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Abstract—A network optimization approach based on Neural Architecture Search (NAS) and network
pruning is suggested to solve the issue of poor recognition performance of missile-borne radar active
jamming under the condition of short sample sizes. The approach realized the ideal network design under
severely constrained technical indications by combining the benefits of several methods, including NAS,
convolutional light-weighting, and network pruning. The recognition network’s convolution kernel size
parameters were first optimized using NAS. The number of model parameters were then decreased via
convolutional substitution. Finally, the structured pruning algorithm further screened the redundant
network based on the technical indicators. The WideResNet28 2 wide residual network’s recognition
accuracy is only 84.38% when there are only 1000 training samples for each type of signal, according
to the simulation results. After optimization, the number of new model parameters was increased to
2.55M, 2.26M, and 1.78M, respectively, and their respective recognition accuracy was increased to
85.7%, 85.61%, and 85.37%. According to the simulation results, the technique offers a wide range of
possible applications in the optimized design of radar active jamming identification networks for small
sample sizes.

1. INTRODUCTION

Active spoofing jamming with high fidelity and high intelligence are emerging with the rapid
development of technologies like solid-state circuits, very large scale integrated circuits (VLSI), and
digital radio frequency memory (DRFM), posing a serious danger to radar systems [1]. To guarantee
that radar operates well and can survive in challenging electromagnetic environments, it is essential to
identify the different forms of active jamming.

Among deep learning models, convolutional neural network (CNN) has had considerable success in
many different disciplines and can automatically learn discriminative and invariant features from data [2–
4]. CNN has also had some success, particularly in the area of radar interference type recognition [5, 6].
The development of deep neural networks has shown that adding more neural network layers can enhance
a model’s capacity for generalization. More layers, however, do not always equate higher performance [7].
One factor that makes deep learning successful is “a large amount of data”. Google has investigated how
“large amount of data” and deep learning are related. It demonstrates unequivocally that the larger
the dataset is, the more effective the performance is by conducting deep learning trials with 300 million
photos [8]. However, in radar work scenarios, especially in the face of electronic countermeasures, the
difficulty of obtaining data increases considerably, leading to a large randomness and uncertainty of
the number of samples used in the training process [9–11]. Therefore, the fundamental approach to
enhancing radar performance is to optimize the network in accordance with the application scenario.

Deep neural networks can now be built automatically using algorithms, outperforming traditional
hand-designed networks in terms of performance [12–14]. A lightweight network based on neural network
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structure search was proposed by Yao et al. [13] to address the grouping structure problem in the
grouping convolution that is frequently employed in lightweight networks. By phrasing tasks in a
differentiable way, Liu et al. [14] addressed the scalability issue of architecture search. Specifically,
they converted the network architecture search problem into a comparable network pruning problem
based on a differentiable architecture search approach. The fundamental purpose of network pruning
is to eliminate duplicate structures and parameters from deep learning models while maintaining the
model’s ability to make accurate predictions [15–18]. A CNN acceleration technique was put forth by
Li et al. [16], which excluded filters thought to have little bearing on the network’s output accuracy. A
fresh channel pruning technique was put out by He et al. [17] to speed up deep convolutional neural
networks. A quick soft filter pruning technique was put out by He et al. [18] for the deep convolutional
neural network inference process. In lightweight neural networks, convolution is a crucial element [19].
The size of the network receptive field is determined by the choice of the convolution kernel size. The
receptive field increases with the size of the convolution kernel [20]. However, the experimental findings
from numerous models have demonstrated that using big convolution kernels would lead to a number
of issues, including an abrupt rise in computational load, poor performance, and the inability to easily
alter the depth [19]. So, for neural network optimization, modifying the convolution to achieve network
lightweight is the preferable option. A method for dividing big size convolution kernels was presented by
Szegedy et al. [21] based on an analysis and comparison of the computational effort needed for various
size convolution kernels. This method makes use of the increased computation as effectively as feasible
through the use of appropriate factorial convolution and aggressive regularization. However, there are
few reports of the aforementioned study being used to identify the type of active jamming in radar
systems.

This research suggests a network optimization approach for radar active jamming identification
based on NAS and network pruning to solve the aforementioned issues. The time-frequency analysis
theory, active jamming model, and radar echo are first briefly introduced. Second, the network
optimization algorithm based on NAS and network pruning for identifying radar active jamming is
examined. Finally, simulation verification of the type identification of radar active jamming is performed
using limited samples.

2. THEORY ON RADAR ACTIVE JAMMING SIGNAL MODELING AND
TIME-FREQUENCY ANALYSIS

This section first introduces the pseudo random code pulse Doppler radar target echo and active
jamming signal model and time-frequency analysis theory, followed by model simulation with reasonable
parameters, and finally introduces the dataset structure used in this paper.

2.1. Radar Echo and Active Jamming Signal Model

Because finding publicly available datasets for radar active jamming research is challenging, and building
and implementing real-world test environments for electronic countermeasures is expensive, modeling
and simulation are key tools for conducting studies on the design of radar systems. The radar target
echo and active jamming signal model in this paper are shown in Table 1 [22–24].

2.2. Time-Frequency Analysis Theory

The signal is first preprocessed by time-frequency analysis using the transform domain, where the
high-dimensional features that are retrieved can better characterize the signals with various modulation
patterns [25, 26]. The pseudo-Wigner-Ville distribution (PWVD) for nonlinear and non-stationary radar
signals has high time-frequency aggregation and good cross-term suppression effect, and its calculation
is also very straightforward [27]. Therefore, in this work, the properties of radar active jamming signals
are extracted using the pseudo-Wigner-Ville distribution. PWVD is described as follows [28]:
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Table 1. The radar target echo and active jamming signal models.

Signal types Formula Explanation

Radar target

echo [23]

Sr(t) = RectA
[
t−τR
τA

]
ArP (t− τR) cos [ω0 (t− τR)]

= RectA
[
t−τR
τA

]
ArP (t− τR) cos (ω0t+ ωdt)

Ar: echo signal amplitude;

τR: projectile distance delay;

c: light speed;

ωd: Doppler angle frequency.

Noise AM

jamming [23]
JA(t) = [A0 + n(t)] cosωjt

A0: carrier amplitude;

ωj : carrier angular frequency;

n(t): generalized stationary noise

with mean 0 and variance σ2.

Noise FM

jamming [23]
J (t) = Uj cos

[
2πfjt+ 2πKFM

∫ t

0
un (t′) dt′ + ϕ

] Uj : amplitude of the modulated signal;

fj : carrier frequency of the modulated signal;

un(t): generalized stationary

random process with zero mean

and variance σ2, i.e., modulated noise.

Noise PM

jamming [23]
J (t) = Uj cos [2πfjt+KPMun (t) + ϕ]

Uj : amplitude of the modulated signal;

fj : carrier frequency of the modulated signal;

KFM : phase modulation slope of

a noisy phase modulated signal;

un(t): generalized stationary

random process with zero mean

and variance σ2, i.e., modulated noise;

ϕ: The initial phase is uniformly distributed

on [0, 2π], and satisfies the independent

distribution relationship with un(t).

Range

deception

jamming [23]

Sj(t) = RectA
[
t−τj
τA

]
AjP (t− τj) cos (ω0(t− τj))

Aj : amplitude of the interfering signal

received by the receiver;

τj : total jamming delay, including

jammer inherent delay and

jamming delay set by jammer;

P (t): The same pseudo-random

code signal as the target signal.

Intermittent

sampling direct

forwarding

interference [24]

SJ(t) =
N−1∑
n=0

rect
(

t−τ−(2n+1)TJ
TJ

)
· exp

[
jπKr (t− τ − TJ)

2]
rect(·): wave gate function;

N : number of interference slices;

TJ : width of interference slice;

Kr: transmit signal frequency;

τ : jammer-to-radar distance induced delay.

Intermittent

sampling and

repeated

forwarding

interference [24]

SJ(t) =
M∑

m=1

N−1∑
n=0

rect
(

t−τ−nTn−mTJ
TJ

)
· exp

[
jπKr (t− τ −mTJ)

2
]

M : The number of times each

slice was forwarded;

Tu = (M + 1) · TJ :

The time interval at which the

jammer intercepts the signal.

2.3. Parameter Settings

2.3.1. Pseudo-Random Code Pulse Doppler Radar Echo

Parameter settings: the pseudo-random code symbol width Tc = 50ns, code length P = 31, so the pulse
width T = 1µs, the pulse repetition period TR = 5µs, the carrier frequency f0 = 220MHz, the bullet
distance Rt = 60m, and the signal-to-noise ratio is 10 dB. If there is not any interference, the target
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echo signal is processed to create an intermediate frequency signal, which is then output after being
correlated with the signal from the local oscillator.

2.3.2. Radar Active Jamming Parameter Settings and Simulation Results

2.3.2.1 Parameter Settings

Suppressive jamming parameters: the interference signal ratio is 10 dB; the frequency modulation slope

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. PWVD of radar target echo and active jamming.
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is 10e6; the phase modulation slope is 3; and the signal bandwidth is 20MHz. In order to realize
the suppression interference, the suppression signal bandwidth is 80MHz. The deception interference
parameters: the interference signal ratio is 5 dB, and deception distance Rj = 20m. Intermittent sam-
pling forwarding jamming parameters: the signal-to-interference ratio is 13 dB, and deception distance
Rj = 20m. The rest of the parameters remain unchanged as shown in Section 2.3.1.

2.3.2.2 Simulation Environment

This part is implemented using MATLAB 2021b; the CPU is 1 Intel(R) Core(TM) i7-10750H processor;
and the GPU is c 1 NVIDIA GeForceGTX2060 graphics card.

2.3.2.3 Simulation Results

This section is based on Matlab simulation. The simulated time-frequency distribution diagram of the
intermediate frequency target echo and interference signal after mixing are shown in Figure 1.

2.4. Dataset Construction

2.4.1. Dataset Structure

The CIFAR10 [29] dataset, which contains 1 type of radar target echo and 6 types of active interference,
is used to generate the dataset in this research. The training set, test set, and class labels make up the
dataset’s three components. The training set is separated into 5 batches, while the test set contains
just 1 batch, with each batch storing 7000 three-channel grayscale images (32 × 32× 3) and a total of
42,000 grayscale images; the class labels for each sample are recorded in the file batches. meta.bet (As
shown in Table 2).

Table 2. The radar target echo and active jamming type labels.

Signal types Label

Radar target echo real-echo

Noise AM jamming b-pam

Noise FM jamming b-pfm

Noise PM jamming b-ppm

Range deception jamming d-range

Intermittent sampling direct forwarding interference i-direct

Intermittent sampling and repeated forwarding interference i-repeater

2.4.2. Parameter Settings of Radar Active Jamming Model

Signal samples are collected based on MATLAB simulation environment: set the value range of
interference signal ratio (ISR) to 10 ∼ 50 dB and the value range of SNR to −10 ∼ 10 dB.

3. PROPOSED ALGORITHM

Motivation: The size of a model’s receptive field has a direct impact on how well it performs, with the
convolution kernel’s size being the primary determinant of receptive field size. The convolution kernel
size can be increased to enhance the receptive field, although doing so increases model parameters by
an order of magnitude. The model’s performance can be enhanced while limiting the growth of model
parameters by using the convolution replacement method.

Figure 2 depicts the network optimization algorithm for identifying radar active jamming based on
NAS and network pruning.

The specific steps of the algorithm are as follows:
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Figure 2. Flow chart of the proposed algorithm.

Step 1: (as shown by the blue arrow) Perform model evaluation on the initial model (residual
network WideResNet28 2 [30, 31]) before analyzing the radar active interference dataset. It is the best
classifier model if the performance satisfies the hardware specifications and index requirements; else,
move on to the next step.

Step 2: (as shown by the purple arrow) The network convolution kernel parameters should be first
optimized using neural network structure search and network pruning. The WideResNet28 2 network’s
convolution kernel size parameters are divided into five categories: (3, 3), (5, 5), (7, 7), (9, 9), and (11, 11).
Next, utilize convolution replacement to get the best classifier (WideResNetX1 2) for the dataset by
reducing the model parameters. Then evaluate the model using it. It is the best classifier model if it
satisfies the aforementioned criteria; otherwise, move on to step three.

Step 3: (as shown by the red arrow) The best classifier model (WideResNetX2 2) was obtained
in this application scenario by measuring and sorting the weight channels of the new model and then
performing network pruning in accordance with the requirements and constraints to significantly increase
the generalization ability of the model.
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4. SIMULATION RESULTS AND ANALYSIS

The simulation test primarily looks at how the model’s performance is impacted by a small sample size.
In the experiment, three simulated application situations are built up, and the performance indicators
are primarily analyzed using a confusion matrix and recognition accuracy rate.

4.1. Simulation Environment and Experimental Settings

4.1.1. Simulation Environment and Experimental Setup

4.1.1.1 Simulation Environment

The experiment was carried out using the Python programming language and the free and open-source
Pytorch0.4 deep learning framework. An NVIDIA GeForce GTX3080 graphics card was used as the
GPU, which assisted the CPU set up with an Intel(R) Core(TM) i9-11900 processor. On the CIFAR-
Radar7 dataset, the algorithm’s optimization effect was confirmed.

4.1.1.2 Experimental Setup

In this experiment, three application scenarios were built up to assess the algorithm’s performance in
accordance with various requirements, such as technical indicators and hardware configuration.

(1) Application scenario 1
1⃝ Dataset: the number of signal samples of each type in the training set is divided into three

cases: 5000, 3000, and 1000;
2⃝ Technical indicators: no special requirements;
3⃝ Hardware configuration: no special requirements;
4⃝ Experiment content: evaluate the performance of the WideResNet28 2 classifier with different

numbers of training sets.

(2) Application scenario 2
1⃝ Dataset: the number of samples of each type in the training set is 1000;
2⃝ Technical indicators: recognition accuracy rate ≥ 85.5%;
3⃝ Hardware configuration: model parameters ≤ 2.8M;
4⃝ Experiment content: evolution of the best parameters of the model under small sample

conditions; based on WideResNet28 2 classifier, the model is optimized according to conditions
2⃝ and 3⃝, and its performance is tested.

(3) Application scenario 3
1⃝ Dataset: the number of samples of each type in the training set is 1000;
2⃝ Technical indicators: recognition accuracy rate ≥ 85%;
3⃝ Hardware configuration: model parameters ≤ 2.4M; model parameters ≤ 2.0M.
4⃝ Test content: for the optimal model in scenario 2, optimize the design according to the

conditions 2⃝ and 3⃝ in this scenario.

4.2. Simulation Results

4.2.1. Evaluating the Performance of the WideResNet28 2 Classifier

4.2.1.1 Performance of the Trained Model for Signal Recognition with 5000 Training Samples

1.47M was the model parameter. The recognition accuracy was 87.5% following 1200 training rounds.
Figure 3 displays the results of the recognition.

4.2.1.2 Performance of the Trained Model at Recognizing Each Type of Signal Using 3000 Training
Samples
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Figure 3. Confusion matrix.

Figure 4. Confusion matrix.

The 1.47M model parameter. The recognition accuracy rate was 87.47% after 1200 training rounds.
Figure 4 displays the recognition outcomes.

4.2.1.3 Performance of the Trained Model for Each Type of Signal with 1000 Training Samples

1.47M was the model parameter. It took 1200 training cycles to achieve an accuracy rate of 84.38% in
recognition. Figure 5 displays the recognition results.

4.2.2. Optimizing the Design of the WidResNet28 2 Classifier

TheWideResNet28 2 network’s model parameters were optimized using NAS under the restriction of just
1000 training samples for each type of signal. The parameters of the new model NewWideResNet28 2
are displayed in Table 3 following training.
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Figure 5. Confusion matrix.

Convolution replacement was used to lighten the NewWideResNet28 2 model, which led to the
creation of the NewWideResNet50 2 model. Its primary attributes are displayed in Table 4.

The identification accuracy of NewWideResNet50 2 obtained 85.7% after 1200 training rounds
under the assumption that the training set contained 1000 samples. Figure 6 displays the recognition
results.

Figure 6. Confusion matrix.

4.2.3. Optimize and Evaluate New Models according to Technical Indicators

The algorithm was applied to NewWideResNet50 2 optimization. Table 5 displays the key
characteristics of the ideal classifier model under various usage scenarios.

The recognition outcomes of NewWideResNet48 2 are displayed in Figure 7 after 1200 training
rounds under the assumption that the training set contained 1000 samples. Figure 8 displays the
NewWideResNet38 2 recognition outcomes.
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Table 3. The main parameters of the WideResNet28 2 model.

Convolution Layer Convolution Kernel Input Size output Size

Input conv1 (3, 3) 3 16

Block1

BasicBlock(0)

conv1 (3, 3) 16 32

conv2 (3, 3) 32 32

short (1, 1) 16 32

BasicBlock (1)
conv1 (3, 3) 32 32

conv2 (3, 3) 32 32

BasicBlock (2)
conv1 (7, 7) 32 32

conv2 (7, 7) 32 32

BasicBlock (3)
conv1 (5, 5) 32 32

conv2 (5, 5) 32 32

Block2

BasicBlock (0)

conv1 (3, 3) 32 64

conv2 (3, 3) 64 64

short (1, 1) 32 64

BasicBlock (1)
conv1 (7, 7) 64 64

conv2 (7, 7) 64 64

BasicBlock (2)
conv1 (7, 7) 64 64

conv2 (7, 7) 64 64

BasicBlock (3)
conv1 (7, 7) 64 64

conv2 (7, 7) 64 64

Block3

BasicBlock (0)
conv1 (5, 5) 64 128

conv2 (5, 5) 128 128

short (1, 1) 64 128

BasicBlock (1)
conv1 (5, 5) 128 128

conv2 (5, 5) 128 128

BasicBlock (2)
conv1 (3, 3) 128 128

conv2 (3, 3) 128 128

BasicBlock (3)
conv1 (3, 3) 128 128

conv2 (3, 3) 128 128

Output fc 128 7

#Params 3330048

4.3. Discussion

According to the above simulation results, the analysis is as follows:
(1) As depicted in Figures 3, 4, and 5, and as demonstrated by the change in accuracy, the model’s

performance declines dramatically when the number of samples is drastically reduced.
(2) The ideal classifier receptive field parameters have been altered, as shown in Table 3, when few

samples are present. As seen in Tables 4 and 3, the number of model parameters are lowered by 23.4%
after convolution replacement. As seen in Figures 6, 7, and 8, the classifier model successfully raises the
model’s recognition rate while minimally raising the model’s parameters, which satisfies the demands
of the technical indicators and hardware configuration.

(3) As seen in Table 5, the technique may be used to more tightly tune the classifier model so
that both the model parameters and recognition rate fulfill the requirements of the indicators for
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more stringent technical indicators and hardware configuration requirements. The device’s capacity
for generalization is significantly enhanced.

Table 4. The main parameters of the WideResNet50 2 model.

Convolution Layer Convolution Kernel Input Size output Size

Input conv1 (3, 3) 3 16

Block1

BasicBlock (0)

conv1 (3, 3) 16 32

conv2 (3, 3) 32 32

convShortcut (1, 1) 16 32

BasicBlock (1)
conv1 (3, 3) 32 32

conv2 (3, 3) 32 32

. . .

BasicBlock (6)
conv1 (3, 3) 32 32

conv2 (3, 3) 32 32

Block2

BasicBlock (0)

conv1 (3, 3) 32 64

conv2 (3, 3) 64 64

convShortcut (1, 1) 32 64

BasicBlock (1)
conv1 (3, 3) 64 64

conv2 (3, 3) 64 64

. . .

BasicBlock (9)
conv1 (3, 3) 64 64

conv2 (3, 3) 64 64

Block3

BasicBlock (0)

conv1 (3, 3) 64 128

conv2 (3, 3) 128 128

convShortcut (1, 1) 64 128

BasicBlock (1)
conv1 (3, 3) 128 128

conv2 (3, 3) 128 128

. . .

BasicBlock (5)
conv1 (3, 3) 128 128

conv2 (3, 3) 128 128

Output fc 128 7

#Params 2551088

Table 5. The main parameters of the optimal classifier model.

Network Structure WideResNet38 2 WideResNet48 2 WideResNet50 2

Input conv1 1 1 1

Block1 Basicblock 5 7 7

Block2 Basicblock 8 10 10

Block3 Basicblock 4 5 6

Output fc 1 1 1

#Params 1.78M 2.26M 2.55M

Accuracy 85.37% 85.61% 85.7%
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Figure 7. Confusion matrix.

Figure 8. Confusion matrix.

In conclusion, increasing the receptive field is the fundamental strategy for enhancing the model’s
performance in the case of small samples. The model’s receptive field can be enhanced by increasing the
size of the convolution kernel; however, this will result in a data-level rise in the model parameters. Using
convolution replacement can change the convolution kernel size optimization problem into a network
depth optimization problem, so enhancing its performance while successfully controlling the increase in
model parameters.

5. CONCLUSION

This research proposes a network optimization approach based on NAS and network pruning for
identifying radar active jamming. Utilizing technologies like as NAS, convolution replacement, and
network pruning, the algorithm realizes the ideal network design for a variety of application scenarios.
The simulation results shown that the algorithm efficiently enhances the operational performance of
the radar system when the technical indicators of the application scene change, with a high degree
of generalizability. This provides an important method reference and data support for the dynamic
optimization of the model in the interaction with application scenarios.
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