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Exceptional Ring by Non-Hermitian Sonic Crystals
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Abstract—Exceptional point (EP) and exceptional ring (ER) are unique features for non-Hermitian
systems, which have recently attracted great attentions in acoustics due to their rich physical
significances and various potential applications. Despite the rapid development about the study of
the EP and ER in one-dimensional acoustic systems, the realization of them in two-dimensional (2D)
non-Hermitian structures is still facing a great challenge. To overcome this, we numerically and
theoretically realize an ER in 2D reciprocal space based on a square-lattice non-Hermitian sonic crystal
(SC). By introducing radiation loss caused by circular holes of each resonator in a Hermitian SC, we
realize the conversion between a Dirac cone and the ER. Based on the theoretical analysis with the
effective Hamiltonian, we obtain that the formation of the ER is closely related to different radiation
losses of dipole and quadrupole modes in the resonators. Additionally, in the non-Hermitian SC, two
eigenfunctions can be merged into a single self-orthogonal one on the ER, which does not exist in the
Hermitian SC. Finally, by verifying the existence of the EP with topological characteristics in every
direction of 2D reciprocal space, we further demonstrate the ER in the proposed non-Hermitian SC.
Our work may provide theoretical schemes and concrete methods for designing various types of non-
Hermitian acoustic devices.

1. INTRODUCTION

In recent years, non-Hermitian physics has attracted great attention owing to its rich physical
significances and various practical applications [1–4]. Exceptional point (EP) is a unique feature for
non-Hermitian systems, which has become a hot topic in photonics [5–19], mechanics [20–26], and
acoustics [27–39] owing to its great potential in energy transport. In acoustics, based on parity-time
symmetric systems [27–32], researchers have realized EP by introducing balanced gain and loss which
can be obtained by a pair of electro-acoustic resonators loaded with specifically tailored circuits [30] and
by a composite structure composed of a leaky waveguide and two speaker arrays [31]. Additionally, by
inserting sound-absorbing sponges in surface holes of coupled cavities, EP can also be obtained in non-
Hermitian structures with asymmetric losses [33, 34]. Based on exotic characteristics of EPs [29, 31, 35–
37], several advanced acoustic devices have been proposed, such as sound absorber [27], focusing
lens [28, 32], invisible acoustic sensor [30], and acoustic mirror [38].

Beyond that, owing to unique and unexpected features, exceptional ring (ER) composed of a
continuous closed trajectory of EPs in reciprocal space has initiated an intense research effort in
photonics [40–43], cold atoms [44] and acoustics [45]. In photonics, by introducing unequal non-
Hermitian perturbations into different modes [40] or sublattices [41–43], researchers have realized ER
theoretically [41, 42] and experimentally [40, 43]. In acoustics, based on gain and loss in resonant cavities
caused by feedback circuits, a Weyl ER has been realized in a three-dimensional (3D) parameter space
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by using a one-dimensional sonic crystal (SC) [45]. To realize an ER in two-dimensional (2D) non-
Hermitian SCs by using the same method, it inevitably involves a large number of feedback circuits to
achieve sound modulations, which still faces a great challenge owing to the difficulties for controlling
these feedback circuits simultaneously.

In this work, we numerically and theoretically realize an ER in 2D reciprocal space based on a
non-Hermitian SC. By introducing radiation loss through open circular holes of each resonator in a
Hermitian SC, we realize the conversion between a Dirac cone and an ER. Additionally, based on the
theoretical analysis with the effective Hamiltonian, we obtain that the formation of the ER is closely
related to different radiation losses of dipole and quadrupole modes in the resonators, in which the
theoretical predictions and simulated results agree well with each other. Moreover, in non-Hermitian
SC, two eigenfunctions can be merged into a single self-orthogonal one on the ER, which cannot be
realized by the Hermitian system. Finally, we discuss the topological characteristic of the EP and the
existence of the EP in every direction of 2D reciprocal space, which further demonstrate the ER in the
designed non-Hermitian SC.

2. RESULTS AND DISCUSSIONS

As schematically shown in Figure 1(a), we propose a type of square-lattice Hermitian SC (with a lattice
constant a = 80mm) which is composed of periodic resonators (with a diameter of d = 0.8a and a
height of h = 0.88a) connected by air tubes with a diameter of d1 = 0.5242a. The SC is a closed
structure and is filled with air, in which the gain or loss of material is not introduced. Additionally, by
introducing open circular holes with the same sizes on top and bottom surfaces of each resonator, we
design a type of non-Hermitian SC [Figure 1(b)], in which sound energy can be radiated into outside air
from the surface holes. Here, the diameter and height of the holes are set as d2 = 0.48a and h1 = 0.1a,
respectively, and the height of the resonators is adjusted as h2 = a, which is slightly different from
the parameter h in Figure 1(a) owing to the change of the eigenfrequencies of the resonator caused by
the circular holes. Throughout this work, we use the COMSOL Multiphysics software to numerically
simulate acoustic propagation characteristics. All colored surfaces of both SCs in Figure 1 are set as
sound hard boundaries. The material parameters of air in the simulation are adopted as follows: the
density ρ0 = 1.21 kg/m3 and sound velocity c0 = 343m/s.

(a)

(b)

Figure 1. (a) Schematic of a Hermitian square-lattice SC composed of resonators connected with air
tubes. (b) Schematic of a non-Hermitian square-lattice SC by introducing circular holes with the same
sizes on top and bottom surfaces of each resonator. Insets on the right represent the unit cells of the
Hermitian and non-Hermitian SCs.
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Figure 2. Dispersion relations of the Hermitian SC (a) in 2D reciprocal space and (b) in M-Γ-X
direction. Black open square represents the 1st BZ, and colored points and solid lines represent simulated
and theoretically calculated results, respectively. Simulated pressure amplitude eigenfunctions at the Γ
point for (c) blue, (d) grey and (e) red bands in (b).

Figure 2(a) presents the simulated dispersion relations of the Hermitian SC around the Brillouin
zone (BZ) center in the 2D reciprocal space, and the corresponding results in the M-Γ-X direction
are displayed in Figure 2(b). We can see that there exists a triply degenerate Dirac point in the BZ
center, and the pressure eigenfunctions at the Dirac point are shown in Figures 2(c)–2(e), including two
dipole modes and a quadrupole mode. Here, by introducing radiation loss caused by the circle holes
of the resonators, the Dirac cone is deformed as the ER. Figures 3(a) and 3(b) present the real and
imaginary parts of dispersion relations for the non-Hermitian SC, and the corresponding results along
M-Γ-X direction are shown in Figures 3(c) and 3(d). We can see that two bands (marked in red and
blue) intersect with each other around the BZ center, which leads to the formation of the ER (green
open circle). As shown in Figures 3(a)–3(d), the real and imaginary parts of the dispersion relations
are degenerate inside and outside the green open circle, respectively. Additionally, both the real and
imaginary parts of the red and blue bands are degenerate on the green open circle, showing typical
characteristics of the ER. Here, it is worth noting that the formation of the ER is closely related to
different radiation losses of the eigenmodes for the blue and red bands at the Γ point, and has nothing
to do with the dispersionless grey band. As shown in Figure 3(d), for the blue band at the Γ point, the
imaginary part of the eigenfrequency can reach about 67Hz, indicating that its corresponding dipole
mode [Figure 3(e)] radiates into outer space through the holes. But for the red band, the imaginary part
of the eigenfrequency is almost zero at the Γ point, which indicates that its corresponding quadrupole
mode [Figure 3(g)] does not radiate due to the mismatched symmetry with the plane wave [40]. The
different loss characteristics of the dipole and quadrupole modes play an important role in the formation
of the ER.

Next, we theoretically calculate dispersion characteristics of the Hermitian SC by using an effective
Hamiltonian. Based on the first-order degenerate perturbation theory [40], the effective Hamiltonian of
the Hermitian SC can be written as

H =

(
ω0 v|k| 0
v|k| ω0 0
0 0 ω0

)
, (1)
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where ω0, v, and |k| are the circular frequency at the Dirac point, the group velocity of the linear
dispersion, and the amplitude of the in-plane wavevector, respectively. Thus, the eigenvalues of the
Hermitian effective Hamiltonian are calculated as

ω = ω0, ω0 ± v|k|. (2)

Based on Eq. (2), we can theoretically calculate the dispersion relations [solid lines in Figure 2(b)] of
the Hermitian SC, which agree well with the simulated ones.

Additionally, we theoretically present the physical mechanism of the formation of the ER. Here,
based on the analysis in Figure 3, we obtain that the dipole modes can be radiated into the outer
space through the holes of each resonator, while the quadrupole mode does not radiate [40]. This non-
Hermitian perturbation can be described by adding a loss term iγ into the Hamiltonian for the dipole

(a) (b)

(c) (d)

(e) (f) (g)

Figure 3. (a) Real and (b) imaginary parts of simulated dispersion relations for the non-Hermitian
SC. Green open circles represent the ER. (c) Real and (d) imaginary parts of the dispersion relations in
M-Γ-X direction. Colored points and solid lines represent simulated and theoretically calculated results,
respectively. Simulated pressure amplitude eigenfunctions at the Γ point for the (e) blue, (f) grey and
(g) red bands.
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modes. Therefore, the effective Hamiltonian of the non-Hermitian SC is expressed as

H =

(
ω0 v|k| 0
v|k| ω0 + iγ 0
0 0 ω0 + iγ

)
. (3)

Based on Eq. (3), we can theoretically calculate the eigenvalues of the effective Hamiltonian as

ω = ω0 + iγ, ω0 + i
γ

2
± v

√
|k|2 −

( γ

2v

)2
. (4)

Here, it is noted that the dispersionless grey band ω = ω+ iγ in Eq. (4) is decoupled from the other two
bands, which is not discussed below. We can see that, on the ring (|k| = γ/2v) in 2D reciprocal space,
both real and imaginary parts of the eigenfrequencies are degenerate, exhibiting a typical characteristic
of the ER. The theoretically calculated dispersion relations of the non-Hermitian SC (solid lines) are
shown in Figures 3(c) and 3(d), which agree well with the simulated ones (colored points). Therefore, we
theoretically demonstrate that the formation of the ER is closely related to different radiation losses of
the dipole and quadrupole modes. Beyond that, it is worth pointing out that when the radiation losses
of the dipole and quadrupole modes are the same, the two bands are calculated as ω = ω + iγ ± v|k|,
forming the Dirac cone instead of the ER.

In addition to the characteristics of eigenfrequencies, we can obtain that the two eigenfunctions in
the non-Hermitian SC can be merged into a single one on the ER based on Eq. (3), which does not exist
in the Hermitian SC. To present this characteristic, we simulate the pressure amplitude eigenfunctions
of both SCs at |k| = 0 and γ/2v in Γ-X direction, corresponding to the points A-H in Figure 4.
Figure 4(a) presents the simulated dispersion relations of the Hermitian SC around the BZ center in Γ-
X direction, in which the corresponding pressure amplitude eigenfunctions at the points A-D are shown
in Figures 4(b) and 4(c). As shown in Figure 4(b), a dipole mode (Ψ1) and a quadrupole mode (Ψ2) are
degenerate at points A and B, which are orthogonal to each other based on the inner product of their
pressure distributions. Additionally, by using the basis {Ψ1, Ψ2}, the eigenfunctions at points C and
D [Figure 4(c)] are characterized as Ψ1 ±Ψ2, respectively. The two eigenfunctions are also orthogonal
based on the inner product, which agree well with the theoretical predictions in Eq. (1). Furthermore,
for the non-Hermitian SC [shown in Figures 4(d) and 4(e)], a dipole mode (Ψ1) and a quadrupole mode
(Ψ2) are degenerate and orthogonal at points E and F as well. However, the two eigenfunctions at
points G and H [Figure 4(f)] are almost the same and can be characterized as Ψ1 − iΨ2. We therefore
obtain that both eigenfunctions can be merged into a single self-orthogonal eigenfunction on the ER,
which is different from that in the Hermitian SC and is consistent with the theoretical predictions in
Eq. (3).

It is worth noting that the EPs on the ER have topological characteristics [3, 44]. To present it,
we develop an effective Hamiltonian model, in which the eigenfrequencies of the dipole and quadrupole
modes are denoted as ω1 and ω2, respectively. In the theoretical model, the parameters v and γ are
approximately regarded as constants. Therefore, the corresponding effective Hamiltonian is given as

H =

(
ω2 v|k|
v|k| ω1 + iγ

)
, (5)

and the eigenvalues of the effective Hamiltonian are calculated as

ω± =
ω1 + ω2 + iγ

2
± 1

2

√
(iγ + ω1 − ω2)2 + 4v2|k|2. (6)

By substitutingA(|k|) =
√

[(ω1 − ω2)2 + 4v2|k|2 − γ2]2 + 4γ2(ω1 − ω2)2, sin θ = 2γ(ω1 − ω2)/A(|k|)
and cos θ = [(ω1 − ω2)

2 + 4v2|k|2 − γ2]/A(|k|) in Eq. (6), we can obtain

ω± =
ω1 + ω2 + iγ

2
± 1

2

√
A(|k|)eiθ/2, (7)

where u = 1
2

√
A(|k|)eiθ/2 is a complex square-root function with a branch point at A(|k|) = 0 which

is the second-order EP in the effective Hamiltonian. To obtain the relationships between parameters
ω1, ω2, and d, we simulate the eigenfrequencies of the non-Hermitian SC with different values of d at
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Figure 4. (a) Simulated dispersion relations of the Hermitian SC in Γ-X direction. Pressure amplitude
eigenfunctions at the central horizontal cross section in the resonators of Hermitian SC at points (b)
A, B and (c) C, D in (a). (d) Simulated dispersion relations of the non-Hermitian SC in Γ-X direction.
Pressure amplitude eigenfunctions at the central horizontal cross section in the resonators of the non-
Hermitian SC at points (e) E, F and (f) G, H in (d).

the Γ point, and obtain ω1 = [1 − 0.854(d − d0)/a]ω0 and ω2 = [1 + 0.786(d − d0)/a]ω0 by using the
linear fitting method in which d0 and ω0 are the corresponding values at the EPs. Thus, we can rewrite
Eq. (7) as

ω± =
[2− 0.068(d− d0)/a]ω0 + iγ

2
± 1

2

√
A(|k|)eiθ/2, (8)

where A(|k|) =
√

[(1.64d−d0
a ω0)2 + 4v2|k|2 − γ2]2 + 4γ2(1.64d−d0

a ω0)2, sin θ = −2γ(1.64d−d0
a ω0)/A(|k|)

and cos θ = [(1.64d−d0
a ω0)

2 + 4v2|k|2 − γ2]/A(|k|).
As shown in Figure 5(a), we select the loop path I (red open rectangle) which encircles a branch

point (black point) in the 2D parameter space of |k| and d. Additionally, we further calculate the values
of θ along the loop path I based on Eq. (8) [red open quadrilateral in Figure 5(b)], in which the values
of θ change in the whole range of 2π through loop path I. Based on Eq. (8), we can obtain that the two
eigenvalues ω+ and ω− are exchanged with each other through the loop path I. However, for loop path
II [blue open rectangle in Figure 5(a)] without the branch point, the value of θ cannot cover a whole 2π
range [blue open quadrilateral in Figure 5(b)] and returns to its initial value at the end of the loop, and
therefore the eigenvalues do not exchange with each other based on Eq. (8). Therefore, we theoretically
demonstrate the topological characteristic of the EP which is closely related to the properties of the
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(a) (b)

Figure 5. (a) Schematic of two selected loop paths I and II in the 2D parameter space. The black
point represents the branch point of the complex square-root function in Eq. (7). (b) The corresponding
values of θ along the two loop paths in (a).

(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) Schematic of a selected loop in Γ-X direction. (b) Distributions of eigenfrequencies (red
and blue lines) along the loop path in (a). Green star represents the starting point A of the loop in (a).
Similar to (a) and (b), the corresponding results in (c), (d) Γ-M and (e), (f) Γ-N directions.
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complex square-root function.
Finally, based on the topological characteristic of the EP, we further demonstrate the existence of

the ER in the non-Hermitian SC by verifying the phenomenon that the EP exists in every wavevector
direction of the 3D parameter space (composed of the two in-plane wavevectors kx and ky and the
diameter of the resonator d). Here, we select 3 loops in 3D parameter space arbitrarily and verify the
existence of the EP in the corresponding wavevector directions. As shown in Figure 6(a), the loop
A′B′C′D′A′ is selected in Γ-X direction, and we can obtain that there exists an EP inside the loop based
on the result in Figure 3. To verify it, we simulate the associated eigenfrequencies along this loop, which
is shown in Figure 6(b). We can see that two eigenfrequencies exchange their positions through the loop
path, demonstrating the existence of an EP in Γ-X direction. Additionally, in Γ-M and Γ-N directions
[Figures 6(c) and 6(e)], the two eigenfrequencies still exchange the positions with each other through
their loop paths [Figures 6(d) and 6(f)], which demonstrates that the EPs also exist in Γ-M and Γ-N
directions. The existence of the EP in any other direction of the 2D reciprocal space can also be verified
by using the similar method. Therefore, the existence of the ER in the proposed non-Hermitian SC is
further demonstrated.

3. CONCLUSIONS

In conclusion, we have realized an ER in a square-lattice non-Hermitian SC which is composed of
connected periodic resonators with open circular holes on their top and bottom surfaces. Based on
radiation loss caused by circular holes of each resonator in the non-Hermitian SC, we can convert a
Dirac cone in a Hermitian SC without circular holes into an ER. It is noted that the radiation loss can
be modulated by adjusting the open circular holes, which is more convenient, accurate, and simpler
than that caused by using sponges. The formation of the ER is closely related to different radiation
losses of dipole and quadrupole modes in the resonators of the non-Hermitian SC, which is theoretically
demonstrated by using the effective Hamiltonian. Moreover, we simulate the pressure eigenfunctions
in the resonators of both types of SCs and obtain that two eigenfunctions can be merged into a single
self-orthogonal one on the ER, which does not exist in the Hermitian SC. Furthermore, we theoretically
demonstrate the topological characteristic of the EP and numerically discuss the existence of the EP
in 3 selected directions (Γ-X, Γ-M, and Γ-N) of 2D reciprocal space, which can be further used to
demonstrate the ER in the non-Hermitian SC. The proposed non-Hermitian SC provides a new route
for realizing the ER in 2D acoustic systems, which have great potential in various applications.
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