field, the summation over n1 is to NL. Because of the properties of Wigner 3j symbols
(Appendix C), |n− n1| ≤ n′ ≤ n+ n1. Thus, n

′ is up to NL +NL = 2NL.
For the extinction theorem,

dnmn1m1

(
k, k̄i

)
=

2NL∑
n′=0

n′∑
m′=−n′

P
(
n,m, n1,m1, n

′,m′) D̃n′m′
(
k, k̄i

)
(57)

5. SINGLE SCATTERER T MATRIX AND KKR EIGENVALUE EQUATION

In MST, the relation between the “final” scattered field coefficient and the “final” exciting field coefficient
is the single scatterer T matrix. The T matrix is a convenient representation because it is the scattering
T matrix that is for an isolated single scatterer [38–41, 47]. The T matrix is independent of the lattice
and is independent of the Bloch vector k̄i. The T matrix is dependent on wavenumber k.

Then

asn1m1
=

NL∑
n=0

n∑
m=−n

Tn1m1nm (k) anm; n1 = 0, 1, ..., NL; m1 = 0,±1, ...,±n1 (58)

In this equation, both exciting field and scattered field are with n and n1 to NL. The dimension of the
T matrix is not large because scatterers in photonic crystals are not large compared to wavelength.

We use a combined index l to represent (n,m) with l = n2 + (n+m+ 1). The index l = 1, 2, ..., L
where L = (1+3+5+ ...,+(2NL+1)) = (NL+1)2. The Equations (56) and (58) become, respectively,

al =
L∑

l1=1

dll1
(
k, k̄i

)
asl1 ; l = 0, 1, ..., L (59)

asl1 =
L∑
l=1

Tl1l (k) al; l = 0, 1, ..., L (60)

We next cast (59) and (60) in matrix notations. Using matrix notations of al → ā, asl → ās,

Tll′(k) → T (k), and d(k, k̄i) with dimension L× 1 for column vectors and dimension L×L for matrices

ā = d
(
k, k̄i

)
ās (61)

ās = T (k) ā (62)

The eigenvalue equation is

S
(
k, k̄i

)
ā = 0 (63)

where
S
(
k, k̄i

)
= I − d

(
k, k̄i

)
T (k) (64)
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and I is the L× L unit matrix.
The eigenvector in Equation (63) is the exciting field coefficients ā. Next, we convert the eigenvalue

equation into one with eigenvector ās. Let t be related to the inverse of the T matrix.

t (k) = i

(
I + T

−1
(k)

)
(65)

Then
Λ
(
k, k̄i

)
ās = 0 (66)

where

Λ
(
k, k̄i

)
= D

(
k, k̄i

)
− 1

4
t (k) (67)

D
(
k, k̄i

)
=

i

4

(
d
(
k, k̄i

)
+ I
)

(68)

The eigenvalue is calculated from KKR eigenvalue equation of (66) by an iterative search in k.
Let ke be the eigenvalue. Then ās(ke), the eigenvector is found after the eigenvalue is obtained. The
eigenvector is normalized with respect to the KKR eigenvalue equation of (66). However, on the other
hand, the band field solution is normalized by volumetric integration of the band field wave function.
In MST, it is advantageous to use scattered field coefficients ās. The expansion of the scattered field
is uniform convergence. The expansion of the exciting field is non-uniformly convergent. The use of
exciting field expansion is to obtain the scattered field coefficients by matching boundary conditions.
These considerations are clear in the tables of coefficients in the numerical results section. Thus, in
solving eigenvalue problem, we use Equation (66) and not Equation (63).

6. HIGHER ORDER SPHERICAL WAVES OF BAND FIELD SOLUTIONS

The eigenvalue equation is obtained by imposing boundary conditions on the surface of the scatterer.
The size of the matrix with maximum n = NL is based on the size of the T matrix. Thus, only a
small value of NL is required. After the eigenvalue ke is obtained, the normalized eigenvector as ās(ke),
which is āsn1,m1

(ke), is calculated which has maximum n equal to NL. We use index (n1,m1) to denote
scattered field coefficient.

To calculate the band field wave function over the entire unit cell, higher order spherical waves are
required as maximum r in the (0, 0, 0) is rmax =

√
3a/2 which can be much larger than the the radius

b of V1.
We shall use maximum n = Nsph for band field wave function in the (0, 0, 0) cell. The exciting field

is due to scattering from other cells into the cell (0, 0, 0). We have, from Equation (53),

ψC
ex (ke, r̄) =

Nsph∑
n=0

∑
m NL∑

n1=0

∑
m1

asn1m1
(ke)

Nsph+NL∑
n′

∑
m′

D̃n
′
m

′
(
ke, k̄i

)
P
(
n,m, n1,m1, n

′,m′)jn (ker)Y (N)m
n (θ, ϕ) (69)

where superscript “C” represents higher order spherical waves. The summation of scattered field
asn1m1

(ke) is up to NL which is available from the eigenvector. Since n is up to Nsph, we need to calculate

higher order P (n,m, n1,m1, n
′,m′) and D̃n′m′(ke, k̄i). The calculation of higher order D̃n′m′(ke, k̄i) is at

the single eigenvalue wavenumber ke. Because of the property of the Wigner 3j coefficients (Appendix B),
n′ is up to the sum of maximum n and maximum n1. Thus, n

′ is up to Nsph +NL. Then

ψC
ex (ke, r̄) =

Nsph∑
n=0

∑
m

aCnm (ke) jn (ker)Y
(N)m
n (θ, ϕ) (70)
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where

aCnm (ke) =

NL∑
n1=0

∑
m1

dCnmn1m1
(ke)a

s
n1m1

(ke) (71)

dCnmn1m1
(ke) =

Nsph+NL∑
n′

∑
m′

D̃n′m′ (ke)P
(
n,m, n1,m1, n

′,m′); n = 0, ..., Nsph; n1 = 0, ..., NL (72)

In matrix notation

āC (ke) = d
C
(ke) ā

s(ke) (73)

where d
C
(ke) is now a rectangular matrix. We can further obtain the “C” higher order version of the

scattered field coefficients at the eigenvalue ke by

āsC (ke) = T
C
(ke) ā

C(ke) (74)

where T
C
(ke) is the square matrix with T matrix coefficients at ke and calculated up to maximum

n = Nsph +NL.
The higher order scattered wave is

ψC
s (ke, r̄) =

Nsph∑
n=0

∑
m

asCnm (ke)h
(1)
n (ker)Y

(N)m
n (θ, ϕ) (75)

As we show in the numerical result section, the higher order scattered field asCnm(ke) are small as expected.
The field in region V0 is

ψC (ke, r̄) = ψC
ex (ke, r̄) + ψC

s (ke, r̄)

=

Nsph∑
n=0

∑
m

[
aCnm (ke) jn (ker) + asCnm (ke)h

(1)
n (ker)

]
Y (N)m
n (θ, ϕ) (76)

For the case of spherical scatterer of radius b, let the wavenumber kpe =
√

εp
ε ke where εp is the

permittivity of the scatterer and ε the permittivity of the background. For the case of scalar wave,

we ignore the polarization effects. In such a case,
√

εp
ε is the relative refractive index of the scatterer

relative to the background. The field inside the particle is

ψC
p (ke, r̄) =

∑
n,m

cCnm (ke) jn (kper)Y
(N)m
n (θ, ϕ) (77)

with

cCnm (ke) =
asCnm (ke)h

(1)
n (keb) + aCnm (ke) jn (keb)

jn (kpeb)
(78)

7. NORMALIZATION OF BAND FIELDS

Consider two eigen-solutions β1 and β2 at k̄i. The two band field solutions are orthonormal.

ε

ε0

∫
V0

dr̄ψβ1ψ
∗
β2

+
εp
ε0

∫
V1

dr̄ψp,β1ψ
∗
p,β2

= δβ1β2 (79)

The normalization is
ε

ε0

∫
V0

dr̄
∣∣ψC (ke, r̄)

∣∣2 + εp
ε0

∫
V1

dr̄
∣∣ψC

p (ke, r̄)
∣∣2 = 1 (80)

In Figure 3, the V0 region is further divided into two regions so that V0 = V0c + V0r. The V0c consists
of the spherical shell with b ≤ r < a

2 while V0r is the remainder of the cell (0, 0, 0).
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Figure 3. The middle-cut plot of the cube. V1: r < b; V0 = V0c+V0r. The V0c consists of the spherical
shell with b ≤ r < a

2 ; V0r is the remainder of V0.

By making use of orthonormality of spherical harmonics (Appendix A) and the integral of product
of spherical Bessel and Hankel functions [48], the integral over V0c can be carried out analytically. For
the integral over V1, we consider the example of spherical scatterer and the integration can also be
carried out analytically. It follows that

εp
ε0

∫
V1

dr̄
∣∣ψC

p (ke)
∣∣2 =

εp
ε0

∑
n,m

∣∣cCnm (ke)
∣∣2 I1(jn, kpe, 0, b) (81)

ε

ε0

∫
V0c

dr̄
∣∣ψC (ke)

∣∣2 =
ε

ε0

∑
n,m

( ∣∣aCnm∣∣2 I1 (jn, k, b, a2)+ ∣∣asCnm∣∣2 I2 (h(1)n , h(2)n , k, b,
a

2

)
+2Re

(
asCnma

C∗
nmI2

(
jn, h

(1)
n , k, b,

a

2

)))
(82)

where

I1 (zn, α, c, d) =

∫ d

c
drr2 (zn (αr))

2 =

[
r3

2
(zn (αr) zn (αr)− zn−1 (αr) zn+1 (αr))

]r=d

r=c

(83)

I2 (zn, qn, α, c, d) =

∫ d

c
drr2zn (αr) qn (αr) =

[
r2

2α

(
αrzn (αr) qn (αr)− αrzn−1 (αr) qn+1 (αr)

+

(
n+

1

2

)
(−zn (αr) qn−1 (αr) + zn−1 (αr) qn (αr))

)]r=d

r=c

(84)

In Equations (83) and (84), zn(αr) and qn(αr) can be any spherical Bessel function that includes jn,

nn, h
(1)
n , and h

(2)
n .

8. NUMERICAL RESULTS AND DISCUSSIONS

We choose simple cubic lattice (Figure 1) with the lattice constant a = 1. The radius of the spherical
scatterer is b = 0.2a. The background permittivity is ε = ε0. The scatterer has permittivity εp = 8.9ε0.

The speed of light is chosen as c = 1. We shall first illustrate the calculations of the band eigenvalue
and band field at the point X in the first Brillouin zone.

For the point X, k̄i = 0.5b̄1 which means (β1, β2, β3) = (0.5, 0, 0). We will also illustrate the band
diagram for the first 2 bands with 0 ≤ β1 ≤ 0.5, β2 = β3 = 0.

In the calculations of the broadband spherical wave coefficients D̃n′m′(k, k̄i) with imaginary
extractions, we use Nspa = 2, Nspe = 3, ξ = 2π

a , R = 0.5a.
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8.1. Eigenvalue and Normalized Eigenvector at Point X

The eigenvalue part is the CPU intensive part of the method. Based on discussion in the previous
section, we choose a low NL = 1. Then maximum n = 1 for the exciting field coefficient. The maximum
n1 = 1 is also for the scattered field coefficient. The maximum n′ = 2 for D̃n′m′(k, k̄i). We have 4
pairs of (n,m) = (0, 0), (1,−1), (1, 0), and (1, 1). Thus, the dimension of the eigenvalue equation is 4.
We use a combined index l to represent (n,m) with dimension of the matrix of the KKR eigenvalue

equation, Λ(k)ās = 0, with lmax = 4. It shows that the eigenvalue problem is stable with fewer terms
in the expansions and fewer number of coefficients. It is because the eigenvalue problem was derived
based on matching the boundary conditions on the surface of the scatterer. Thus, we use different
numbers of terms in band eigenvalue problem and in band field solutions. The normalized frequency is
fN (k) = k

2π

√
ε0
ε .

The frequency scanning approach is compared with the bisection method in searching for k. Table 1

is shown for the CPU time for the two methods. The determinant of Λ(k) is a real number. We plot the
sign of the determinant and the absolute value of the determinant as a function of fN in Figures 4(a)
and 4(b) respectively. The figure clearly shows that the two eigenvalues for the first 2 bands are
fNe = 0.3748 and fNe = 0.4868, where “e” stands for eigenvalue. As shown in Table 1, the bisection
method is fast as it requires only 0.27 seconds for the first two bands. It is interesting that the frequency
scanning method requires only 2.92 seconds for 10000 frequencies. This indicates that many more bands
than 2 bands can be calculated with 10000 frequencies in frequency scanning.

We will illustrate band field solutions for fNe = 0.4868. The wavenumber eigenvalue is ke = 3.058.

(a) (b)

Figure 4. Normalized frequency response of (a) sign of determinant, (b) absolute value of determinant.

Table 1. CPU simulation time breakdown table for frequency scanning method and bisection method
(1.8GHz Dual-Core Intel Core i5; 8GB 1600MHz DDR3).

Method
Number

of bands
(Nmax,N1,max,Np,max)

Set-up

(milli-sec)

Number of

frequencies

D̃ and det(Λ)

(milli-sec)

Total

CPU (sec)

Frequency

scanning
2 (1, 1, 2) 151.49 10000 2772.21 2.92

Bisection 2 (1, 1, 2) 154.91 28 114.44 ∼ 0.27
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Table 2. Scattered field coefficients for fNe = 0.4868.

n m l asnm

0 0 1 0

1 −1 2 0.7071

1 0 3 0

1 1 4 −0.7071

The eigenvector for the 4 by 4 eigenvalue problem is for the scattered field coefficients, asnm, as shown
in Table 2.

The eigenvector asnm is normalized so that
∑

nm

√
(asnm)2 = 1. Note that this is normalization of

the eigenvector for the matrix equation and is not the normalization of the band field solution which
will be calculated later.

8.2. Higher Order Spherical Waves

After the eigenvalue and eigenvector of the scattered field coefficients are obtained, we calculate the
band field solutions for the entire (0, 0, 0) cell. This requires higher order coefficients. We calculate up
to n = Nsph = 5 with Lmax = 36. The majority of the coefficients are small. The significant ones are
illustrated in Table 3.

The higher order scattering coefficients asCnm are small. The higher order exciting coefficients aCnm
and internal field coefficients cCnm have larger values. However, the contributions to the band field
solutions are the products of the coefficients and Bessel function, viz. aCnmjn(ker) and c

C
nmjn(kper) and

not the coefficients alone. In the (0, 0, 0) cell rmax = 0.866a, so that (ker)max = 2.64. This means that
the contributions of spherical waves to the band field solutions with n = 5 are small.

8.3. Normalization of Wave Functions

Then we calculate the normalization integrals. The normalization for the wave functions is the square
root of the sum of the 3 integrals in Table 4 which is

√
34.358 = 5.861. The factor is used to normalize

the coefficients. The normalized coefficients are in parenthesis in the above Table 3.

8.4. The Band Field Solution

We next plot the band field solution using the normalized coefficients of exciting field, scattered field,
and internal field from Equations (76) and (77).

In Figure 5, we plot the band field solution along the center line for (x, 0, 0) where −a
2 ≤ x ≤ a

2 .
The red and blue are real and imaginary parts of the higher order solution. The low order solution
includes only (n,m) = (1,−1) and (n,m) = (1, 1). The low order solution has the simple form.

ψC (ke, r̄) =

√
3√
2π

i [5.776j1 (3.058r)− 0.12n1(3.058r)] sin θ cosϕ (85)

ψC
p (ke, r̄) =

√
3√
2π

i(3.529)j1 (9.124r) sin θ cosϕ (86)

Figure 5 shows that the low order solution is accurate up to the vicinity of the scatterer. At the
boundary of the scatterer r = b = 0.2a, the difference between high order and low order is 2%. This
shows that NL = 1 is of sufficient accuracy for the eigenvalue problem because the eigenvalue problem
requires only that the boundary conditions on the surface the scatterer is obeyed. However, if the entire
curves within −0.5a to 0.5a are considered, L2-norm between high order and low order is up to 10%.
This shows that for field further than the scatterer, we need to use higher order spherical waves to
calculate the scattered fields in the entire (0, 0, 0). Figure 6 shows slices of 3-D field solutions.
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Figure 5. Band field solution along the center line for low order solution includes only (n,m) = (1,−1)
and (n,m) = (1, 1); Red and blue lines are for higher order. Green and Magenta lines are for low order.
Green line overlaps red line.

(a) (b) (c)

(d) (e) (f)

Figure 6. 2-D slices of 3-D field solution for fNe = 0.4868 at X-point in (0, 0, 0) cell, (a) real part of
2-D slice for z = 0, (b) real part of 2-D slice for y = 0, (c) real part of 2-D slice for x = 0, (d) imaginary
part of 2-D slice for z = 0, (e) imaginary part of 2-D slice for y = 0, (f) imaginary part of 2-D slice for
x = 0.
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Table 3. Scattering coefficients inside and outside the scatterer: There are 2 numbers, first is normalized
eigen vector for matrix equation; number in parenthesis is normalized band field solution.

n m l acnm (asCnm) cCnm

1 −1 2
−0.7071− 33.83i

(−0.1206− 5.7721i)

0.7073

(0.1207)

−20.6742i

(−3.5274i)

1 1 4
0.7071 + 33.8391i

(0.1206 + 5.7736i)

−0.7073

(−0.1207)

20.6742i

(3.5274i)

3 −3 10
42.4043i

(7.2350i)

−42.4661e− 06

(−7.2455e− 06)

1.9867i

(0.3390i)

3 −1 12
−32.8463i

(−5.6042i)

32.8941e− 06

(5.6124e− 06)

−1.5389i

(−0.2626i)

3 1 14
32.8463i

(5.6042i)

−32.8941e− 06

(−5.6124e− 06)

1.5389i

(0.2626i)

3 3 16
−42.4043i

(−7.2350i)

42.4661e− 06

(7.2455e− 06)

−1.9867i

(−0.3390i)

5 −5 26
−86.7455i

(−14.8005i)

8.2850e− 10

(1.4136e− 10)

−0.4207i

(−0.0718i)

5 −3 28
41.1362i

(7.0186i)

−39.2889e− 11

(−6.7034e− 11)

0.1995i

(0.0340i)

5 −1 30
−70.7478i

(−12.0709i)

6.7571e− 10

(1.1529e− 10)

−0.3431i

(−0.0585i)

5 1 32
70.7478i

(12.0709i)

−6.7571e− 10

(−1.1529e− 10)

0.3431i

(0.0585i)

5 3 34
−41.1362i

(−7.0186i)

39.2889e− 11

(6.7034e− 11)

−0.1995i

(−0.0340i)

5 5 36
86.7455i

(14.8005i)

−8.2850e− 10

(−1.4136e− 10)

0.4207i

(0.0718i)

Table 4. Breakdown of integral of field solution for the normalization.

Integral Normalization Integral
εp
ε0

∫∫∫
V1
dr̄
∣∣ψC

p (ke, r̄)
∣∣2 2.779

ε
ε0

∫∫∫
V0c
dr̄
∣∣ψC (ke, r̄)

∣∣2 11.968
ε
ε0

∫∫∫
V0r

dr̄
∣∣ψC (ke, r̄)

∣∣2 19.612

sum 34.358

8.5. Band Diagram

In Figure 7, we plot the band diagram for the first two bands between Γ and X points in the first
Brillouin zone for β2 = β3 = 0 and 0 ≤ β1 ≤ π

2 . The lower band is close to a straight line near Γ point
meaning that an effective permittivity can be derived. The band eigenvalue frequencies are given in the
following Table 5 for X point and Γ point. Usually the first band near the Γ point can be derived using
low frequency method or quasistatic solution. The second band is beyond the quasistatic solution.
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Figure 7. The band diagram for the two bands between Γ and X points for β2 = β3 = 0 and
0 ≤ β1 ≤ π

2 .

Table 5. Eigen-frequency for X-point and Γ-point.

Location β1 1st band fN 2nd band fN

X point 0.5 0.3748 0.4867

Γ point 0 0 0.5839

9. CONCLUSIONS

In this paper, we apply the BBGF-KKR-MST method to calculate band eigenvalue frequencies, band
fields, and the normalizations of band fields of scalar waves for 3D periodic structures. The advantages
of the approach are (a) the dimension of the eigenvalue matrix equation is small which is only 4 by 4 for
the first 2 bands, (b) the BBGF allows the calculation of the KKR matrix fast for many wavenumbers,
and (c) the band field solutions are represented by 36 spherical wave coefficients.

In MST, the T matrix used is that of an isolated single scatterer which is independent of the lattice
and independent of the Bloch vector. Thus, for a general scatterer, the T matrix can be precalculated
separately using various techniques [49–52] such as MoM, FEM, and FDTD, and commercial software
such as HFSS, FEKO, and CST in the frequency range of interest and then used for all lattices and Bloch
vectors. This will further increase the computational efficiency of the BBGF-KKR-MST method. With
the band field solutions determined, we will calculate the BBGF with the plurality of scatterers [53–56].

The transfer matrix of a scatterer is independent of the lattice. The Transfer T matrix is also
independent of the Bloch vector k̄i. The calculation of T matrix for scatterer with an arbitrary shape
is not difficult. The T matrix can be extracted from numerical software such as HFSS and FEKO.
Recently we have used the method to extract the T matrix of a tree and also a plant. The shape of
trees and plants are highly irregular. We have used the extracted T matrices with Foldy-Lax MST for
scattering by a large number of trees/plants [52, 57]. The tree with primary and secondary braces is up
to 40 wavelengths in height [57]. We will apply the same method of T matrix extraction to scatterers
of arbitrary shape in photonic crystals.

For the case when the scatterer is dispersive with permittivity changing with frequency, the
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technique can be extended readily to include T matrix for dispersive media. Such T matrix can be
computed for spherical scatterers. The T matrix of arbitrary shaped scatterers can be extracted from
commercial software [52, 57]. For the case when the background permittivity is dispersive, we will study

the use of BBGF for efficient broadband computation of D̃nm(k, k̄i) coefficients.
In this paper we have studied the 3D scalar wave case. With appropriate T matrices, the scalar

waves can be adapted to the case of acoustic waves [37] and electron waves. This paper initially
formulates the eigen-value problem using integral equation (IE) which is lengthy. Based on the multiple
scattering nature of periodical structure, Foldy Lax based formulation is then presented with the same
final governing equation as IE’s. Moreover, the formulation is much reduced. We have developed a
fast computation method for the scalar 3D problem. Presently we are extending to vector 3D. When
being completed, we will do a comparison with COMSOL with regard to accuracies and computation
efficiency.

APPENDIX A.

In the literature and in open source codes [33, 45, 46], there are multiple definitions of associated
Legendre polynomial and spherical harmonics. In Matlab there are built in functions for associated
Legendre polynomials.

In this Appendix, we define the spherical harmonics and associated Legendre polynomial with
superscript (N) to distinguish it from that in the book Tsang et al. Vol. 1 [33]. From [33], the associated
Legendre polynomial is

Pm
n (x)=(−1)m

(
1− x2

)m
2
dm

dxm
Pn (x)=

(−1)m

2nn!

(
1− x2

)m
2
dn+m

dxn+m

(
x2 − 1

)n
; m = 0,±1, ...,±n (A1)

To relate between negative m and positive m,

P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pm
n (x) (A2)

The spherical harmonic is
Y m
n (θ, ϕ) = Pm

n (cos θ) eimϕ (A3)

The orthonormal relation is∫ π

0
dθ sin θ

∫ 2π

0
dϕY m

n (θ, ϕ)Y −m′

n′ (θ, ϕ) = (−1)m
4π

2n+ 1
δmm′δnn′ (A4)

The disadvantage of this definition is that the coefficients are small for negative m and large for positive
m. We next define the (N) version

P (N)m
n (x) = (−1)m

√√√√√
(
n+

1

2

)
(n−m)!

(n+m)!
Pm
n (x) ; m = 0,±1, ...,±n (A5)

Then, relating negative m to positive m

P (N)(−m)
n (x) = (−1)m P (N)m

n (x) (A6)

In (N), the coefficient of positive m and negative m are of the same magnitude. spherical harmonics,

Y (N)m
n (θ, ϕ) =

1√
2π

P (N)m
n (cos θ) eimϕ (A7)

Changing to negative m,

Y (N)(−m)
n (θ, ϕ) = (−1)m

1√
2π

P (N)m
n (cos θ) e−imϕ (A8)

For complex conjugate with superscript ∗(
Y (N)m
n (θ, ϕ)

)∗
=

1√
2π

P (N)m
n (cos θ) e−imϕ (A9)
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The relation between negative m and complex conjugate is

Y (N)(−m)
n (θ, ϕ) = (−1)m

(
Y (N)m
n (θ, ϕ)

)∗
(A10)

The orthonormal relation for the integration of the product of spherical harmonic and complex conjugate
is ∫ π

0
dθ sin θ

∫ 2π

0
dϕY (N)m

n (θ, ϕ)
(
Y

(N)m′

n′ (θ, ϕ)
)∗

= δmm′δnn′ (A11)

The orthonormal relation for the integration of the product of two spherical harmonics is∫ π

0
dθ sin θ

∫ 2π

0
dϕY (N)m

n (θ, ϕ)Y
(N)(−m′)
n′ (θ, ϕ) = (−1)m

′
δmm′δnn′ (A12)

Using direction vector
r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ (A13)

We can write
Y (N)m
n (θ, ϕ) = Y (N)m

n (r̂) (A14)

Reversing the direction means (θ, ϕ) → (π − θ, π + ϕ).
Then

P (N)m
n (cos(π − θ)) = (−1)n+m P (N)m

n (cos θ) (A15)

Y (N)m
n (π − θ, π + ϕ) = Y (N)m

n (−r̂) = (−1)n Y (N)m
n (r̂) = (−1)n Y (N)m

n (θ, ϕ) (A16)

Computer codes for associated Legendre polynomials are built in functions of MATLAB. In using
MATLAB, the readers need to check carefully the MATLAB definition of the associated Legendre
polynomials.

APPENDIX B. COMPUTATIONS OF P (L,L1, L
′) AND DLL1(K,K̄I)

The definition is

P
(
l, l1, l

′) = P
(
n,m, n1,m1, n

′,m′) = (−1)n1 (−1)m
′+m1 in1+n−n′

√
(2n′ + 1)(2n1 + 1)(2n+ 1)

(
n′ n1 n

0 0 0

)(
n

′
n1 n

−m′ −m1 m

)
(B1)

The properties of Wigner 3j symbol

(
n′ n1 n
0 0 0

)
are [43]

|n− n1| ≤ n′ ≤ n+ n1 (B2)

And (
n′ n1 n

0 0 0

)
= 0 if n′ + n1 + n is odd (B3)

This means in1+n−n′
= ieven, so that is P (l, l1, l

′) real.

In

(
n′ n1 n

−m′ −m1 m

)
−m′ −m1 +m = 0; m′ = m−m1 (B4)

Since
Dll1

(
k, k̄i

)
=
∑
l′

P
(
l, l1, l

′)D̃l′
(
k, k̄i

)
(B5)
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then

Dll1

(
k, k̄i

)
= −h

(1)
0 (kR)

j0 (kR)

∑
l′

P
(
l, l1, l

′)δm′0δn′0 +

√
4π

ik

∑
l′

P
(
l, l1, l

′)I1 (n′,m′, iξ, k̄i
)

jn′ (kR)

−
√
4π

ik

ξ2 + k2

2ξ

∑
l′

P
(
l, l1, l

′)I2 (n′,m′, iξ, k̄i
)

jn′ (kR)

+

√
4π

ik

(
ξ2 + k2

)2
8ξ

∑
l′

P
(
l, l1, l

′)I3 (n′,m′, iξ, k̄i
)

jn′ (kR)

+

√
4π

ik

(
ξ2 + k2

)3∑
l′

P
(
l, l1, l

′) 1

jn′(kR)

∑
s

Qm′
4n′(k̄is)

1

(k2is − k2)
(B6)

In broadband computations of Dll1(k, k̄i), terms that are independent of k are computed once. These

include P (l, l1, l
′), I1(n

′,m′, iξ, k̄i), I2(n
′,m′, iξ, k̄i), I3(n

′,m′, iξ, k̄i), and Q
m′
4n′(k̄is).

Then for a given k, Dll1(k, k̄i) are computed by putting in the simple k dependences. In this
manner, Dll1(k, k̄i) can be computed rapidly for many k’s.

APPENDIX C. T MATRIX OF SCALAR WAVES

We consider the T matrix of scalar waves for a particle of radius b with wavenumber kp in a background
with wavenumber k.

For the exciting wave, the wave function is

ψE =
∑
n,m

aEnmRgψnm (kr̄) (C1)

The scattered wave is
ψs =

∑
n,m

asnmψnm (kr̄) (C2)

The field inside particle is

ψp =
∑
n,m

cnmRgψnm (kpr̄) (C3)

The boundary conditions are the continuity of wave functions and normal derivatives. Then the scattered
wave coefficient is related to the exciting field coefficient by the T matrix coefficient Tn

asnm = Tna
E
nm (C4)

where the T matrix coefficient Tn is

Tn = − kj′n (ka) jn (kpa)− kpjn (ka) j
′
n(kpa)

kh
(1)′

n (ka) jn (kpa)− kph
(1)
n (ka) j′n(kpa)

(C5)

APPENDIX D. DERIVATION OF KKR BASED ON FOLDY-LAX (FL) MULTIPLE
SCATTERING EQUATIONS

In the derivations of KKR equation, the common procedure is to use integral equations and the lattice
Green’s function. In this appendix, we give an alternative derivation based on Foldy-Lax (FL) Multiple
Scattering equations without the use of integral equations. (Foldy 1945 [34]; Lax 1951 [35]; Tsang et al.
1982 [38]; Tsang et al. 1985 [39], Tsang et al., Vol. 2 [40]). The Foldy-Lax equations are usually used
for random media with random positions of particles. However, it can be applied to periodic scatterers
which is a special case of random media.
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Consider N number of particles, centered at R̄q, q = 1, 2, 3, ..., N . The Foldy-Lax equations state

that the exciting field of particle q, ψex(q)(r̄), is the incident wave, ainc(r̄), plus the scattered field from

all particles p, ψs(p)(r̄), except particle q itself (Tsang et al. 1985 [39]).

ψex(q) (r̄) = ainc (r̄) +

N∑
p̸=q

ψs(p)(r̄) (D1)

Note that the number of particles N can be infinite. The ψex(q)(r̄) is expanded in spherical waves

centered at R̄q and ψs(p)(r̄) is expanded in spherical waves centered at R̄p

ψex(q) (r̄) =
∑
n,m

ω(q)
nmRgψ

(
k
(
r̄ − R̄q

))
(D2)

ψs(p) (r̄) =
∑
n1,m1

a(s)(p)n1m1
ψn1m1

(
k
(
r̄ − R̄p

))
(D3)

where ω
(q)
nm and a

(s)(p)
n1m1 are exiting field coefficients of particle q and scattered field coefficients of particle

p, respectively. We substitute (D2) and (D3) in (D1), and obtain (Tsang et al. 1982 [38], Tsang et al.
1985 [39], Tsang et al., Vol. 2 2001 [40]).∑

n,m

ω(q)
nmRgψ

(
k
(
r̄ − R̄q

))
= ainc (r̄) +

N∑
p̸=q

∑
n1,m1

a(s)(p)n1m1
ψn1m1

(
k
(
r̄ − R̄p

))
(D4)

We next use the translation addition theorem for r′ > r′′. (Chew [45], page 593), taking into
account the various definitions of associated Legendre polynomials and the spherical harmonics. We
also make use of symmetry relations of Wigner 3j symbols (Edmonds [43]).

The translation theorem is

ψn1m1

(
k
(
r̄′′ − r̄′

))
=

√
4π
∑
n′,m′

∑
n,m

ψn′(−m′)

(
kr̄′
)
Rgψnm

(
kr̄′′
)
(−1)m

′

P
(
n,m, n1,m1, n

′,m′) for r′ > r′′ (D5)

where P (n,m, n1,m1, n
′,m′) is as defined in Equation (B1).

Since r̄ − R̄p = r̄ − R̄q − (R̄p − R̄q), we let in (D5), r̄′′ = r̄ − R̄q and r̄′ = R̄p − R̄q. Then

ψn1m1

(
k(r̄ − R̄p)

)
=

√
4π
∑
n′,m′

∑
n,m

ψn′(−m′)

(
k
(
R̄p − R̄q

))
Rgψnm

(
k
(
r̄ − R̄q

))
(−1)m

′

P
(
n,m, n1,m1, n

′,m′) for
∣∣R̄p − R̄q

∣∣ > ∣∣r̄ − R̄q

∣∣ (D6)

Let the incident wave be expanded into spherical waves about R̄q.

ainc (r̄) =
∑
n,m

ainc(q)Rgψnm

(
k
(
r̄ − R̄q

))
(D7)

Substitute (D6) and (D7) into (D4) and balance coefficients of the expansions Rgψnm(k(r̄ − R̄q)).

ω(q)
nm = ainc(q) +

N∑
p̸=q

∑
n1,m1

a(s)(p)n1m1

√
4π
∑
n′,m′

ψn′(−m′)

(
k
(
R̄p − R̄q

))
(−1)m

′
P
(
n,m, n1,m1, n

′,m′) (D8)

The equation in (D8) of Foldy Lax in spherical wave expansions is applicable to both random and
periodic systems. For periodic systems, we let the number of particles N = ∞.

Next we consider the periodic case of bands. Let there be no incident wave so that

ainc(q) = 0 (D9)

The Bloch condition relates scattered field and exciting field coefficients to the center cell (0, 0, 0).
This means

a(s)(p)n1m1
= a(s)n1m1

eik̄i·R̄p (D10)
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ω(q)
nm = ωnme

ik̄i·R̄q (D11)

where a
(s)
n1m1 and ωnm are the scattered field coefficients and exciting field coefficients in the center cell

(0, 0, 0). Then

ωnm=
∑
n1,m1

a(s)n1m1

√
4π
∑
n′,m′

(−1)m
′
P
(
n,m, n1,m1, n

′,m′)∑
p ̸=q

eik̄i·(R̄p−R̄q)ψn′(−m′)

(
k
(
R̄p − R̄q

))
(D12)

For periodic systems, the summation over particles p can be represented by∑
p̸=q

eik̄i·(R̄p−R̄q)ψn′(−m′)

(
k
(
R̄p − R̄q

))
=

∑
s ̸=(0,0,0)

eik̄i·R̄sψn′(−m′)

(
kR̄s

)
(D13)

Then

ωnm =
∑
n1,m1

a(s)n1m1

√
4π
∑
n′,m′

(−1)m
′
P
(
n,m, n1,m1, n

′,m′) ∑
s ̸=(0,0,0)

eik̄i·R̄sψn′(−m′)

(
kR̄s

)
(D14)

Equation (D14) is the KKR equation with summation of spherical waves ψn′(−m′)(kR̄s) over all

cells outside (0, 0, 0) each weighted by eik̄i·R̄s . We next make use of the D̃nm(k, k̄i) coefficients in (D14).
From Equations (10) and (16), the response Green’s function gR(k, k̄i, r̄) is represented by

summation over point sources from other cells weighted by the Bloch phase shift eik̄i·R̄s . It is also
given in terms of the D̃nm(k, k̄i) coefficients.

gR
(
k, k̄i, r̄

)
=

∑
s ̸=(0,0,0)

eik̄i·R̄s
ik√
4π

ψ00

(
k
(
r̄ − R̄s

))
=

∑
s ̸=(0,0,0)

eik̄i·R̄s
eik|r̄−R̄s|

4π
∣∣r̄ − R̄s

∣∣
=

ik√
4π

∑
n,m

D̃nm

(
k, k̄i

)
Rgψnm (kr̄) (D15)

From Harrington (Time Harmonic Electromagnetic Fields) [58] and Sarabandi’s book [59],

eik|r̄−R̄s|

4π
∣∣r̄ − R̄s

∣∣ = ik
∑
n,m

(−1)m ψn(−m)

(
kR̄s

)
Rgψnm (kr̄) (D16)

Then substituting (D16) in (D15), we balance the coefficients of Rgψnm(kr̄).

D̃nm

(
k, k̄i

)
=

√
4π (−1)m

∑
s̸=(0,0,0)

eik̄i·R̄sψn(−m)

(
kR̄s

)
(D17)

We use (D17) to replace the
∑

s ̸=(0,0,0) equation in (D14).

The KKR equation becomes

ωnm =
∑
n1,m1

a(s)n1m1

∑
n′,m′

P
(
n,m, n1,m1, n

′,m′)D̃n′m′
(
k, k̄i

)
(D18)

The KKR Equation (D18) is identical to the KKR Equation (54) derived from integral equations.
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