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Electromagnetic Diffraction by a Slotted Cylinder with the
Fractional Boundary Condition
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Abstract—This study investigates several substantial questions arising in the diffraction by circular
surfaces with the fractional boundary condition, which is the generalization of Dirichlet and Neumann
boundary conditions. The study analyses the electromagnetic E-polarized plane wave diffraction by
a slotted circular cylinder with the fractional boundary condition. For the first time, the fractional
boundary condition regarding circular geometries is employed in the literature. The resonance
characteristics for different boundary conditions, angle of incidence, and aperture sizes are analyzed.
The new resonances are observed when the surface is different from the perfect electric or magnetic
conducting surface.

1. INTRODUCTION

Electromagnetic scattering by the object with edges plays a crucial role in electromagnetic theory since
the scattering phenomena yield different physical outcomes such as high or low radiation levels in an
unexpected observation angle. Therefore, depending on the requirements, such problems and their
accurate or approximate solutions have a substantial role in many branches of the electromagnetic
research community, such as antenna and microwave component designs, radar cross-section analysis,
and inverse scattering [1, 2]. Besides, the solutions to such problems guide the numerical methods
for verifications and comparison. Apart from the importance of electromagnetic scattering regarding
geometry, different boundary conditions subject to the surface also provide different solutions to
the same geometry. This is the fundamental aim of the present study, which generalizes the
Dirichlet and Neumann boundary conditions for circular geometries and provides important outcomes
of electromagnetic scattering when the boundary conditions which are called fractional boundary
conditions become in an interval of Dirichlet and Neumann boundary conditions. Depending on the
fractional order, the boundary condition on the surface ranges from Dirichlet to the Neumann boundary
condition. This is the first study regarding circular geometries subjecting to fractional boundary
conditions. The reason that such problems have not been solved yet is that the fractional derivative
of the Hankel function concerning the argument in a compact form has not been provided in the
literature. Since the exponential function has a straightforward expression for the fractional derivative,
the spectral representation of the Hankel function is employed while taking the fractional derivative of
the corresponding function. Due to this, such an approach is very suitable for flat geometries like strips,
half-plane, or wedges. However, it is preferred that the Hankel function is expanded as the summation
of the Bessel and Hankel function by addition theorem [3] while having circular geometries or radial
periodicity in general [4]. In the literature, a circular cylinder with a slotted slit has been intensively
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studied in the case of perfectly conducting surfaces and different polarization cases [5, 6]. However, few
studies were conducted when the boundary condition differed from Dirichlet and/or Neumann boundary
conditions [7–9]. In these studies, the impedance boundary condition is employed. For [7], the surface
is resistive, and [8] is valid for only a high-frequency regime.

On the other hand, the present study enables us to generalize the boundary condition on such
geometries and reveals critical new outcomes to the literature. In our previous studies, it was shown that
there is a relation between the fractional order and the impedance value. The advantage of the proposed
approach is that instead of considering electric and magnetic current densities on the scatterer’s surface
while solving the diffraction problem by the impedance surface, the fractional approach needs only one
current density distribution, and the mathematical theory becomes simpler. In the case of the circular
geometries, the mathematical theory is still simpler. The results again reveal a transition between
PEC and PMC which means that the surface satisfying the fraction boundary condition again describes
intermediate states. The analyses are done on the near- and far-fields, total radar cross-sections (TRCS),
and resonances. The results are verified with previous studies and analytical outcomes in limiting cases.
Previously, the fractional boundary condition in electromagnetics was employed in strip, half-plane,
wedge, and double-strip problems [10–12]. In these problems, higher resonance values and intermediate
resonance characteristics between perfect electric and magnetic conductor surfaces are observed between
the fractional-order 0 and 1 (between Dirichlet and Neumann boundary conditions, respectively).

After the introduction, the study continues with the formulation of the problem where the
mathematical background, field, and current expressions are derived. Then, the numerical result part
investigates the calculated field expressions, TRCS, and resonances. After that, the conclusion is drawn.

2. FORMULATION OF THE PROBLEM

This section provides the mathematical background of electromagnetic scattering by a circular slotted
strip with the fractional boundary condition. Apart from the previous scattering problems with the
fractional boundary condition, the Fourier Series are employed due to periodicity in the ϕ direction
instead of the Fourier transform in the case of the strip, double-strips, and half-plane problem [10, 13].
In Figure 1, the geometry of the problem is provided. As seen in Figure 1, the cylindrical strip has
a radius a and an aperture size of 2(π−θ). In the figure, (ρ, ϕ) stand for the cylindrical coordinate
variables regarding the radial and angular directions for the observer, whereas (ρ′=a, ϕ′) correspond to
the same parameters at the source point, respectively.

φ '

Figure 1. The geometry of the problem.
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Before starting the details, it is better to summarize how to obtain the final expression. For
simplicity, the fractional Green’s function in two-dimensional space is expanded as the infinite
summation of the Bessel and Hankel functions to split the arguments into two parts. The first main

aim is to express the field components such as incident (E⃗
0

z) and scattered field (E⃗
s

z) in a mathematical
form. Then, the fractional boundary condition is satisfied to obtain a system of linear algebraic equations
(SLAE). To solve this SLAE, an analytical-numerical approach called orthogonal polynomials (OP) is
preferred [14]. Then, the fractional boundary condition (FBC) is given in (1), where the total tangential
electric field (Ez=E0

z+Es
z) is subject to the boundary condition on the surface [10]:

Dν
kρ Ez (ρ,ϕ)|ρ→a±0= 0, ν ∈ (0, 1) , ϕ ∈ [−π+θ,π−θ] (1)

where Dν
kρ corresponds to the fractional derivative in the order of ν and with respect to kρ. Here,

k stands for the wavenumber, and ρ is the radial component. Note that the fractional order (FO)
determines the surface characteristics. When FO becomes zero, the surface corresponds to PEC,
whereas FO is equal to one case and stands for the PMC in the case of an E-polarized plane wave.
As the fractional derivative of a function f(x), the Riemann-Louivelle definition provided below is
employed [15]:

Dν
xf (x)=

1

Γ (1− ν)

d

dx

x∫
−∞

f (t)

(x−t)ν
dt, (2)

where Γ(1−α) is the Gamma Function and νϵ(0, 1).
To satisfy FBC in (1), the field components should be expressed in a mathematical form. In (3),

the incident electric field is provided:

E⃗0
z=e

−ik
(
α0x+

√
1−α2

0y
)
êz=

∞∑
m=−∞

imJm (kρ) eim(ϕ−θ0)êz (3)

Here, θ0 is the incident angle; α0=cos θ0; k= 2π/λ; λ is the wavelength in free space; êz is the unit
vector along the z-axis; and Jn is the Bessel function. Besides, the time dependency is e−iωt and
omitted throughout the study. It should be denoted that ω is the angular frequency. After expressing
the incident wave in mathematical form, the scattered field is expressed as the convolution of the current
density and the fractional Green’s function (Gν) [16, 17]:

Es
z=

2π∫
0

µ
(
ϕ′)Gν

(
k
∣∣∣ρ−ρ

′
∣∣∣) dϕ′, (4)

where Gν
(
k|ρ−ρ′|

)
=i

1

4π
Dν

kρ

[
H

(1)
0

(
k
∣∣ρ−ρ′

∣∣)]
Here, µ(ϕ′) is the current density of the obstacle, andH

(1)
0 is the Hankel function of the first kind and the

zero-order. Note that µ(ϕ′) can have only non-zero values on the surface of the arc (−π+ θ≤ϕ′≤ π − θ)
because current may exist on the scatterer surface only.

The compact form of the fractional derivative of the Hankel function is not available in the literature.

Therefore, the following references are employed to obtain the expression. Dν
t H

(1)
0 stands for the

derivative of the Hankel function with respect to variable t in the order of ν, and the derivative of the
Hankel function can be found as (5) [15, 18]. The details are attached in the Appendix.

Dν
t H

(1)
n (t) =

(t−ν)−ν

Γ (1−ν)
H(1)

n (t) +

∞∑
p=1

Γ (ν+1)

Γ (p+1)Γ (ν−p+1)

(t−ν)p−ν

Γ (p−ν+1)

×
(
1

2

)p p∑
l=0

(−1)l
Γ(p+1)

Γ(l+1)Γ(p−l+1)
H

(1)
n+2l−p(t) (5)
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Since the current density is periodic regarding ϕ′ variable, the current density can be expanded as the
Fourier series as provided in (6). This is a very crucial point of the present study.

µ
(
ϕ′)= 2i

πε

∞∑
m=−∞

µmeimϕ′
=

∞∑
m=−∞

µ̂meimϕ′
(6)

where:

µ̂m=
1

2π

π−θ∫
−π+θ

µ (φ) e−imϕ′
dϕ′

Here, µm and µ̂m are the unknown constant coefficients.
Then, the addition theorem for the Hankel function is provided in (7) since the argument (ρ-ρ′)

in Green’s function becomes decoupled which allows to apply boundary conditions and take derivative
easier [3]. After this point, all definitions given above would be employed in manipulations. Then, the
scattered electric field can be obtained as (8) by using (4), (6), and (7).

H
(1)
0 (k |ρ−a|) =



∞∑
n=−∞

Jn (kρ)H
(1)
n (ka) ein(ϕ−ϕ′), ρ≤a

∞∑
n=−∞

Jn (ka)H
(1)
n (kρ) ein(ϕ−ϕ′), ρ≥a

(7)

Es
z =

4i

ε

∞∑
m=−∞

µm Dν
kρ

∣∣
ρ=a



∞∑
n=−∞

Jn (kρ)H
(1)
n (ka) einϕδmn, ρ<a

∞∑
n=−∞

Jn (ka)H
(1)
n (kρ) einϕδmn, ρ>a

(8)

where

δmn=
1

2π

2π∫
0

ei(m−n)ϕ′
dϕ′, ρ′=a.

It should be highlighted that δmn is a Kronecker delta and yields non-zero value (equal to 1) only for
m=n. Therefore, one summation is dropped, and the following simple expression for the scattered field
is obtained. After expressing all-field components in a compact and suitable mathematical form, the
boundary condition is applied to the total tangential component of the electric field on the surface
(ρ=a ± 0 and ϕ ∈ [−π+θ,π−θ]) by inserting (3) and (9) into (1). Here, the derivative acts on kρ
argument as seen in (9). With the addition theorem, only one term is affected for each region (ρ<a or
ρ>a) by the fractional derivative in fractional Green’s function.

Es
z=

4i

ε

∞∑
m=−∞

µm


Dν

kρ

∣∣∣
ρ=a

J
m
(kρ)H

(1)
m (ε) eimϕ, ρ<a

Jm (ε) Dν
kρ

∣∣∣
ρ=a

H
(1)

n
(kρ) eimϕ, ρ>a

(9)

Here, ε=ka.
After satisfying the boundary condition, (10) is obtained.

2π

∞∑
m=−∞

µ̂mγmeimθη = −
∞∑

m=−∞
imDν

kρJm (ε) eim(θη−θ0) (10)

Here, γm=Dν
kρJm(ε)Dν

kρH
(1)
n

(ε) and η= ϕ′

π−θ .

It should be noted that Dν
kρ|ρ=aJm

(kρ) would be denoted as Dν
kρJm(ε) or Jν

m(ε) after this point.

The change of variable = ϕ′

π−θ is done to normalize the angle interval of the current density between −1
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and 1. It should be highlighted that the current density function has only non-zero values in [−1, 1]
by the corresponding change of variable since the current density would be expressed in orthogonal
polynomials. One of the main aims of the study is achieved at this point. The goal is to obtain the
SLAE by applying the FBC. Now, the question arises of how to solve the corresponding SLAE. An
analytical-numerical approach is employed to obtain the solution where the induced current density
on the scattered is expressed in orthogonal polynomials. In this geometry, Gegenbauer polynomials

(C
ν+ 1

2
n ) are used as they are orthogonal in the interval [−1, 1], and it has a suitable weighting function

for employing the orthogonal conditions. Then, the current density is expressed as:

µ (η)=
(
1−η2

)ν ∞∑
n=0

xnC
ν+ 1

2
n (η) (11)

where xn is the unknown constant coefficients and µ̂m= θ
2π

1∫
−1

µ(η)e−imθηdη.

It should be noted that the current density should satisfy the edge condition regarding the surface
characteristics. For ν = 0 (PEC) case, at the edge, the current needs to diverge, whereas the current
density at the edge should vanishes and converges to the zero for ν = 1 (PMC) case. The weighting

function (1−η2)ν−
1
2 satisfies this condition for the E-polarized diffraction problems for ν = 0, ν = 1,

and intermediate cases [19, 20]. Then, µ̂m can be found as (12) [21, 22]:

µ̂m=
θ

Γ

(
ν+

1

2

) ∞∑
n=0

(−i)nxnβ
ν+ 1

2
n

Jν+n+ 1
2
(mθ)

(2mθ)(ν+
1
2)

(12)

Here,

β
ν+ 1

2
n =

Γ (2ν+1+n)

Γ (n+1)

Finally, inserting (12) into (10) and employing the following properties given in (13) would provide the
final version of the SLAE for faster converging numerical analysis as (14) [23, 24].

eimθη=2

(
2

mθ

)ν+ 1
2

Γ(ν+
1

2
)

∞∑
k=0

ik
(
k+ν+

1

2

)
Jk+ν+ 1

2
(mθ)C

ν+ 1
2

k (η) (13)

2πθ

∞∑
p=0

(−i)pxpβ
ν+ 1

2
p Q

ν+ 1
2

pk =A
ν+ 1

2
k (14)

where:

Q
ν+ 1

2
pk =

∞∑
m=−∞

γmJν+p+ 1
2
(mθ) Jk+ν+ 1

2
(mθ)

(
1

mθ

)2ν+1

,

A
ν+ 1

2
k = −Γ

(
ν+

1

2

)
2ν+

1
2

∞∑
m=−∞

imDν
kρJm (ε) e−imθ0Jk+ν+ 1

2
(mθ)

(
1

mθ

)ν+ 1
2

For details, the reader can go through [20, 25, 26].
To obtain the radiation pattern, the observation is done in the far zone (kρ→ ∞). For the far-field

approach, the radial and angular parts can be separated by using the asymptotic expressions of the
Hankel function. Then, the scattered field is expressed as [17]:

Es
z (x,y)=R (kρ)Φ (ϕ) (15)

Here,

R (kρ)=

√
2

πkρ
eikρ−

iπ
4 ,Φ(ϕ,θ0)=

∞∑
m=−∞

∞∑
p=0

ZpApm (ε,ν)eim(ϕ−
π
2 )
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where:

Apm (ε,ν)=
πεθ

2iΓ (ν)
J

′
m (ε)

Jp+ν (mθ)

(2mθ)ν
, Zp=(−i)p

√
β
ν

pxp, βρ=
Γ (2p+2v+1)

Γ (p+1)

Note that R(kρ) corresponds to the radial dependence of the scattered far-field expression whereas Φ(ϕ)
stands for the radiation pattern. To analyze the resonances, a total radar cross-section investigation is
needed. To obtain TRCS, the following definition is considered:

σt=
1

(2ε)2

2π∫
0

|Φ|2 dϕ (16)

Since the boundary condition is taken with respect to kρ, extra terms are needed to compensate.
Therefore, a balance is needed to normalize this increase. Without (2ε)2 division (unitless parameter),
the characteristics go up for higher wavelengths as expected. The reason that we are taking the derivative
with respect to kρ in (1) is that kρ is a unitless parameter and does not change the unit of the electric
field, but it brings an extra k term for the derivative since actually in the literature, the boundary
condition is taken with respect to ρ not kρ. This change is compensated by division.

3. NUMERICAL RESULTS AND COMPARISON

In this section, the numerical results obtained for the near-field distributions and TRCS are provided.
The comparison is made with the analytical outcomes and the limit cases of the impedance surface
on which the impedance value covers the PEC and PMC surface impedance at the limit [20, 26]. In
Figure 2, the TRCS for different fractional orders is provided. The PEC case is compared with ν = 0
case, and also PMC case is compared with ν = 1 case. The comparison is done by a circular arc
satisfying the impedance boundary condition where the limit cases are utilized to obtain PEC and
PMC surfaces. As the corresponding figure shows, the results coincide with ν = 0 and ν = 1 with PEC
and PMC, respectively. As it is noticed, the highest value in the first resonance is observed when the
fractional order is 0.75.

In Figure 3, again, the TRCS is proved for different fractional orders to converge the resonance
values obtained with the analytical outcomes. Note that the values should be close to the zeros of Bessel’s

Figure 2. TRCS for θ0 = π, θ = π − π
3 , a = 1meter.
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function and its derivative regarding the boundary conditions (Dirichlet and Neumann, respectively)
since for closed cylinders, resonances are observed at zeros of Bessel’s function or zeros of the derivative
of the Bessel’s function. In our case, the cylinder is not closed, but it has a non-zero aperture. The

Figure 3. TRCS for θ0 = π, θ = π − π
20 , a = 1meter.

(a) (b) (c)

(d) (e)

Figure 4. The normalized near electric field distributions (θo = π, θ = π− π
3ka = 4) for (a) ν = 1, (b)

ν = 0.75, (c) ν = 0.5, (d) ν = 0.25, (e) ν = 0.
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natural logarithm of TRCS is taken for this figure to distinguish the resonances. As it is noticed, the
resonances are approaching zeros of the Bessel function and its derivative for PEC and PMC cases,
respectively. In the case of smaller apertures, the values are approaching the exact values.

The following figures provide the normalized near-electric field distributions for different parameters
and comparisons. Figure 4 is a very crucial set of figures. In this figure, the evolution of the field
distribution is observed regarding the transition of the modes. The field characteristics differ when the
parameters are kept constant, and only the fractional order is changed. As seen from the figure, for
PMC and PEC cases ((a) and (e), respectively), the boundary condition is satisfied as expected. The
boundary condition is satisfied on the surface. Numerical verification can be done by looking at the
tangential components of the total electric field on the surface. In the case of the Dirichlet condition
(ν = 0), the total tangential field should have vanished on the surface where the derivative of the total
tangential component of the E-field should be nullified when the Neumann boundary condition (ν = 1)
is satisfied. Between them, the intermediate states are provided. One of the main advantages of the
boundary condition is observing the transitions of the different modes by changing the fractional order
and obtaining the intermediate states or modes in electrodynamics.

Furthermore, the comparison is provided in Figure 5. The comparison is achieved between the
fractional and impedance arcs. In Figures 5(a) and 5(c), the normalized impedances (ξ) are provided,
and it is observed that the field distributions are similar [26]. The fractional boundary condition is
related to impedance boundary conditions like in the case of flat strip case [10]. Figure 4 reveals the
same phenomena for circular geometries. The exact formulation of the relation between the intermediate
fractional orders and the impedance values for circular geometries has not been derived yet. However,
we found some coincidences for the specific values of the fractional order and impedance values.

In Figure 6, the different near-field distributions are presented to clarify the fractional boundary

(a) (b)

(c) (d)

Figure 5. The normalized near electric field distributions (θo = π, θ = π − π
3ka = 4). (a) ξ = 0.19i.

(b) ν = 0.52. (c) ξ = 10i. (d) ν = 0.
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(a) (b) (c)

(d) (e)

Figure 6. The normalized near electric field distributions (θo = π, θ = π− π
20 , a = 1meter). (a) ν = 0,

k = 3.74. (b) ν = 0.25, k = 5.35. (c) ν = 0.5, k = 1.47. (d) ν = 0.75, k = 6.67. (e) ν = 0, k = 3.86.

condition. Figure 6 shows several field distributions for resonance frequencies. We observe maximum
peak values inside the arc in general. The incident angle is π.

In Figure 7, the oblique incident cases for different fractional orders are provided.

(a) (b) (c)

Figure 7. The normalized near electric field distributions (θo = π − π
4 , θ = π − π

3 , ka = 2π) for (a)
ν = 0, (b) ν = 0.5, (c) ν = 1.
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4. CONCLUSION

The article discusses the solution to the electromagnetic diffraction problem for the circular arc with the
fractional boundary condition. While changing the fractional order from 0 to 1, different electromagnetic
behaviors for the arc are observed. Besides, resonant peaks become higher for specific values of the
fractional order, different from 0 and 1. Also, it is noticed that the transition of the field modes between
PEC and PMC fields, while changing the fractional order from 0 to 1, is validated. However, the
mathematical relation between the impedance values and the fractional order for the circular geometries
will be studied in the future. The comparison is made for PEC and PMC cases and one particular
fractional order with the impedance arc. Here, new resonances are observed when the surface is different
from the perfect electric or magnetic conducting surface. In other words, for the different fractional
orders between 0 and 1, the resonant phenomena are observed and analyzed.

Furthermore, the results are compared with the analytical outcomes of zeros of the Bessel function
and its derivative regarding the PEC and PMC cases, respectively. This is the first study regarding
circular geometries with the fractional boundary condition. Thus, the new approach is followed in the
case of the expression of Green’s function and taking the fractional derivative of the Bessel and Hankel
functions. The compact form of fractional derivative the Hankel function is proposed.

APPENDIX A.

The fractional derivative of a continuous function can be expressed as [15]:

Dα
t φ (t)=

(t−a)−α

Γ(1−α)
φ (t)+

∞∑
k=1

(
α
k

)
(t−a)k−α

Γ (k−α+1)
φ(k) (t) (A1)

where (
α
k

)
=

Γ(α+1)

Γ(k+1)Γ(α−k+1)

For our problem, φ(t) should be replaced by the Hankel function to obtain the fractional derivative of
the Hankel function. However, the general derivative expression of the Hankel function is also needed,
as seen on the right side of (A1). In (A2), the general expression of the integer derivative of the Hankel
function is provided [18]: (

H(1)
n (t)

)(p)
=

(
±1

2

)p p∑
l=0

(−1)l
(

p
l

)
H

(1)
n±2l∓p(t) (A2)

Then, the fractional derivative of the Hankel function is provided below:

Dα
t H

(1)
n (t) =

(t− a)−α

Γ (1− α)
H(1)

n (t) +

∞∑
p=1

Γ(α+ 1)

Γ(p+ 1)Γ(α− p+ 1)

(t− a)p−α

Γ (p− α+ 1)

×
(
1

2

)p p∑
l=0

(−1)l
Γ(p+ 1)

Γ(l + 1)Γ(p− l + 1)
H

(1)
n+2l−p(t) (A3)
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14. Karaçuha, K., “General approach to the line source electromagnetic scattering by a circular strip:
Both E- and H-polarisation cases,” IET Microwaves, Antennas Propag., Vol. 15, 1721–1734, 2021.

15. Podlubny, I., “Fractional differential equations,” Math. Sci. Eng., Vol. 198, 41–119, 1999.

16. Veliev, E. I., A. I. Nosich, and V. P. Shestopalov, “Propagation of electromagnetic waves in a
cylindrical waveguide with a longitudinal slit,” Radio Eng. Electron. Phys., Vol. 22, 466–473, 1977.
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