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Hybrid Active Disturbance Rejection Decoupling Control
for Six-Pole Active Magnetic Bearing Based

on Improved Genetic Algorithm

Yeming Li and Huangqiu Zhu*

Abstract—For the sake of decoupling the six-pole radial active magnetic bearing (AMB) with mutual
coupling of two degrees of freedom, nonlinear and unstable disturbance, a hybrid active disturbance
rejection control strategy based on improved genetic algorithm (HADRC-IGA) is proposed. Firstly, the
configuration, magnetic circuit and suspension force model of the six-pole radial AMB are explained and
established. Secondly, the HADRC-IGA is designed which is improved on the linear active disturbance
rejection control (LADRC). Thirdly, the simulation is carried out, which shows that the capacity of
resisting disturbance and the decoupling efficiency of two degrees of freedom of the HADRC-IGA are
better than that of conventional LADRC. Finally, the experimental platform is constructed, and the
experiments are conducted, which verify the performance of the proposed decoupled control system.

1. INTRODUCTION

As a supporting part of mechanical equipment, bearing is one of the important factors for the normal
operation of the mechanical equipment in industry, agriculture, and transportation. It is difficult to
achieve the rapid rotation of the traditional bearing shaft due to the friction of the rotor. The traditional
rolling bearing causes the rotating speed of the shaft to be low because of the friction of the rotor.
Over time, new bearings such as aerostatic bearings, liquid dynamic bearings, and magnetic bearings
are proposed to apply in scientific manufacturing [1–3]. A three-pole radial active magnetic bearing
(AMB) is developed, which allows the rotor to be stably suspended in space, without making mechanical
contact with the stator. It has the excellent characteristics of low vibration, lubrication-free, frictionless,
high speed, and high precision [4–6]. At present, three-pole radial AMB has been used in aerospace,
compressors, and turbomolecular pumps [7, 8]. In order to overcome the disadvantage of a strong
coupling between the control current and suspension force due to the structural asymmetry, and to
reduce the volume and cost of magnetic bearings, a six-pole radial AMB is proposed, which implements
a structural symmetry.

However, the six-pole radial AMB solves the coupling problem due to the imbalance magnetic path,
and it still has the displacement coupling in the displacement two-degrees of freedom, which hinders
the stable operation of high precision of the six-pole radial AMB [9]. For the coupling problem between
the x- and y-direction displacements of magnetic bearings, a variety of vibration compensation methods
are put forward. In [10], a modal decoupling control is designed to decouple the radial translations
modal and tilting modal of the rotor of the active magnetic bearing. However, the method does not
realize the displacement coupling in the two directions of the AMB. In [11], a variable reconstruction
method is proposed to convert the multi-input multi-output AMB into a single-input single-output
system. However, this scheme is limited by the uncertainty of the model parameters and is difficult to
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implement. In [12], a neural network generalized inverse control is proposed which realizes the decoupling
between x direction displacement and y direction displacement of the five degrees of freedom magnetic
bearing, but it has high requirements for the training sample data, which is not easy to realize.

A linear active disturbance rejection control method (LADRC) is proposed to decouple the magnetic
bearings in [13]. The LADRC has the characteristics of decoupling the rotor system without establishing
the accurate mathematical model of the magnetic bearings [14, 15].

In this paper, a hybrid active disturbance rejection controller based on improved genetic algorithm
(HADRC-IGA) is proposed to decouple the six-pole redial AMB driven by the inverter. At first, a model
compensation strategy is used to set the parameters of LADRC. Then, the hybrid active disturbance
rejection control combining the advantages of the linear extended state observer (LESO) and nonlinear
state error feedback control law (NLSEF) is designed. Next, an improved genetic algorithm which avoids
falling into the local optima is proposed, and the parameters of the NLSEF are adjusted by using the
improved genetic algorithm. Finally, the high efficiency of the HADRC-IGA is demonstrated through
the simulations and experiments.

2. STRUCTURE DESIGN AND SUSPENSION FORCE MODEL OF THE SIX-POLE
RADIAL AMB

2.1. Structure Design of the Six-Pole Radial AMB

The structure and magnetic circuit of the six-pole radial AMB are shown in Fig. 1. The six-pole radial
AMB includes a radial control coil, rotor, rotating shaft, and radial stator. Among them, the rotor and
radial stator are made of silicon steel stack, and the rotor coaxial sleeve is located outside the shaft.
The rotor has external radial magnetic poles and radial control coils. There are 6 radial magnetic poles
around the radial control coil, which are star connected as the radial coil and winding direction of a
phase.
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Figure 1. Structure and magnetic circuit of the six-pole radial AMB.

2.2. Suspension Force Model of the Six-Pole Radial AMB

The equivalent magnetic circuit diagram is shown in Fig. 2. N is the number of turns of radial coils;
Ni j (j = A, B, C) is the ampere turns of the control coil; iA, iB, iC are the control currents; Φj1, Φj2

(j = A, B, C) are the synthetic magnetic flux in the corresponding air gap.
As shown in Fig. 2, Gj1, Gj2 (j = A, B, C) are the magnetic reluctance of radial air gap, which
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Figure 2. Equivalent magnetic circuit diagram of six-pole radial AMB.
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where x and y denote the actual displacement from the symmetry axis; δr is the length of the radial air
gap; µ is the vacuum permeability; Sr is the magnetic pole area.

Based on the Kirchhoff’s law, the magnetic flux produced by the radial coil at each gap can be
expressed as follows:

ΦA1 =
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According to the suspension force and magnetic flux relation, the suspension force generated by
each radial magnetic pole can be obtained as:

Fi =
Φ2
i

2µ0Sr
(i = A1,A2,B1,B2,C1,C2) (3)

After neglecting the infinitesimal quantity above the second order, the suspension forces are
projected in the x- and y-directions: {

Fx = kir · ix + kr · x
Fy = kir · iy + kr · y (4)

where kir =
√
3√
2
· 5Srµ0N2I

24δ2r
, kr = 5Srµ0N2I2

24δ3r
, kr is the displacement stiffness coefficient, and kir is the

current stiffness coefficient. Fx and Fy are the suspension forces in the x- and y-directions, respectively;
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I refers to the bias current connected to each phase coil; ix and iy are the two-phase control currents;
x and y are the displacements in radial direction.

As can be seen from Eq. (4), the suspension force of the x- and y-directions near the equilibrium
position has linear distribution with the control current and displacement in the corresponding direction,
respectively.

According to the rotor dynamics theory, the equation of motion of the six-pole radial AMB can be
obtained as follows: 

mẍ = Fx

mÿ = Fy −mg

Jxθ̈x = −laFy − JzΩθ̇y

Jyθ̈y = laFx + JzΩθ̇x

(5)

wherem is the mass of rotor; g is the gravity constant; Ω is the mechanical angular velocity around the z-
axis. Jx, Jy, and Jz are the moment of inertia around the x-, y-, and z-axes, respectively. Jx = Jy = Jd.
la is the distance from the magnetic bearing to the center of mass. θx and θy are the rotation angles of
the rotor around the x- and y-axes, respectively.

The state equation of the six-pole radial AMB can be obtained as follows:
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From Eq. (6), the rotor has a displacement coupling in x- and y-directions, so a decoupling control
method is necessary.

3. HYBRID ACTIVE DISTURBANCE REJECTION CONTROLLER BASED ON
IMPROVED GENETIC ALGORITHM

3.1. Design of the LADRC Based on the Model Compensation

According to Eq. (5), the six-pole radial AMB has strong nonlinear and high coupling properties, which
is susceptible to some external factors in the process of operation, which is difficult to accurately control
it. To make the rotor run stably, the selection of suitable magnetic bearing controller becomes the key.

LADRC is a new controller. The significance of the linear expansion state observer (LESO) is to
estimate each variable and the sum of the disturbances of the controlled subject according to the system
output. The function of linear state error feedback (LSEF) is to combine the state variable feedback
studied by ESO, so as to obtain the control signal quantity.

The second-order LADRC expression is shown below:

e(t) = v(t)− z1(t)

ż1(t) = z2(t)− β1e(t)

ż2(t) = z3(t)− β2e(t) + bu(t)

ż3 = −β3e(t)

u0(t) = kpe(t)− kdz2(t)

u(t) = u0(t)− z3(t)/b

(7)

The method of setting parameters of LESO by bandwidth is given in [16]. Parameters β1, β2, and
β3 can be configured as 3ω0, 3ω

2
0, and ω3

0. kp and kd can be configured as ω2
c and 2ωc, where ω0 is the

observer bandwidth, and ωc is the controller bandwidth [17]. Therefore, the parameters which need to
be set in LADRC are only ω0, ωc, and b.

Since all information of the model can be observed and compensated by LESO, LADRC is a
control strategy that can achieve better dynamic performance without relying on model information.
Without model assistance, the unknown total disturbance includes all external disturbances, control



Progress In Electromagnetics Research M, Vol. 114, 2022 209

gain, and the amount of change influenced by uncertainty factors, which all rely on LESO observation
and compensation. In view of the above issues, if a part of the model information of the six-pole radial
AMB can be obtained through system identification, the uncertainties of the six-pole radial AMB can be
compensated, and the observation pressure of LESO can be relieved. Therefore, a model compensation
LADRC controller scheme is proposed in this paper for the six-pole radial AMB, which makes full use
of the known information of the six-pole radial AMB and adds it to the control strategy of LADRC, so
as to improve the control efficiency.

The state equation of the rotor in the x direction can be described as:
ẋ1(t) = x2(t)

ẋ2(t) = f0(x1(t), x2(t)) + ω(t) + bu(t)

y(t) = x1(t)

(8)

where u(t) is the control current of the system; x1(t) is the output signal, in the system is the rotor
displacement; f0(x1(t), x2(t)) is the internal disturbance of the six-pole radial AMB; ω(t) is the external
disturbance of the system; ω(t) is unknown; and b is the control gain of the six-pole radial AMB.

Equations (6) and (8) can be combined to obtain:

b =
kix
m

(
1 +

ml2a
Jd

)
(9)

According to the principle of model compensation LADRC, the parameter b in LADRC can be set
through model information of the six-pole radial AMB.

In summary, the parameters in LADRC are only ω0 and ωc. In this paper, ω0 can be defined as
70 rad/s, and ωc can be defined as 50 rad/s.

3.2. Design of a Hybrid ADRC

LADRC has fewer parameters and simple tuning due to the LESO and LSEF, but in comparison to
nonlinear feedback its efficiency is lower, and its tracking accuracy and response speed are relatively low.
As shown in Fig. 3, the LSEF is replaced by the nonlinear state error feedback control law (NLSEF) to
constitute a hybrid ADRC (HADRC).
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Figure 3. The diagram of HADRC.

The expression of the NLSEF is:

u0(t) = kpfal(e(t), α1, δ) + kdfal(−z2(t), α2, δ) (10)

where the expression of the function fal is:

fal(e, α, δ) =

{ e

δ1−α
, |e| ≤ δ

|e|α sgn(e), |e| > δ
(11)

where the function fal is a nonlinear function in the NLSEF; α1, α2, and δ are adjustable parameters.
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When tracking the signal with noise, NLSEF not only has a good effect of filtering noise, but also
can quickly track the original signal. When the signal error is large, the function fal produces a smaller
feedback gain, and when the error is small, it produces a larger feedback gain, which improves the
control characteristics of the system, makes the system have strong robustness and adaptability, and
better meets the requirements of system stability and rapidity.

After using the nonlinear function fal, the values of kp and kd originally set based on the bandwidth
method need to be adjusted. In general, α1, α2, and δ in the function fal are a set of fixed parameters.
In this paper, α1 = α2 = 0.25, δ = 0.05.

3.3. Improved Genetic Algorithm to Optimize Parameters

The parameters kp and kd in NLSEF have a great influence on the capacity of resisting disturbance of
the six-pole radial AMB. An improved genetic algorithm (IGA) is proposed which overcomes the local
optimization in traditional genetic algorithm, and the specific flowchart is shown in Fig. 4.
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Figure 4. Flowchart of improved genetic algorithm.

To make the architecture of the proposed method more understandable, the overall IGA procedure
can be divided into five steps below.

Step 1: The population size is set to 20, and the population is initialized. The selection range of
kp is (2000, 3000), and the selection range of kd is (0, 200). To obtain the parameters as accurate as
possible, iterations number is set to 300 generations.

Step 2: To get a good dynamic characteristics as well as a good transition process, Integral Time
Absolute Error (ITAE) is used as the objective function of parameter selection:

J =

∫ T

0
t |e(t)| dt (12)

where T is the simulation time, and e(t) is the displacement error of the rotor.
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Because the selection of the parameters means to search the minimum number of the objective
function, the inverse of the objective function needs to be calculated:

f =
1

J
(13)

Step 3: After the fitness of each individual is obtained, if the maximum genetic algebra is not
reached, the selection operation is performed according to the fitness.

As can be seen in Fig. 5, in the selection operation, the joint algorithm of championship method
and roulette method is adopted. In the first N/3 iterations, the championship method is adopted first,
and multiple samples are randomly selected each time, so that the optimal fitness individuals obtained
in the early stage of the algorithm are directly saved, and the search ability of the algorithm in the
first N/3 iterations is improved. In the last 2N/3 iterations, the roulette method is used to inherit
the individuals with high fitness to the next generation of population, which can effectively avoid the
precocious and stagnation problems in the later stage of the algorithm.
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Figure 5. Fitness function curve comparison. (a) The optimization process of parameter kp. (b) The
optimization process of parameter kd.

Step 4: After the improved selection operation in step 3, the next generation of chromosome is
generated after crossover and mutation, and a new round of iteration process begins.

Step 5: All the above steps are repeated until the maximum number of iterations is obtained.
As can be seen in Fig. 5, The curves comparisons of the GA and IGA genetic generation with the

fitness values are shown in Fig. 5. With the number of the iterations increasing, IGA converges faster
than GA. In the first 100 iterations, by using the championship selection operation, the selection of the
best fitness individual enters the next generation population, and the global search speed for the whole
improved genetic algorithm is greatly accelerated. However, the search error of the tournament selection
operation is large, so in the last 200 iterations, the roulette selection operation is used to approach the
maximum with the advantage of the high precision. The best parameter kp is obtained by GA at the
230th generation, and the best parameter kd is obtained by GA at the 220th generation. After using
the improved selection operation, the fitness rose rapidly throughout the genetic iteration. The best
parameter kp is obtained by IGA at the 145th generation, and the best parameter kd is obtained by
GA at the 140th generation. Compared with the GA and IGA, the search speed and fitting accuracy
of optimal parameters by IGA have been greatly improved.

4. SIMULATION TEST

4.1. Simulation Experiment of Rotor Floating of Six-Pole Radial AMB

The simulation experiment of x direction rotor floating is shown in Fig. 6, and the displacement waveform
in the y direction is identical to the x direction. The initial displacement setting of the six-pole radial
AMB rotor is about 0.7mm. Under the PID control, the time that the rotor returns to the equilibrium
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Figure 6. Simulation experiment of x direction rotor floating.

position is approximately 0.3 s, and the maximum deviation is about 0.13mm; under the LADRC
control, the time that the rotor returns to the equilibrium position is approximately 0.035 s, and the
maximum deviation is about 0.07mm; under the control of HADRC-IGA, the time that the rotor returns
to the equilibrium position is approximately 0.025 s, and the maximum deviation is about 0.05mm. The
response time of HADRC-IGA is about 75% of LADRC, and the overshoot is about 71.4% of LADRC.
Under the control of the HADRC-IGA, the response speed of the system is faster, and the overshoot is
smaller.

4.2. Simulation Experiment of Rotor Anti-Interference and Decoupling of Six-Pole
Radial AMB

The anti-interference curves for six-pole radial AMB under the control of the PID, LADRC, and
HADRC-IGA in the x- and y-directions are shown in Fig. 7.

When the rotor is stably suspended, an interference force is applied to the rotor at 0.59 s and
0.63 s in the x direction, and the applied interference force is 50N and 60N respectively at 0.59 s and
0.63 s. According to Fig. 7(a), when the interference is applied at 0.59 s, the displacement of the rotor
in the x direction is 0.13mm, and the displacement of the rotor in the y direction is 0.12mm. When
the interference is applied at 0.63 s, the displacement of the rotor in the x direction is 0.15mm, and
the displacement of the rotor in the y direction is 0.13mm. The time that the rotor returns to the
equilibrium position is approximately 0.03 s. In Fig. 7(b), when the interference is applied at 0.59 s,
the displacement of the rotor in the x- and y-directions is 0.08mm and 0.06mm, respectively. When
the interference is applied at 0.63 s, the displacement of the rotor in the x- and y-directions is 0.09mm
and 0.06mm, respectively. The time that the rotor returns to the equilibrium position is approximately
0.02 s. In Fig. 7(c), when the interference is applied at 0.59 s, the displacement of the rotor in the x-
and y-directions is 0.04mm and 0.01mm, respectively. When the interference is applied at 0.63 s, the
displacement of the rotor in the x- and y-directions is 0.05mm and 0.01mm, respectively. The time
that the rotor returns to the equilibrium position is approximately 0.02 s. According to the simulation
results, under the control of HADRC-IGA, the recovery time is 50% of LADRC, and the coupling
amount is 12.5% of LADRC. When different interference forces are applied in a short time, the rotor
can quickly return to the balance position under the control of HADRC-IGA; the response speed of the
system is faster; the coupling is smaller; and the anti-interference ability is stronger.

5. EXPERIMENT RESEARCH

5.1. Experimental Platform and Sample Data Acquisition

The main parameters of the six-pole radial AMB in this paper are given in Table 1.
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Figure 7. Simulation experiment of rotor anti-interference and decoupling. (a) Anti-interference and
decoupling under PID. (b) Anti-interference and decoupling under LADRC. (c) Anti-interference and
decoupling under HADRC-IGA.

The experimental platform of six-pole radial AMB to verify the above simulation results is shown
in Fig. 8. The experimental platform mainly includes six-pole radial AMB, eddy current sensors,
displacement interface circuit, digital signal processor (DSP), power amplifier circuit board, oscilloscope
(OSC), PC, etc. The rotor floating experiment and the rotor anti-interference and decoupling experiment
are performed by using the experimental platform.

In this paper, the CCS3.3 software developed for DSP provides an integrated environment for the
software development of this system, in which the writing, debugging, and operation of the six-pole

Table 1. Main parameters of six-pole radial active magnetic bearing.

Parameters Value

Saturation induction density Bs 0.8T

Radial air gap length δ0 0.5mm

Magnetic pole area Sr 393mm2

Radial length of magnetic pole 23mm

Axial length of magnetic pole 28mm

Outer diameter of rotor 32mm

Inner diameter of rotor 16mm
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AMB are completed. The man-machine interaction function realized by VB6.0 is mainly the real-time
expression of the rotor suspension state of the magnetic bearing system and the online adjustment of
the control parameters.

The control structure diagram is shown in Fig. 9. The eddy current displacement sensor outputs
the detected displacement signals xp and yp as voltage signals, then the displacement interface circuit
adjusts the amplitude of the voltage signal to the range within which the DSP can analyse. The DSP
calculation generates 6-way PWM waves as the input to the three-phase power drive circuit for drive
control, and there will be three-phase control currents ia, ib, and ic in the three-phase coil. The control
currents ia, ib, and ic regulate the position offset of the rotor.

5.2. Experimental Verification

The waveform of the six-pole radial AMB rotor float experiment is shown in Fig. 10. As can be seen from
Fig. 10(a), Fig. 10(b), and Fig. 10(c), when the system is controlled by the PID, the rotor returns to the
equilibrium position after about 120ms; when the system is controlled by the LADRC, the rotor returns
to the equilibrium position after about 70ms; and when the system is controlled by the HADRC-IGA,
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Figure 10. The waveform of the six-pole radial AMB rotor floating. (a) Rotor floating under PID.
(b) Rotor floating under LADRC. (c) Rotor floating under HADRC-IGA.

the rotor returns to the equilibrium position after about 50ms. The experimental result shows that
under the control of HADRC-IGA, the speed of the rotor returning to the equilibrium position increases
by 58.3% compared with that under the control of the PID. The six-pole radial AMB has better floating
performance under the control of HADRC-IGA.

The displacement of the rotor when an external force of 150N is applied in the x direction under
the control of the PID, LADRC, and HADRC-IGA is shown in Fig. 11.

Figure 11 shows the experimental diagram of the six-pole radial AMB rotor loading. When the
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Figure 11. The waveform of load on six-pole radial AMB. (a) Anti-interference and decoupling under
PID. (b) Anti-interference and decoupling under LADRC. (c) Anti-interference and decoupling under
HADRC-IGA.

rotor is stably suspended, a 150N weight is suspended in the x direction under the PID control. After
applying the load, the deviation of the rotor from the equilibrium position is about 110µm and 80µm
in the x- and y-directions, respectively, and the rotor returns to the equilibrium position after 285ms.
Under the control of the LADRC, the deviation of the rotor from the equilibrium position is about
100µm and 75µm in the x- and y-directions, respectively, and the rotor returns to the equilibrium
position after 270ms. Under the control of the HADRC-IGA, the time for the rotor to return to the
equilibrium position is reduced to 255ms, and the deviation of the rotor from the equilibrium position in
the x- and y-directions is reduced to 85ms and 45ms, respectively. The three experimental results show
that under the control of the HADRC-IGA, if one direction of the six-pole radial AMB is subjected to
an external force, the interference to the other direction is smaller, and the decoupling effect is better.

6. CONCLUSION

In this paper, the hybrid active disturbance rejection control based on improved genetic algorithm
(HADRC-IGA) is applied to the six-pole radial AMB. The effectiveness of the controller is verified by
simulation and experiment, and the following conclusions are obtained:

(1) The linear active disturbance rejection control strategy of model compensation is proposed. Only
ω and ωc need to be determined by the strategy. The difficulty of parameter setting of the linear
active disturbance rejection controller is greatly reduced.

(2) The proposed HADRC-IGA has a strong robustness against disturbance and can effectively inhibit
the displacement change of the six-pole radial AMB rotor system during the application of
disturbance. After the HADRC-IGA is applied to the six-pole radial AMB, the coupling between the
rotor displacements can be basically eliminated; the response speed of the system to the disturbance
can be significantly improved; and the anti-interference ability of the six-pole radial active magnetic
bearing is stronger.

ACKNOWLEDGMENT

This project was sponsored in part by the National Natural Science Foundation of China (61973144,
62273168).



Progress In Electromagnetics Research M, Vol. 114, 2022 217

REFERENCES

1. Liu, Y. F., M. Y. Huo, and N. M. Qi, “Modeling of disturbance torque in an aerostatic bearings-
based nano-satellite simulator,” Journal of Systems Engineering and Electronics, Vol. 29, No. 3,
618–624, June 2018.

2. Wang, Y., Q. Zhang, L. Zhao, and E. S. Kim, “Non-resonant, broad-band vibration-energy
harvester based on self-assembled liquid bearing,” 2015 Transducers- 2015 18th International
Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 614–617,
2015.

3. Le, Y., J. Sun, and B. Han, “Modeling and Design of 3-DOF magnetic bearing for high-speed
motor including eddy-current effects and leakage effects,” IEEE Trans. Ind. Electron, Vol. 63,
No. 6, 3656–3665, June 2016.

4. Gupta, S., J. Laldingliana, S. Debnath, and P. K. Biswas, “Closed loop control of active
magnetic bearing using PID controller,” 2018 International Conference on Computing, Power and
Communication Technologies (GUCON), 686–690, 2018.

5. Chen, S.-L., S.-Y. Lin, and C.-S. Toh, “Adaptive unbalance compensation for a three-pole active
magnetic bearing system,” IEEE Trans. Ind. Electron, Vol. 67, No. 3, 2097–2106, March 2020.

6. Chen, S.-L. and S.-Y. Lin, “Adaptive imbalance compensation for a three-pole AMB system,” 2016
12th IEEE International Conference on Control and Automation (ICCA), 962–965, 2016.

7. Jin, Z., X. Sun, L. Chen, and Z. Yang, “Robust multi-objective optimization of a 3-pole active
magnetic bearing based on combined curves with climbing algorithm,” IEEE Trans. Ind. Electron,
Vol. 69, No. 6, 5491–5501, June 2022.

8. Jiang, K. J., C. S. Zhu, and L. L. Chen, “Unbalance compensation by recursive seeking unbalance
mass position in active magnetic bearing-rotor system,” IEEE Trans. Ind. Electron, Vol. 62, No. 9,
5655–5664, September 2015.

9. Wang, S. S., H. Q. Zhu, M. Y. Wu, and W. Y. Zhang, “Active disturbance rejection decoupling
control for three-degree-of- freedom six-pole active magnetic bearing based on BP neural network,”
IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1–5, June 2020.

10. Tang, J. Q., K. Wang, and B. Xiang, “Stable control of high-speed rotor suspended by
superconducting magnetic bearings and active magnetic bearings,” IEEE Trans. Ind. Electron,
Vol. 64, No. 4, 3319–3328, April 2017.

11. Peng, C., J. Sun, C. X. Miao, and J. C. Fang, “A novel cross-feedback notch filter for synchronous
vibration suppression of an MSFW with significant gyroscopic effects,” IEEE Trans Ind Electron,
Vol. 64, No. 9, 7181–7190, September 2017.

12. Yu, Y. J., X. D. Sun, and W. Y. Zhang, “Modeling and decoupling control for rotor system in
magnetic levitation wind turbine,” IEEE Access, Vol. 5, 15516–15528, 2017.

13. Wang, D. and H. Sun, “Design of repetitive controller based on linear auto disturbance rejection
control for active magnetic bearing spindles,” 2017 2nd International Conference on Cybernetics,
Robotics and Control (CRC), 106–110, 2017.

14. Ren, G. P., Z. Yu, Y. Wu, S. Chen, X. Li, and H. T. Zhang, “The analysis of similarities and
differences between ADRC and PID controller for AMB system,” 2021 40th Chinese Control
Conference (CCC), 274–279, 2021.

15. Lu, Y. Y. and P. L. Wu, “Design of turret servo system based on optimized model-compensation
active disturbance rejection controller,” 2019 International Conference on Control, Automation
and Information Sciences (ICCAIS), 1–6, 2019.

16. Gao, Z. Q., “Scaling and bandwidth-parameterization based controller tuning,” Proceedings of the
2003 American Control Conference, 4989–4996, 2003.

17. Li, X., et al., “A decoupling synchronous control method of two motors for large optical telescope,”
IEEE Trans. Ind. Electron, Vol. 69, No. 12, 13405–13416, December 2022.


