
Progress In Electromagnetics Research B, Vol. 98, 59–75, 2023

Efficient Computation of Sideband Power Losses in Pulse-Shifted
Nonuniform Time-Modulated Array with Arbitrary Element Pattern

Sujoy Mandal* and Sujit K. Mandal

Abstract—This paper presents the mathematical formulation for the generalized closed-form
expressions to calculate sideband power (PSR) of a nonuniform period time modulated array (NTMA)
antenna with volumetric geometry by using pulse shifting strategy. For the arbitrary array geometry,
the generalized expression of PSR is obtained by considering the universal omnidirectional element

pattern in the form sina θ |cos θ|b, a > −1, b > −1/2. Then, corresponding to different array structures
such as linear, planar, and volumetric ones, the derived expression is simplified for different element
patterns with possible combination of ‘a’ and ‘b’. Through representative numerical results it is
demonstrated that the obtained simplified expressions without hypergeometric function are useful to
accurately calculate the amount of power losses due to sideband radiations with significantly less time
than the conventional numerical integration (NI) method.

1. INTRODUCTION

Over the last two decades, time-modulated array (TMA) has received extensive attention in the
application of wireless communication because of its superior, simple, low-cost, and software-based
electronically controlled beamforming network [1–3]. Electronically the ON-OFF status of the high-
speed radio frequency (RF) switches are periodically controlled to modulate the static excitation
amplitude of the TMA elements. Thus, an additional degree of freedom, namely ‘time’ is invoked
to produce the desired time-averaged low sidelobe level (SLL) pattern at the operating carrier
frequency [4, 5]. At the same time, the harmonics caused by the time-periodic pulse modulation are
explored to produce multiple harmonic patterns [6, 7], and the same have been beneficially exploited in
different communication systems [8–11]. The sideband radiations (SRs) as obtained in TMA are also
found to be useful in various smart antenna based applications, like cognitive radio [12], radar [13, 14],
multiple-input-multiple-output [15], digital communication [16], and physical layer security [17].
However, for uniform period TMA (UTMA), because of utilizing unique frequency of the modulating
pulse, the harmonics from the individual array elements are accumulated while, for nonuniform period
TMA (NTMA), due to the distinct modulation frequency, the produced harmonics from the individual
array elements are distributed in the space at different frequencies [18–20]. Thus, compared to UTMA,
NTMA is worthy of offering the same centre frequency pattern with significantly suppressed sideband
level (SBL) [21, 22]. Elsewhere, different time-modulation strategies such as variable aperture size
(VAS) [4], pulse-shifting [23], pulse splitting [24–26], pattern multiplication [27], and quantized aperture
size (QAS) [28] with adoption of various metaheuristic optimization algorithms [25, 29–32] have been
extensively used to synthesize the desired centre frequency pattern by simultaneously suppressing
sideband radiation. Toward this, some hardware-based methods are also employed. For example, a
3 dB power divider [33] and a modified switching sequences with limited bandwidth of the antenna
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elements [34] are introduced. In other approaches, evolutionary algorithm is used along with array
thinning to increase the directivity of time-modulated planar array [35]. Simultaneously, several closed-
form mathematical expressions to calculate the total sideband power (PSR) of various antenna array
geometries such as linear [36, 37], planar [38], and geometry independent ones [39] are reported, and
the formulations are further extended by considering different types of the modulating pulses [40, 41]
and element patterns [42]. Meanwhile, some approaches for calculating the total sideband power
(PSR) of NTMA are also reported [43–45]. In [43], an expression is derived for the modulation
frequencies with prime coefficients, while in [44], by classifying two categories of NTMA, specifically, non-
degenerate NTMA (ND-NTMA) and degenerate NTMA (D-NTMA), the corresponding PSR expressions
are derived. For the arbitrarily selected modulation frequency, a PSR expression is also obtained in [45].
Moreover, by investigating the effect of multipath characteristics by placing the array above a specific
height of a conductive ground plane, the PSR expressions for both UTMA [46] and NTMA [47] are
reported. However, in the above formulations of NTMA in [43–45], the pulse shifting effect of time-
modulation is not considered. With respect to other time-modulation approaches, the major advantage
of using the pulse shifting strategy is to achieve almost time-independent power patterns with reduced
PSR [48].

In this paper, considering universal omnidirectional element pattern in the form of sina θ |cos θ|b,
a > −1, b > −1/2, the generalized PSR expression of the NTMAs with pulse-shifted modulation
is presented for the linear, planar, and volumetric array geometries. Usually, the expression for the
sideband power is obtained in terms of hyper geometric function for which long computation time is
required. Therefore, the derived expressions of different array geometries with various element patterns
are formulated in simplified forms without hypergeometric function with the objective for the time-
efficient computation of the percentage of sideband power loss (P%

SR). Representative numerical results
are presented to show the effectiveness of using the obtained simplified expressions to accurately calculate
PSR with significantly less time than the numerical integration method. The remaining part of this paper
is arranged as follows. The mathematical derivations are carried out in Section 2. Through numerical
results and analysis, the efficiency of using the proposed simplified expressions is demonstrated in
Section 3. Finally, in Section 4, the concluding remarks are drawn.

2. MATHEMATICAL FORMULATION

Let us consider an arbitrarily shaped volumetric NTMA consisting of N number of elements arranged
in the three-dimensional (XY Z) Cartesian coordinate system. The array elements dealing with carrier
signal of frequency, f0, are modulated using periodic rectangular pulses with the modulation frequency
fn : ∀n ∈ [1, N ]. For volumetric NTMA, the array factor expression can be obtained as [42],

AF (θ, ϕ, t) = ej2πf0t
N∑

n=1

VnCn0e
jαn · ejβ(R⃗n·r⃗) +

N∑
n=1

∞∑
k=−∞,
k ̸=0

VnCnke
j2π(f0+kfn)tejαn · ejβ(R⃗n·r⃗). (1)

where Vn and αn denote the static excitation amplitude and phase of the nth element, and β represents

the wavenumber of the background medium. R⃗n and r⃗ are the position and unit direction cosine vector
in spherical coordinate system, and are expressed as

R⃗n = Rxn î+Ryn ĵ +Rzn k̂ (2)

r⃗ = sin θ cosϕî+ sin θ sinϕĵ + cos θk̂ (3)

where Rxn , Ryn , and Rzn represent the position of the element on X, Y , and Z axes, respectively. In

(1), Cnk represents the Fourier coefficient of nth element at the kth harmonic. For time-modulation
with pulse shifting strategy using periodic switching function Un(t) as depicted in Fig. 1, it can be given
as [23],

Cnk =


fn

(
τoffn − τ onn

)
; for k = 0

sin
[
πkfn

(
τoffn − τ onn

)]
πk

e
−jπkfn

(
τoffn +τonn

)
; for k ̸= 0.

(4)
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Figure 1. Schematic representation of pulse-shift switching strategy.

where τ onn and τoffn denote the periodic switch ‘on’ and ‘off ’ time instant of the nth element over a
complete pulse period, Tn = 1/fn.

According to pattern multiplication, the total field (E (θ, ϕ, t)) radiated by the array with individual
element pattern (e (θ, ϕ)) can be obtained as

E (θ, ϕ, t) = e (θ, ϕ)AF (θ, ϕ, t) . (5)

For the universal omnidirectional element pattern in ϕ plane, e(θ, ϕ) is expressed as [42]

e (θ, ϕ) = sina θ |cos θ|b , a > −1, b > −1/2 (6)

Combining (1), (4), (5), and (6), the expression of resultant array field pattern can be written as

E (θ, ϕ, t)=sina θ |cos θ|b

ej2πf0t N∑
n=1

VnCn0e
jαn · ejβ(R⃗n· r⃗)+

N∑
n=1

∞∑
k=−∞,
k ̸=0

VnCnke
j2π(f0+kfn)tejαn · ejβ(R⃗n· r⃗)


(7)

For UTMA, elements are modulated with the unique modulation frequency, say, fm, i.e., f1 = f2 =
. . . = fN = fm. Thus, at kth harmonic, the radiated signals from all elements are overlapped at the same
frequency, fk = f0 ± kfm and accumulated in the space as can be observed from (7). For NTMA, the
modulation frequencies of the elements are different, i.e., f1 ̸= f2 ̸= . . . ̸= fN . Thus, the radiations from
the elements at a particular kth harmonic order are generated at different frequencies fnk = f0 + kfn.
Despite different modulation frequencies in NTMA, at a specific kth order harmonic signal frequency of
one element (say, the nth) may be equal to the qth order harmonic of another element (say, mth). Thus,
based on radiated signal frequency in NTMA, some harmonic components are overlapping, and some are
non-overlapping in space. As an outcome, NTMA is classified as non-degenerate NTMA (ND-NTMA)
and degenerate NTMA (D-NTMA) as detailed in [44]. It can be seen from the first part of (7), though
the array elements are modulated with different modulation frequencies, the fundamental component of
the field radiated by the individual elements appears at the same frequency and is added in the space
at f0. Therefore, by exploiting the fundamental component of the Fourier coefficient Cn0, the desired
power pattern at f0 can be synthesized. Now, for the pulse-shifted switching strategy considering the
harmonic components of the elements as indicated by second part of (7), the mathematical formulations
of sideband power (PSR) of both NTMA types are carried out in the subsequent sections.

2.1. Sideband Power of Pulse-Shifted ND-NTMA

For ND-NTMA, all possible harmonic signals of the time-modulated elements appear at different
frequencies: fnk ̸= fmq : ∀(n,m) ∈ [1, N ]&(n ̸= m) and ∀(k, q) ∈ [−∞,+∞]&(k ̸= q ̸= 0). Hence,
individual harmonic radiation from different array elements becomes various sideband radiation of the
array. So, power radiated by the nth element at the kth harmonic can be obtained as [44]

pnk =
1

2

2π∫
0

π∫
0

sin2a θ |cos θ|2b |Vn|2 |Cnk|2 sin θdθdϕ
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= π |Vn|2 |Cnk|2
π∫

0

sin2a+1 θ |cos θ|2bdθ (8)

Substituting the expression of Cnk from (4) and simplifying the integration, Equation (8) is reduced to

pnk = π |Vn|2
sin2 [πkςn]

(πk)2
B (a+ 1, b+ 1/2) (9)

where B(·) represents the beta function, and ςn is normalized on time duration, given as ςn = ςoffn − ςonn
with ςonn = fnτ

on
n and ςoffn = fnτ

off
n being the normalized ‘on’ and ‘off ’ time instant of the nth element.

Considering all the harmonics, the total power radiated by nth array element is obtained as

Pn =

∞∑
k=−∞,
k ̸=0

pnk=π |Vn|2
π∫

0

sin2a+1 θ |cos θ|2b θdθ
∞∑

k=−∞,
k ̸=0

sin2 [πkςn]

(πk)2
(10a)

= π |Vn|2B (a+ 1, b+ 1/2)
∞∑

k=−∞,
k ̸=0

sin2 [πkςn]

(πk)2
(10b)

Thus, by taking into account of all the array elements, the total sideband power of pulse-shifted ND-
NTMA (PND

SR ) can be obtained from (10(b)), and after following the simplification steps as detailed
in [44], it is expressed as

PND
SR =

N∑
n=1

Pn = π

N∑
n=1

|Vn|2 ςn(1− ςn)B (a+ 1, b+ 1/2) . (11)

As a special case of the element pattern with a = b = 0 in (6), e(θ, ϕ) becomes isotropic one (e(θ, ϕ) = 1),
and the corresponding expression in (11) is reduced to take the same form as that without pulse-shifted
ND-NTMA in [44] and given as

PND
SR

∣∣
iso

= 2π

N∑
n=1

V 2
n ςn(1− ςn) (12)

2.2. Sideband Power of Pulse-Shifted D-NTMA

In D-NTMA, certain harmonic signals may overlap with the harmonics from some other array elements.
Let us consider an example of D-NTMA, the (ik)th harmonics of the nth element overlap with the (iq)th

harmonics of the mth element, where ‘i’ is any natural number. Let us further assume that χov is the
set of elements from which the radiated harmonic signals are overlapped, and ρn is the first overlapping
harmonic index of the nth element. So, the sideband pattern generated for all the overlapping harmonics
belonging to the χov set of elements would become

ED
χov

(θ, ϕ, t) = sina θ |cos θ|b
∞∑

k=−∞,
k ̸=0,
k=iρn

[ ∑
n∈χov

VnCnke
j2π(f0+kfn)tejαn · ejβ(R⃗n·r⃗)

]
. (13)

Hence, at k = iρthn overlapping harmonics, the power radiated by the χov set of elements can be obtained
as [44]

Pχoviρn=
1

2

2π∫
0

π∫
0

sin2aθ cos2bθ

∑
n∈χov

(|Vn| |Cniρn |)
2 +

∑
n,m∈χov ,

n ̸=m

VnV
∗
mCniρnC

∗
miρme

jαnm · ejβ(R⃗nm·⃗r)

sin θdθdϕ.
(14)
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where αnm = αn−αm, and R⃗nm = Rxnm î+Rynm ĵ+Rznm k̂. Rxnm = |Rxn −Rxm |, Rynm = |Ryn −Rym |
and Rznm = |Rzn −Rzm | represent the respective inter-element distances.

Considering all the overlapping harmonics the total radiated power corresponding to the χov set of
elements can be obtained as

Pχov =
1

2

∑
n∈χov

∞∑
i=−∞,
i ̸=0

|Vn|2 · |Cniρn |
2

2π∫
0

π∫
0

sin2a+1 θ cos2b θdθdϕ


︸ ︷︷ ︸

I1

+
1

2

∑
n,m∈χov,

n ̸=m

∞∑
i=−∞,
i̸=0

VnV ∗
mCniρnC

∗
miρm

2π∫
0

π∫
0

sin2a+1 θ cos2b θejαnm · ejβ(R⃗nm·r⃗)dθdϕ


︸ ︷︷ ︸

I2

= I1 + I2 (15)

Here, I1 and I2 are defined as follows.

I1 = π
∑

n∈χov

∞∑
i=−∞,
i ̸=0

|Vn|2 . |Cniρn |
2

π∫
0

sin2a+1 θ cos2b θdθ

 (16a)

= π
∑

n∈χov

|Vn|2


∞∑

i=−∞,
i̸=0

C2
niρn

B (a+ 1, b+ 1/2) (16b)

Simplifying the summation of
∞∑

i=−∞,
i ̸=0

C2
niρn

as in [44], the integration I1 can be obtained as,

I1 = πB (a+ 1, b+ 1/2)
∑

n∈χov

|Vn|2

ρn
ςn (1− ρnςn) (17)

The infinite summation of the Fourier coefficients,
∞∑

i=−∞,
i̸=0

CniρnC
∗
miρm

of I2 as denoted in (15) can be

simplified as [37, 44]
∞∑

i=−∞
CniρnC

∗
miρm =

1

ρmρn
[ςρmρn − ρmρnςmςn] . (18)

where ςρmρn is the intersected on-time duration of the two elements (m,n) at their overlapping harmonic
indexes ρm and ρn respectively, and can be expressed as

ςρmρn =
[
min(ρnς

off
n , ρmς

off
m )−max(ρnς

on
n , ρmς

on
m )
]
. (19)

Finally, the expression of I2 becomes,

I2 =
1

2

∑
n,m∈χov,

n ̸=m

VnV ∗
m

1

ρmρn
[ςρmρn − ρmρnςmςn]

2π∫
0

π∫
0

sin2a+1 θ cos2b θejαnm · ejβ(R⃗nm·r⃗)dθdϕ

︸ ︷︷ ︸
I3

 (20)
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Let us assume the integration in (20) as

I3 =

2π∫
0

π∫
0

sin2a+1 θ cos2b θejαnm · ejβ(R⃗nm.r⃗)dθdϕ (21)

This can be simplified as [42]

I3 = 2π

∞∑
s=0

(βRznm)

(2s)!

2s

B (a+ 1, b+ s+ 1/2)× 1F2

(
a+ 1
1, a+ b+ s+ 3/2

∣∣∣∣− (βψRnm

2

)2
)

(22)

The summation in (22) represents the Maclaurin series expansion of order ‘s’, where 1F2 (.) represents the
hyper-geometric function [49, 50]; ψRnm andRznm are the inter-element distance between the nth andmth

element in the XY plane and along Z-axis, and are given as ψRnm =
√

(Rxn −Rxm)
2 + (Ryn −Rym)

2

and Rznm =
√

(Rzn −Rzm)
2.

Using (17), (20), and (22), the expression of Pχov in (15) can be obtained as

Pχov = πB (a+ 1, b+ 1/2)
∑

n∈χov

|Vn|2

ρn
ςn (1− ρnςn)

+
1

2

∑
n,m∈χov,

n̸=m

VnV
∗
me

jαnm

[
1

ρmρn
[ςρmρn − ρmρnςmςn]× I3

]
(23a)

Assuming that all possible sets of elements that can produce different infinite series of overlapping
harmonics as χ, the total sideband power radiated due to all possible overlapping harmonics (PDov

SR ) is
expressed as [44]

PDov
SR =

∑
χov∈χ

Pχov (23b)

Therefore, the PSR of D-NTMA (PD
SR) can be obtained as [44]

PD
SR = PDov

SR + PDind
SR − P

Dfov

SR (24a)

where PDind
SR and P

Dfov
SR represent the power obtained from the individual radiation of the infinite

harmonics and that from the individual radiation at the overlapping frequencies, respectively. PDind
SR is

calculated like PND
SR as mentioned in (10(a))–(11). Considering both overlapping and non-overlapping

harmonics as detailed in [44], the expression of PSR for the volumetric D-NTMA (PD
SR) can be obtained

as

PD
SR = πB (a+ 1, b+ 1/2)

N∑
n=1

|Vn|2 ςn(1− ςn)

+
1

2

∑
χov∈χ

∑
n,m∈χov,

n ̸=m

VnV
∗
me

jαnm

[
1

ρmρn
{ςρmρn − ρmρnςmςn} × I3

]
(24b)

For the array with a large number of antenna elements, the numerical integration (NI) method to
calculate PSR by using (15) and (10(a)) with summation over N requires long computation time.
For different possible combinations of ‘a’ and ‘b’, Equation (24(b)) can be used for calculating the
power. However, Equation (24(b)) is associated with the hypergeometric function that needs increased
computation time [49]. Therefore, with further simplification of (24(b)), the computation time can be
reduced significantly. So, for different element patterns corresponding to the different values of ‘a’ and
‘b’, the expression of I3, as obtained in (22), is further simplified. It is shown that using the simplified
expressions without hypergeometric function, time to calculate PSR is significantly reduced. This is
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because the calculation of hypergeometric function in (22), as well as in (24(b)), needs significantly
more computation time than the simplified expressions as obtained in terms of Beta function, Bessel’s
function, or Gamma function.

For different array geometries having different types of element patterns e (θ, ϕ), the formulated
simplified closed form expressions of PSR of D-NTMA are presented in the following subsections.

2.2.1. Volumetric Array

For the volumetric array geometry with different values of ‘a’ and ‘b’, the expressions of I3 are simplified
and presented in Table 1. Here, J(·) represents the Bessels function, while Γ(·) represents the Gamma
function. Thus for different types of element patterns, using the simplified expression of I3 in (24.1)–
(24.9) the corresponding expressions for the sideband power can be obtained from (24(b)). For reference,
the expression of PSR with isotropic element pattern e (θ, ϕ) = 1 is derived as follows. For isotropic
pattern, a = 0, b = 0, and B(1, 1/2) = 2. Considering s = 0, the expression of I3 is simplified [42] and
expressed in (24.1). Here, dmn represents the inter-element distances of the array. Therefore, PD

SR is
obtained from (24(b)) as

PD
SR

∣∣
iso

= 2πςn

N∑
n=1

|Vn|2 (1− ςn) +
1

2

∑
n,m∈χov,

n ̸=m

VnV
∗
m

1

ρmρn
[ςρmρn − ρmρnςmςn]4πsin c (βdmn) e

jαnm (25)

Similarly for linear and planar array geometries the simplified generalized expression of PD
SR can be

derived as follows.

2.2.2. Planar Array

Let us consider that the array is placed in the XY plane. For such a planar array, Rznm = 0. So, the
simplified form of I3 is obtained from (22) as

I3 = 2πB (a+ 1, b+ 1/2) 1F2

(
a+ 1
1, a+ b+ 3/2

∣∣∣∣− (βψRnm

2

)2
)

. (26)

Therefore, using (26) in (24(b)), the expression of PD
SR in the XY plane can be obtained. However,

the resultant expression of PD
SR consists of an increased computational time based hypergeometric

function. To reduce the computation time of the resultant expression corresponding to the different
element patterns having different values of ‘a’ and ‘b’, I3 in (26) is further simplified and presented in
(26.1)–(26.9), Table 2.

Now, for a special case, let us consider the planar array of element pattern without having any sin
term, i.e., the element pattern is of the form e (θ, ϕ) = cosb θ. For this case, the simplified expression of
I3 is written as,

I3 = 4π2b−1/2Γ (b+ 1/2)
Jb+1/2 (βψRnm)

(βψRnm)
b+1/2

. (27)

Thus, I3 is obtained in terms of the Bessel function and Gamma function. Using (27) in (24(b)), the
final expression can be calculated without computation of the hypergeometric function.

2.2.3. Linear Array

Let the antenna array placed along the Z-axis. In this scenario ψRnm = 0. So, the expression of I3 can
be written from (21) as

I3 = ejαnm

π∫
0

sin2a+1 θ cos2b θejβRznm cos θdθ (28)
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Table 1. Simplified expressions of I3 for the volumetric array of various types of element pattern with
different values of (a, b).

Sl. 

No. 
(a, b) I3 Eq. No. 

1. 
a=0, 

b=0 

( )4 sinc nmdπ β ; 2 2

R nmnm
nm z

d Rψ= + with s=0 

( ) ( )

( )
( )

1 2
2 2

1 2

2 1 4
2 2

3 2 2

2

nm

nm

s R

s

R

s J β ψ

β ψ

+

+

Γ +  with  s≠0 (24.1) 

2. 
a=0.5, 

b=0 

2

1 2
       1
3 2,  2 2

nmR
F

s

βψ   −  +      

 (24.2) 

3. 
a=1, 

b=0 

( )

( )

( )

( )

( )

1 2 1 2
2 2 2 2

2 2
3 2 5 2

2 3 4 2 5 4
2 2 2 2

5 2 2 7 2 2
4 4

4 5 2
4 4

nm nm

nm

nm nm

R R
s sR

s s

R R

s J s J

s

β ψ β ψ
β ψ

β ψ β ψ

+ +

+ +

               Γ + Γ +                  −
   
   +   
   
   

  
(24.3) 

4. 
a=0, 

b=0.5 

( )

( )

1 2
2 2

1

2 1 2
2 2

2 2
4

4

nm

nm

R
s

s

R

s J

β ψ

β ψ

+

+

     Γ +       

 
 
 
 
 

  
(24.4) 

5. 
a=0.5, 

b=0.5 

2

1 2
       1
3 2,  5 2 2

nmR
F

s

βψ   −  +      

  (24.5) 

6. 
a=1, 

b=0.5 

( )

( )

( )

( )

( )

1 2 1 2
2 2 2 2

2 2
2 3

2 1 2 3 2
2 2 2 2

3 2 4 2
4 4

4 3
4 4

nm nm

nm

nm nm

R R
s sR

s s

R R

s J s J

s

β ψ β ψ
β ψ

β ψ β ψ

+ +

+ +

               Γ + Γ +                  −
   
   +   
   
   

  

(24.6) 

7. 
a=0, 

b=1 

( )

( )

1 2
2 2

3 2

2 3 4
2 2

5 2 2
4

4

nm

nm

R
s

s

R

s J

β ψ

β ψ

+

+

     Γ +       

 
 
 
 
 

 
(24.7) 

8. 
a=0.5, 

b=1 
 

2

1 2
       1
3 2,  s+3 2

nmR
F

βψ   −       

 (24.8) 

a=1,  

( )

( )

( )

( )

( )

1 2 1 2
2 2 2 2

2 2
5 2 7 2

2 5 4 2 7 4
2 2 2 2

7 2 2 9 2 2
4 4

4 7 2
4 4

nm nm

nm

nm nm

R R
s sR

s s

R R

s J s J

s

β ψ β ψ
β ψ

β ψ β ψ

+ +

+ +
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b=1
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Table 2. Simplified expressions of I3 for various values of (a, b) for planar NTMA placed in XY plane.

Sl. 

No. 
(a, b) I3 

Eq. 

No. 

1. 
a=0, 

b=0 

( )sin
nm

nm

R

R

βψ

βψ
 (26.1) 

2. 
a=0.5, 

b=0 

2 2
1 2 1 2

2 2 2 2

0 1
4 4

nm nmR R
J J

β ψ β ψ
      − −         +      
      

         

 
(26.2) 

3. 
a=1, 

b=0 

( ) ( ) ( )
( )

2 2

3

3 sin sin cos

2

nm nm  nm    nmnm

nm

R  R  R  R
R

R

β ψ βψ βψ βψ βψ

βψ

− +
 

(26.3) 

4. 
a=0, 

b=0.5 

( )12
nm

nm

R

R

J βψ

βψ
 (26.4) 

5. 
a=0.5, 

b=0.5 

2

1 2
       1
3 2,  5 2 2

nmR
F

βψ   −       

 (26.5) 

6. 
a=1, 

b=0.5 

( )
( )

( ) ( )
( )

2 2
10

2 3

4 16

8
nmnm nm

nm nm

RR R

R R

JJ β ψ βψβψ

βψ βψ

−
+  

(26.6) 

7. 
a=0, 

b=1 

( ) ( )
( )3

3sin 3 cos
nm nm  nm

nm

R R  R

R

βψ βψ βψ

βψ

−
 

(26.7) 

8. 
a=0.5, 

b=1 

( ) ( )

2
1 2

2 2 1 2 1 2 1 2
2 2 2 2  2  2

1
0 1

2 2

16
164

4 4 4

nm
nm nm   nm

nm nm

R
R R   R

R R

J
J J

β ψ β ψ β ψ β ψ

βψ βψ

  −        − − −  

     
          

     

         −
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9. 
a=1, 

b=1 

( ) ( ) ( ) ( ){ }
( )

3 3  2 2

5

15 9sin cos 4 sin 9 cos

2

nm nm nm nm nmnm nm

nm

R R R R RR R

Rβψ

− + − −
 (26.9) 

βψ βψ β  ψβ  ψ βψ βψ βψ

This expression can be simplified as [51]

I3 = B (a+ 1, b+ 1/2) 1F2

(
b+ 1/2
1/2, a+ b+ 3/2

∣∣∣∣− (βRznm

2

)2
)

(29)

where, Rznm =
√

(Rzn −Rzm)
2.

Thus, for the array lying along the Z-axis, PD
SR can be obtained by putting (29) in (24(b)). However,

like volumetric and planar arrays, the expression is involved with hypergenmetric function. So, similar
to (24) and (26), for different element patterns the expression of I3 in (29) is simplified and given in
Table 3, (29.1)–(29.9).
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Table 3. Simplified expressions of I3 for various values of (a, b) of linear NTMA placed along Z-axis.

Sl. 

No. 
(a, b) I3 Eq. No. 

1. 
a=0, 

b=0 

sin( )
nm

nm

z

z

R

R

β

β
 (29.1) 

2. 
a=0.5, 

b=0 

12 sin( )
nm

nm

z

z

J R

R

β

β
 (29.2) 

3. 
a=1, 

b=0 

( ) ( )3sin 3 cos
nm nm nm

nm

z z z

z

R R R

R

β β β

β

−
 (29.3) 

4. 
a=0, 

b=0.5 

( ) ( ) ( )
( )

1 2 3 2 1 2
2 2 2 2 2 2 2 2 2 2

4

2sinh cosh
nm nm nm nm nm

nm

z z z z z

z

R R R R R

R

β β β β β

β

− − − + −
 (29.4) 

5. 
a=0.5, 

b=0.5 

2

1 2
       1
1 2,  5 2 2

nmzR
F

β   −       

 (29.5) 

6. 
a=1, 

b=0.5 ( )

2 2
1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2

1 2 2
2 2

12 2cosh sinh 4sinh
4 4 4 4

4

nm nm nm nm

nm
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z z z z

zz

R R R R
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β β β β

ββ

                       − − − − − −                              −
 
 − 
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7. 
a=0, 

b=1 

( ) ( ) ( ) ( )

( )

1 2 1 2 1 2 1 2
2 2 2 2 2 2 2 2 2 2

3 2
2 2

cosh 6sinh 3 sinh
nm nm nm nm nm

nm

z z z z z

z

R R R R R
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8. 
a=0.5, 

b=1 

( )
( )

( ) ( )
( )

2 2

0 1
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24 6
8

nm nm nm

nm nm

z z z

z z

J R R J R

R R

β β β

β β
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9. 
a=1, 

b=1 

( ) ( ) ( ) ( ) ( ) ( )

( )

3 1 2 2

5

15 12sin cos 5 sin 12 cos
nm nm nm nm nm nm nm

nm

z z z z z z z

z

R R R R R R R

R

β β β β β β β

β

 
− + − − 

   (29.9) 

3. NUMERICAL EXAMPLE

In this section, the effectiveness of the obtained simplified expressions in calculating the sideband
power loss accurately with less computation time have been demonstrated. In this regard, the derived
expressions are used to calculate the power losses associated with linear, planar, and volumetric arrays,
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and the obtained results are compared in terms of the accuracy and computation time.
The efficient computation ability of the derived simplified expressions is demonstrated for three

types of the array geometries, like — linear, planar, and volumetric arrays. For a particular array
geometry, the sideband power losses of both types of NTMAs—ND-NTMA and D-NTMA are calculated
in two ways — by means of simplified expressions (SE) and with use of the numerical integration (NI)
method. For different element patterns of the respective array geometry, the obtained values of the
power losses and the time taken to compute the results are compared. The modulation frequencies of
the array elements are selected as fn = f1 ± (n − 1)∆f , where f1 is the modulation frequency of the
first element, and ∆f is the change in frequency step of the consecutive elements. For ND-NTMA, f1
and ∆f are taken as (30MHz, 0.5MHz) while for D-NTMA these are (2MHz, 1MHz), respectively. For
all the following examples, the numerical integration is used with the step size of the angular sample of
0.01◦.

3.1. Linear Array

Let us assume a linear array of 25 elements placed along the Z-axis. The locations of the array elements
are selected randomly as mentioned in Table 4, while the element excitations are selected the same as
in [42]. For the arrays with different element types, the NI is used as follows. For ND-NTMA, at first,
the power at a particular harmonic of the individual element, pnk, is calculated using the integral in
(8). Then, the total harmonic power of the individual element, Pn, is calculated using the infinite series
summation in (10(a)), and finally, PSR is obtained with the summation of Pn over the total number of
elements N as in (11). For D-NTMA, determining the integrals in (15) and (10(a)) with summation
over N , it is calculated from (23(b)) and (24(a)).

Table 4. Locations of the antenna elements in the Z-axis.

Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13

(zn) · λ 0.64 0.37 0.81 0.53 0.35 0.94 0.87 0.55 0.62 0.58 0.20 0.3 0.47

Element No. 14 15 16 17 18 19 20 21 22 23 24 25 - - -

(zn) · λ 0.23 0.84 0.19 0.22 0.17 0.22 0.43 0.31 0.92 0.43 0.18 0.90 - - -

Without integration, to directly compute the power losses, the derived simplified expression in (11)
is used for ND-NTMA. However, for D-NTMA, first, I3 is obtained from the derived expression with
hypergeometric function in (29) as well as its simplified expressions according to the different values of
‘a’ and ‘b’ as in (29.1)–(29.9), and then these are used in (24(b)).

After obtaining the value of PSR, the percentage of sideband power loss (P%
SR) is calculated by [44].

The obtained results are mentioned in Table 5. It can be observed that compared to NI, with the
error about less than 10−14, the derived expressions corresponding to ND-NTMA and D-NTMA take
significantly less time to compute the power. However, for the element pattern with a = b = 0.5, the
computation time is somewhat higher due to the presence of the hypergeometric function in (29.5).

Another point needs to be mentioned here that for a fixed value of ‘b’, with increasing ‘a’, P%
SR is

decreased, and for a fixed value of ‘a’, with increasing ‘b’, P%
SR is increased. This indicates that compared

to the isotropic array, power loss for the array with broadside directive element pattern is more.

3.2. Planar Array

To show the computational proficiency of the derived expressions for the planar array, let us consider
the same array configuration as in [42]. Similar to linear array, PSR of ND-NTMA is calculated by
using NI and the derived expressions. However, for D-NTMA, to compute the power with NI, first,
I3 and I1 are obtained by using integral in (21) and (16(a)), and for the power due to the individual
radiation of the harmonics using the integral equation of (10(a)) with summation over N , and then PSR

from (23(b)), (24(a)). The PSR of D-NTMA is also calculated by using the derived expressions (26)



70 Mandal and Mandal

Table 5. Obtained values of P%
SR and corresponding computation time for linear NTMAs for different

possible combinations of (a, b) of e(θ, ϕ) (Intel Core i5-4690 CPU @ 3.50GHz, RAM: 4GB).

Sl 

No.
 

(a, b)
 

PSR% Computation time (sec) 

ND-NTMA D-NTMA ND-NTMA D-NTMA 

NI
 

SE
 

Error
 

NI
 

SE
 

Error
 

NI
 

SE
 

NI
 

SE  Eq. 

(29.1)-(29.9)
 

1 (0,0) 4.32 4.32 9.1835e-15 11.16 11.16 3.5120e-14 0.243 0.032 0.222 0.02 

2 (0.5,0) 3.78 3.78 5.6205e-16 10.99 10.99 3.8858e-16 0.189 0.015 0.228 0.025 

3 (1,0) 3.49 3.49 1.7347e-16 10.9 10.9 2.7062e-15 0.235 0.013 0.219 0.021 

4 (0,0.5) 6.33 6.33 2.7188e-14 11.78 11.78 0 0.189 0.015 0.219 0.021 

5 (0.5,0.5) 5.23 5.23 2.5229e-15 11.4 11.4 1.295e-14 0.238 24.6 0.222 26.1 

6 (1,0.5) 4.62 4.62 4.2313e-14 11.21 11.21 1.144e-15 0.191 0.020 0.228 0.03 

7 (0,1) 8.27 8.27 4.3397e-14 12.42 12.42 1.809e-15 0.195 0.032 0.039 0.218 

8 (0.5,1) 6.68 6.68 3.8247e-14 11.85 11.85 9.7218e-15 0.219 0.016 0.222 0.025 

9 (1,1) 5.77 5.77 2.6561e-14 11.55 11.55 5.9473e-15 0.240 0.015 0.228 0.023 

Table 6. Obtained values of P%
SR and corresponding computation time for planar NTMAs for different

possible combinations of (a, b) of e(θ, ϕ) (Intel Core i5-4690 CPU @ 3.50GHz, RAM: 4GB).

Sl 

No.
 

(a, b)
 

PSR% Computation time (sec) 

ND-NTMA D-NTMA ND-NTMA D-NTMA 

NI

 

SE Error

 

NI SE

 

Error

 

NI SE

 

NI

 

SE  Eq. 

(26.1)-(26.9) 

1 (0,0) 26.19 26.19 6.507e-16 26.82 26.82 4.012e-15 3.51 0.008 5.2 0.031 

2 (0.5,0) 26.28 26.28 5.5511e-17 26.99 26.99 5.5511e-17 3.36 0.017 5.29 0.033 

3 (1,0) 23.94 23.94 6.3838e-16 25.26 25.26 2.2204e-16 3.33 0.01 5.26 0.033 

4 (0,0.5) 31.35 31.35 1.993e-15 30.71 30.71 1.5277e-14 3.42 0.018 5.27 0.037 

5 (0.5,0.5) 38.64 38.64 2.898e-15 36.83 36.83 2.4253e-14 2.6 20 5.27 27.758 

6 (1,0.5) 33.35 33.35 2.415e-15 32.72 32.72 1.9945e-15 2.63 0.018 5.25 0.039 

7 (0,1) 32.22 32.22 3.0117e-15 31.18 31.18 2.3028e-15 2.65 0.008 5.26 0.034 

8 (0.5,1) 58.32 58.32 1.1102e-16 53.98 53.98 1.1102e-16 2.57 0.020 5.28 0.043 

9 (1,1) 52.01 52.01 2.2204e-15 48.56 48.56 1.4433e-15 2.96 0.008 5.25 0.116 
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and its corresponding simplified expressions (26.1)–(26.9) in (24(b)). The obtained values along with
their respective computation time are listed in Table 6. Looking into Table 6, it is observed that almost
accurate results with error about less than 10−14 are obtained with significantly less computation time
directly by using the simplified expressions. However, similar to the linear array, for the case with
a = 0.5, b = 0.5, the computation time becomes relatively higher due to the presence of hypergeometric
function.

3.3. Volumetric Array

Let us consider a concentric type volumetric array with array parameters such as element locations,
number of rings, number of elements per ring, excitation amplitudes, and normalized on time durations
of the elements same as in [42]. For ND-NTMA, the calculation using NI is done in the same way
as that for the linear and planar arrays. For D-NTMA, solving the integrals of I1 in (16(a)), I3 in
(21), and the integral of (10(a)) with summation over N , PSR is calculated using (23(b)) and (24(a)).
Without integration, the derived expression in (24(b)) with simplified expressions in (24.1)–(24.9) is
utilized considering the order of the Maclaurin series ‘s’ in the range of 0 ≤ s ≤ 9, and the obtained
results are listed in Table 7. Here also, for the cases with (a, b) = (0.5, 0), (0.5, 0.5), and (0.5, 1),

Table 7. Obtained values of P%
SR and corresponding computation time for volumetric NTMAs for

different possible combinations of (a, b) of e(θ, ϕ) (Intel Core i5-4690 CPU @ 3.50GHz, RAM: 4GB).

Sl No.

 
 

(a, b) 

PSR% Computation time (sec) 

ND-NTMA D-NTMA ND-NTMA D-NTMA 

NI SE Error

 

NI SE Error

 

NI SE NI 
SE Eq. 

(24.1)- (24.9) 

1 (0,0) 40.14 40.14 1.521e-14 40.02 40.02 2.8893e-11 19.21 0.004 21.23 0.38 

2 (0.5,0) 39.27 39.27 1.582e-11 39.14 39.14 2.3782e-14 19.38 0.02 21.3 84 

3 (1,0) 38.55 38.55 2.493e-14 38.33 38.33 1.3545e-14 18.97 0.01 21.26 0.55 

4 (0,0.5) 42.78 42.78 1.386e-11 42.95 42.95 2.7989e-11 18.97 0.013 22.45 0.38 

5 (0.5,0.5) 42.23 42.23 2.249e-15 42.61 42.61 1.2398e-14 19.14 21.2 21.36 92 

6 (1,0.5) 41.49 41.49 2.591e-15 41.86 41.86 2.8311e-15 19.48 0.023 21.24 0.58 

7 (0,1) 43.74 43.74 2.7167e-14 43.84 43.84 2.7167e-10 19.7 0.04 22.16 0.40 

8 (0.5,1) 43.6 43.6 2.597e-11 44.05 44.05 1.5923e-14 19.5 0.027 21.91 90 

9 (1,1) 42.94 42.94 1.738e-15 43.44 43.44 2.8311e-15 19.35 0.01 21.30 0.60 
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for which hypergeometric function is present in their respective simplified expressions in (24.2), (24.5),

and (24.8), long computation time is required for calculating P%
SR. However, for the other cases, the

computation time is comparatively less. It is to be mentioned that the utilization of (24.1)–(24.9) for

the calculation of P%
SR yields error less than 10−10 even though the first 10 polynomials of the Maclaurin

series are considered.
To investigate the computation efficiency of the derived expressions for the larger number of antenna

elements, a fixed element pattern with a = 1, b = 1 is taken, and the number of array elements
is increased. The results obtained with linear, planar, and volumetric geometries of the arrays are
displayed in Table 8. It clearly shows that, with the increased array elements, for any arbitrary array
geometry, though computation time for both the methods are increasing, the derived expressions take
considerably less time than the numerical integration. It can be further observed that, for the larger
arrays, the derived expressions provide more accurate results with reduced errors in their calculated
values. The demonstrated results exhibit the efficacy of the derived expressions in accurately computing
the power with relatively less time, specifically for the large arrays wherein excessively large time is
required for NI.

Table 8. Accuracy in P%
SR calculation and computation time requirement with the increasing number

of elements (Intel Core i5-4690 CPU @ 3.50GHz, RAM: 4GB).

 

Geometry 

 

No. of 

Element

s 

PSR% Computation Time (sec) 

ND-NTMA D-NTMA ND-NTMA D-NTMA 

NI SE Error NI SE Error NI SE NI SE 

 

 Linear

 

25 5.77 5.77 2.6561e-15 11.55 11.55 5.9473e-15 0.240 0.015 0.228 0.023 

100 3.10 3.10 1.288e-14 6.07 6.07 1.2145e-14 3.491 0.1 0.378 0.147 

225 1.27 1.27 2.549e-13 2.12 2.12 4.2194e-14 16.8 0.555 15.5 0.689 

400 0.069 0.069 4.128e-13 1.34 1.34 7.9271e-13 54.23 1.667 48.88 2.16 

 

 Planar

 

25 52.01 52.01 2.2204e-16 48.56 48.56 1.4433e-15 2.957 0.008 5.25 0.116 

100 9.09 9.09 6.383e-16 6.53 6.53 8.4655e-16 40.66 0.10 42.48 0.1567 

225 3.35 3.35 4.163e-15 2.52 2.52 1.3878e-15 207.75 0.57 212.54 0.695 

400 1.62 1.62 5.447e-16 0.83 0.83 1.5391e-15 627.01 1.8 658.9 2.1947 

Volumetric 

 

     
25

 
29.19 29.19 2.583e-15 29.75 29.75 1.7258e-16 5.8 0.3 6.7 0.2 

100
 

33.8 33.8 3.6421e-15 33.75 33.75 6.4791e-15 77 2.2 85 2.1 

225
 

49.3 49.3 1.1461e-16 49.94 49.94 2.2415e-16 490 7 529 9 

400
 

53.62 53.62 1.7492e-16 54.5 54.5 4.1784e-16 1548 27 1582 29 
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4. CONCLUSION

Considering the pulse shifted switching scheme, the closed form expression of sideband power of NTMA

is derived by dealing with the ϕ-plane omnidirectional arbitrary element pattern of form sina θ |cos θ|b,
a > −1, b > −1/2. Corresponding to the three array geometries — linear, planar, and volumetric,
relevant numerical results exemplify the computational proficiency of the derived simplified expressions
without hypergeometric function to accurately compute the power. However, for some cases, existence
of the hypergeometric function leads to increasing the computation time.
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