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Abstract—To further improve fault diagnosis performance, a new hybrid feature selection approach
combined with whale optimization algorithm and extreme learning machine is presented in this study.
Firstly, three filter methods based on different evaluation metrics are employed to select and rank
25 input features derived from gases concentration values, gases ratio, and energy-weighted dissolved
gas analysis. Then, feature fusion approaches are applied to aggregate feature ranks and form a
lower-dimension candidate feature subset. Afterwards, the whale optimization-based extreme learning
machine model is implemented to optimize parameters and select optimal feature subsets. The accuracy
of the model is used to evaluate the fault diagnosis capability of the concerned feature subsets.
Finally, novel subsets are determined as the optimal feature subset to establish a fault diagnosis model.
According to the experimental results, the average accuracy of the proposed approach is better than
that of other conventional methods, which indicates that the optimal feature subset obtained by the
proposed method can significantly promote the fault diagnosis accuracy of the power transformer.

Nomenclature

DGA dissolved gas analysis KGM key gas method

IEC international electrotechnical commission SVM support vector machine

BPNN back propagation neural network ANFIS adaptive neuro fuzzy inference system

ELM extreme learning machine MVR minimum violations ranking

EWDGA energy weighted dissolved gas analysis LED low-energy discharge

PD partial discharge LT thermal fault of low temperature

HED high-energy discharge HT thermal fault of high temperature

MT thermal fault of medium temperature HFS hybrid feature selection method

NC normal condition DM dowdall method

MVS majority voting strategy SFS similar feature subset

WOA-ELM
the whale optimization-based

extreme learning machine mode
OFS optimal feature subset

1. INTRODUCTION

The oil-immersed power transformer is a critical piece of equipment in transmission and substation
networks. When failures or malfunctions occur in power transformers, it may lead to not only the
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interruption of electricity supply, but also the collapse of the entire power grid and other serious
economic loss. As a result, it is critical to diagnose and evaluate power transformer incipient faults
and working condition [1].

Power transformers in operation encounter kinds of stresses, such as electrical, mechanical, thermal,
chemical stress, and aging, which lead to the decomposition and degradation of mineral oil and solid
insulation. The deterioration process will cause defections and incipient faults, such as partial discharge,
arcing, and overheating, and a variety of gases would be consequently generated. The gas types and
concentration values are related closely to the type and severity of faults. Besides, these generated
gases are dissolved in power transformer oil. Hence, internal insulation of the power transformer or
fault condition can be evaluated by measuring types and concentration values of the gases dissolved in
power transformer oil.

In recent years, oil-immersed power transformer fault analysis has successfully utilized the dissolved
gas analysis (DGA) technologies [2]. Conventional DGA methods, including key gas method (KGM) [3],
international electrotechnical commission (IEC) method [4], and improved three ratio method [5],
are intensively used worldwide. However, due to flaws including experience and previous knowledge
gaps, a lack of coding, and strict borderline testing, the accuracy of the aforementioned approaches is
mediocre [6].

With the rise of intelligent algorithms and machine learning theory, various artificial intelligence
approaches, including back propagation neural network (BPNN) [7], support vector machine (SVM) [8],
extreme learning machine (ELM) [9], adaptive neuro fuzzy inference system (ANFIS) [10], etc., have
been well employed in the field of transformer fault diagnosis and made impressive progress. However,
the AI methods aforementioned have pros and cons, leaving significant space for further improving the
accuracy of fault diagnosis.

Previous research on transformer fault diagnosis has found that the input features are typically
composed of specific gas concentration values, gas ratio, or relative percentages recommended by IEC
or IEEE standards. In order to explore the impact of inputs and identify the ideal feature subset,
numerous researches have been carried out since various input qualities lead to varying fault detection
accuracies. To find feature subsets in the feature space made up of 46 DGA feature parameters, Yu
et al. [11] presented a hybrid feature selection approach based on fuzzy information entropy. Mo et
al. [12] used support vector machine and particle swarm optimization to diagnose problems while using
two feature selection approaches to rank features and choose partial features based on their order. To
diagnose defects in power transformers, a method based on optimizing the kernel parameters and weight
parameters of a kernel extreme learning machine was proposed by Li [13].

All fault diagnosis approaches mentioned above in literatures have yielded impressive results.
However, there are two significant issues with existing DGA-based fault diagnosis models that must
be addressed. The absence of a widely acknowledged feature set for feature selection is the first issue.
An oil-immersed transformer fault results in the oil decomposing, which releases fumes. The energy
content of the fault controls how concentrated the different gases that are produced are. But the fault
energy criteria for fault identification are not considered in most fault diagnosis studies. Therefore, it
is expected in this paper to establish a feature set containing energy weighted dissolved gas analysis
(EWDGA), which encompasses the amount of energy expended in the faulting process because different
gases require different amounts of energy to form faults [14]. The prior best feature subset may be biased,
which is the second issue that needs to be resolved. Using feature selection approaches, the distinctness
of each feature is evaluated. As a result, a single feature selection approach might not be able to gather
and use all the data required to accurately and thoroughly assess the discriminative power of features.
Even a mediocre feature subset could be the outcome. As a result, combining multiple feature selection
techniques has produced a more solid and trustworthy outcome [15]. Therefore, in order to remove bias
from feature selection and increase diagnosis effectiveness, we present a hybrid feature selection method
with 2 parts. Relief F, Fisher Score, and Laplacian are employed in the first part to rank features
and combine rank orders into a single rank. In the second part, the whale optimization-based extreme
learning machine (WOA-ELM) model is adopted to select an optimal feature subset and optimize the
classifier’s parameters simultaneously. The optimal feature subset is utilized to build a fault diagnosis
model.

The rest of this article is organized as follows. Section 2 provides a brief overview of the methodology
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employed in this research. Section 3 briefly illustrates the fault diagnosis process. Section 4 implements
numerical experiments to verify the validity of the developed fault diagnosis approach. The conclusion
is drawn in Section 5.

2. METHODOLOGY

2.1. Feature Selection Techniques

In order to make it easier to interpret data, a procedure known as feature selection is applied to select
subsets of features from the original, high-dimension set, which lowers features dimensions, reduces
computational requirement, eliminates the effect of the curse of dimensionality, and improves the
classification and prediction performance [16]. In general, the filter methods have the advantages of
being fast, efficient, scalable, and suitable for ample data space. Additionally, a combination of multi-
filter techniques can complement one another and offer better approximations of the ideal subset than
a single assessment criterion [17]. Multi-criteria filter approaches are suggested and investigated in
this study because they can also enhance performance and offer a more dependable and stable feature
subset [18]. Before creating model for fault diagnostics, three popular filter techniques, including Relief
F [19], Fisher Score [20], and Laplacian [21], are employed to evaluate features importance, rank related
features, and supply lower-dimensional and more informative feature subsets.

2.2. Energy-Weighted Theory

In order to find fault features closely related to fault types, many scholars have studied EWDGA.
EWDGA is a mechanism for balancing the relative energy needed for each gas’s creation with the
concentration values of each individual gas [22]. The ensuing Equation (1) can be used to represent the
energy-weighted concentration values of fault gas:

energy weighted gas concentration = Gas concentration×Weighting factor (1)

To account for the energy content of fault gases, estimation of the relevant weighting factor from
thermodynamic decomposition model of the fault gases is crucial. The relative enthalpies of the fault
gas formation are applied to calculate the weighting factor. Varied fault gases occur with significantly
different enthalpies [23]. The weighting factors, which show the severity of the fault, are generated by
enthalpy normalization of the respective fault gas formation enthalpies. Table 1 displays the relative
enthalpies and enthalpy of formation [24].

Table 1. Standard enthalpies of formation for gaseous molecules.

Gas type
Enthalpy of

formation

Relative enthalpy

(weighting factor)

H2 97.9 2.76

CH4 35.42 1

C2H6 57.8 1.63

C2H4 93.5 2.64

C2H2 267.9 7.56

Note: The relative values refer to the enthalpy of production of other fault gases, using the enthalpy of
production of CH4 as a reference.

2.3. Ranking Aggregation Theory

Different feature selection approaches may lead to various order lists for the identical feature set, so it is
necessary to combine different orders rationally and effectively. Since ranking aggregation methods can
merge the collection of rankings over a set of alternatives in a single order, this issue has attracted much
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attention in various fields. The minimum violations ranking (MVR) method, proposed by Yamamoto, is
a well acknowledged and adopted ranking aggregation method [25]. This method computes aggregated
order list by giving a degree of a coincidence so that the degree of coincidence between the input rankings
is optimal. The brief steps of MVR are described as follows:

a. a constant Cij is predefined as Equation (2)

Cij = (Number of lists where i is ranked before j)− (Number of lists where i is ranked after j) (2)

b. It aims to produce a ranking of the things that reduce this number using the constants matrix
C. The decision variables Xij that decide whether the thing should be ranked above item j are defined
in order to achieve this purpose. Equation is utilized to calculate Xij (3)

xij =

{
1, cij > 0
0, cij ≤ 0

(3)

c. the column sums of Xij are calculated and sorted in ascending order to obtain the final ranking.
The larger the summation is, the more important the feature will be.

2.4. WOA-ELM Theory

ELM is a feed forward neural network with one-layer hidden layer that has linear activation function at
the output. The connection weights between the input layer and hidden layer, as well as the threshold of
the neurons in the hidden layer, are generated at random by the ELM algorithm [26]. Due to its ability
to find the singular global optimal solution with a predetermined number of neurons in the hidden layer,
ELM has the benefits of rapid learning speed and strong generalization performance [27]. The general
optimization process of WOA is shown in Figure 1.
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Figure 1. Flowchart for the WOA.
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The WOA algorithm can be divided into 3 main phases: search and foraging, contraction and
encirclement, spiral update of position. The search foraging phase can be represented by a mathematical
model as

D = |CXrand(t)−X(t)| (4)

X(t+ 1) = Xrand (t)−A |C−Xrand (t)−X(t)| (5)

where Xrand is the individual whale selected from the contemporary whale population; X(t) is the
current location of the individual whale; and A and C are coefficient vectors defined as

A = 2ar1 − a (6)

C = 2r2 (7)

where a is the control parameter; r1 and r2 take values in the range [0, 1] and decrease linearly from 2
to 0 as the number of iterations t increases

a = 2− 2t

Max iter
(8)

where Max iter is the maximum value of the number of iterations set by the optimization. When
|A| ≥ 1, the whale will then perform a random search for food in the current state; otherwise, the
whale will move towards the optimal position. The next process in the whale search is to carry out the
foraging process, which is mainly divided into shrinking envelope and spiral update position [28]. The
encircling process is represented in mathematical model as shown in Equations (9) and (10).

D = |CXbest(t)−X(t)| (9)

X(t+ 1) = Xbest (t)−A |C−Xbest (t)−X(t)| (10)

where Xbest(t) is the location of the best individual in the whale population; A|C −Xbest(t)−X(t)| is
the set bracketing step.

The spiral update position process is represented as

D = |Xbest(t)−X(t)| (11)

X(t+ 1) = D′eb1 cos(2πl) +Xbest (12)

where D′ is the distance between the starting and final positions of the whale movement; b is a
constant; and l is a random number between [−1, 1]. The stage in which the whale algorithm works is
simultaneously influenced by the probability factor. When p ≥ 0.5, the WOA enters the spiral update
position stage; when p < 0.5, the other 2 stages of the WOA are judged using |A|, and the mathematical
model is as follows

X(t+ 1) =

{
Xbest(t)−AD, |A| . . . 1
D′ebl cos(2πl) +Xbest, |A| < 1

(13)

Finally, WOA is applied to optimize network input weights and implied layer thresholds in ELM
to improve the accuracy of the model [29].

3. POWER TRANSFORMER FAULT DIAGNOSIS BASED ON HYBRID FEATURE
SELECTION

To improve the accuracy of the power transformer fault diagnosis, a new fault diagnosis model is
developed utilizing hybrid feature selection and WOA-ELM. The diagnosis process of this method is
described in Figure 2. The details of the proposed method are described as below:

a. Collect and sort out power transformer fault samples from the published literatures and power
transformer factories. Each DGA sample consists of 5 kinds of characteristic gases, such as hydrogen
(H2), methane (CH4), acetylene (C2H6), ethylene (C2H4), and ethane (C2H2).

b. 25 fault features based on gas concentration values, gas ratios, and EWDGA derived from
conventional methods are utilized to build a feature set which is listed in Table 2. Additionally, it is
notable that new created features including t6 to t17 are extracted from the EWDGA.

c. Filter feature selection approaches, including Relief F, Fisher Score, and Laplacian Score, are
implemented to calculate and rank all features on the basis of importance. Afterwards, MVR is employed
to integrate all rank lists and give a more informative and comprehensive rank list.

d. The obtained feature subsets are used as inputs for ELM, and WOA is adopted to optimize
critical parameters, such as connection weights and thresholds.
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Figure 2. Flowchart for the proposed fault diagnosis method.

Table 2. Feature sets established for fault diagnosis.

Number Feature Number Feature

t1 H2 t14 H2/EWTHH

t2 CH4 t15 C2H4/EWTHH

t3 C2H6 t16 C2H2/EWTHH

t4 C2H4 t17 EWTCH

t5 C2H2 t18 CH4/H2

t6 H2/EWTH t19 C2H2/H2

t7 CH4/EWTH t20 C2H4/H2

t8 C2H6/EWTH t21 C2H6/H2

t9 C2H4/EWTH t22 H2/CH4

t10 C2H2/EWTH t23 C2H4/CH4

t11 CH4/EWTHD t24 C2H6/CH4

t12 C2H6/EWTHD t25 C2H2/CH4

t13 C2H2/EWTHD

where, EWTHD=CH4+2.64C2H4+7.56C2H2; EWTHH=2.76H2+2.64C2H4+7.56C2H2;
EWTCH= CH4+1.63C2H6+2.64C2H4+7.56C2H2;

EWTH=2.76H2+CH4+1.63C2H6+2.64C2H4+7.56C2H2

4. RESULTS AND DISCUSSION

4.1. Data Preprocessing

To create an accurate and reliable fault diagnosis model and assess its effectiveness, DGA samples from
local power transformer plants and published literature are used. Dissolved gas features are classified
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into three types: gas concentration values, gas ratio, and energy weighted DGA. A thorough feature set
is developed and displayed in Table 2 in accordance with accepted methods and published references.

Transformer faults are categorized into seven categories in this paper: partial discharge (PD), low-
energy discharge (LED), high-energy discharge (HED), thermal fault of low temperature (LT), thermal
fault of medium temperature (MT), thermal fault of high temperature (HT) and normal condition (NC).
The distribution of all DGA samples used in this paper is shown in Table 3.

Table 3. Sample distributions for each fault type.

Fault type NC LT MT HT PD LED HED Total

Samples

Form

Literatures

21 - - 20 15 14 18 88 [30]

3 8 14 15 8 16 46 110 [31]

- 4 4 4 4 4 - 20 [32]

- 10 10 10 - - 1 31 [33]

- 4 4 4 4 4 - 20 [34]

9 - - - 2 3 - 14 [35]

6 4 5 2 - 1 2 20 [36]

- 2 - - 12 - - 14 [37]

DGA case 61 68 63 45 55 58 33 383

Total 100 100 100 100 100 100 100 700

4.2. Hybrid Feature Selection Analysis

To obtain desirable fault diagnosis performance with an informative, distinguishable and lower
dimensional feature subset, multi-criteria filter feature selection techniques are adopted in this paper.
Features derived from dissolved gases and weighted energy DGA, which is displayed in Table 2, are
firstly normalized in order to avoid data singularity and improve fault diagnosis performance with
Equation (14)

xnik =
xik − xk min

xik max − xk min
(14)

where xik and xnik are the value of the ith sample for the kth feature before and after normalization;
xkmax and xkmin are the maximum and minimum values of the kth feature.

Relief F, Fisher Score, and Laplacian techniques are used to sort all features in ascending order
according to corresponding importance. The obtained rank lists are presented in Figure 3 and Appendix
Table A1. It can be seen that different feature selection approaches supply different rank orders. The
discrepant results are led by different evaluation criteria for each feature selection algorithm. To be
specific, the first five features and the last few features represent the gas concentration values and
conventional gas ratios, which have relatively lower ranked order than other features. Features with
numbers between 6 and 16, which stand for weighted energy DGA, have relatively better sorted orders
than that of other features. The obtained results suggest that it is necessary and important to employ
multi-criteria feature selection and need to take EWDGA into account.

Afterwards, a hybrid feature selection method (HFS), which aggregates all sorted order supplied
by Relief F, Fisher Score, and Laplacian method with MVR approach, is proposed to give a more
distinguishable and informative feature set. The process of MVR approach to integrate all rank lists is
described as follows:

Firstly, the consistency matrix C25×25 and decision matrix X25×25 are obtained from Equations (2)
and (3). Then, the column sums of X are calculated and sorted in ascending order to obtain the
ranking, and the details of this process can be found in Appendix A. Next, the final aggregated results
are presented in Figure 4. The larger the summation is, the more important the feature will be.
On the contrary, the smaller the rank order is, the more significant the feature will be. So, it can
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Figure 3. Sorted order of all features under
different filter feature selection methods.

Figure 4. Summation result and sorted order by
MVR method.

be inferred that the first four significant features obtained by MVR approach are C2H2/EWTHD,
C2H4/EWTHH, C2H4/EWTH, and C2H6/EWTHD. In other words, these selected features are related
to energy-weighted theory. Besides, feature numbers between t6 and t16, which represents the weighted
energy DGA, have better sorted order than that of other features. In summary, the obtained results
verify the validation and effectiveness of features based on energy weighted theory.

To demonstrate the superiority of MVR to aggregate feature lists, two popular feature aggregating
approaches, majority voting strategy (MVS) [38] and Dowdall method (DM) [39], are employed to fuse
and provide the sorted orders. When the MVS method is employed for combining rank orders, if the
ranking of the feature is in the top 50%, it will be treated as 1 vote; otherwise, it is recorded as 0
votes. In this work, features with a voting frequency greater than one are retained and used to form the
optimal subset; otherwise, they are discarded. When rank orders are combined using the DM method,
each feature has a score in each ranking list equal to the reciprocal of the ranking. The scores of each
feature in each list are added together to get a total score, which is used as the basis for ranking. The
results obtained by the MVS and DM are shown in the Appendix Table A2.

It can be seen from Table 4 that the three aggregation approaches mentioned above supply different
optimal feature subset and diagnosis accuracy. The diagnosis model based on MVS offers the lowest
diagnosis accuracy with the largest feature size, while the employed MVR methods give the best
diagnosis accuracy up to 98.57% with smallest feature size. However, the DM approach needs 10
features, which is inferior to models based on MVR. All in all, fault diagnosis performance based on
MVR approach is superior to models based on other aggregation approaches, which can provide better
fault diagnosis accuracy with smaller feature size.

Table 4. Comparison of diagnosis results under different ranking aggregation methods.

Aggregation method Feature size Accuracy

MVS 11 97.85%

DM 10 98.57%

Proposed 5 98.57%
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4.3. Analysis of Fault Diagnosis Results Based on WOA-ELM

To confirm the accuracy and superiority of the proposed approach, fault diagnosis models based on
different inputs are established in this paper. WOA algorithm is used to optimize crucial parameters of
ELM. The feature selection and fault diagnosis are carried out in a MATLAB environment on a DELL
server. Parameters of ELM and WOA for all experiments are set as follows: the neuro number of hidden
layers is 40. The population size and iteration times are 20 and 200. The diagnosis performance under
different feature selection techniques is shown as Figure 5.

Figure 5. Fault diagnosis accuracy with different feature selection techniques.

According to the obtained results, with the increase of feature size, fault diagnosis accuracy gets
improved. When only one feature is used to build a fault diagnosis model, a poor diagnosis accuracy
around 50% is obtained. When the first five features are supplied by HFS approach, the WOA-ELM
gets the best accuracy 98.57%. However, the feature size for Relief F, Fisher Score, and Laplacian
to obtain the best diagnosis accuracy is 8, 10, and 6, respectively (except that the best accuracy of
Relief F is 98.57%, and others are 97.85%). The results imply that fault diagnosis model based on
HFS has simpler and better diagnosis performance than that of other approaches, which verify the
effectiveness and validity of the proposed methods. In addition, the optimal feature subset for the best
diagnosis accuracy is listed in Table 5 (It is worth noting that although both t6 and t14 are ranked
5th, the accuracy obtained after experimental validation is higher when t6 is used.). It is shown that
the optimal feature subset is based on energy weighted theory, which suggests again that it is necessary
and reasonable to take those features into account. Fitness development curve of WOA typical curves

Table 5. The obtained optimal feature subset.

Number Feature Number Feature

1 C2H2/EWTHD 4 C2H6/EWTHD

2 C2H4/EWTHH 5 H2/EWTH

3 C2H4/EWTH

where, EWTHD=CH4+2.64C2H4+7.56C2H2; EWTHH=2.76H2+2.64C2H4+7.56C2H2;
EWTH=2.76H2+CH4+1.63C2H6+2.64C2H4+7.56C2H2
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Figure 6. Fitness development curve of WOA
(accuracy = 98.57%).

Figure 7. Fault diagnosis results for testing
samples based on OFS-WOA-ELM.

of average and best fitness of WOA is described in Figure 6.
In addition, when more features larger than the optimal size are used to established models, the fault

diagnosis performance will remain unchanged or get worse. The main reason for decreased accuracy is
that the extra features are highly irrelative or redundant to fault diagnosis. Moreover, the unfavorable
effects of these extra features include high-dimension inputs, complicated model structure, and low
computational efficiency. Therefore, it is necessary to select the optimal feature subset to diagnose the
fault of power transformer.

4.4. Comparisons of Fault Diagnosis Results

To further study and confirm fault diagnosis performance of the proposed approach, four popular
conventional methods, including IEC method, improved three ratio method, BP and ELM are used
to diagnose faults. Moreover, a similar feature subset (SFS) not taking energy weighted theory into
account, shown as Table 6, is proposed to demonstrate the superiority and necessity of introducing
energy weighted theory.

Table 6. Similar optimal feature subset for fault diagnosis.

Number Feature Number Feature

1 C2H2/THD 4 C2H6/THD

2 C2H4/THH 5 H2/TH

3 C2H4/TH

where, THD=CH4+C2H4+C2H2; THH=H2+C2H4+C2H2;
TH=H2+CH4+C2H6+C2H4+C2H2

The optimal feature subset and similar feature subset are used as input to establish the fault
diagnosis model. For all models, 20% of collected samples are randomly selected and used to test all
models’ fault diagnosis performance. In this comparison, default parameters are applied in BP, while
WOA is applied to tune the critical parameters of ELM. It is worth noting that all experiments are
implemented 50 times, and average accuracy is adopted to evaluate diagnosis performance. A specific
testing result is shown in Figure 7. The obtained results are described in Table 7.
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Table 7. Comparison of diagnosis performance with various methods.

Method Accuracy

IEC 51.43%± 0%

Improved Three Ratio 83.57%± 0%

BPNN 83.91%± 4.78%

ELM 92.34%± 1.36%

SFS-WOA-ELM 95.57%± 0.43%

OFS-WOA-ELM 97.27%± 0.57%

It can be shown from Table 7 that the traditional methods, such as IEC, improved three ratio
method, BPNN, and ELM, have mediocre accuracy which is lower than that of ELM-based models. Fault
diagnosis models based on ELM have higher accuracy than all conventional approaches, while models
established with a similar feature subset, the SFS-WOA-ELM model provides impressive diagnosis
average accuracy up to 95.57 ± 0.43%. However, fault diagnosis accuracy is still lower than that of
models based on optimal feature subset. The proposed approach comes up with the best average
accuracy up to 97.27±0.57%, which indicates that the optimal feature subset (OFS) based on EWDGA
and MVR could supply more stable and accurate diagnostic performance. The experimental results
indicate the validation and effectiveness of the proposed approach.

4.5. Validation of Fault Diagnosis Performance

To verify the generalization and robustness of the suggested fault detection approach based on selected
optimized feature subset and WOA-ELM, a public dataset IEEE Dataport [40], containing 185 DGA
samples, is employed. The obtained result is shown in Table 8, and the rest is in accordance with
Section 4.4.

Table 8. Comparison of diagnosis performance with various methods.

Method Accuracy

IEC 51.1%± 0%

Improved Three Ratio 56.59%± 0%

BP 62.9%± 4.5%

ELM 67.9%± 1.47%

SFS-WOA-ELM 76.4%± 1.45%

OFS-WOA-ELM 77.2± 1.52%

It can be seen from Table 8 that the models based on optimal feature subset fault diagnosis accuracy
comes up with the best accuracy up to 77.2± 1.52%, which is better than that of other five approaches,
and the results confirm again the feasibility and generalization ability of the optimal feature subset
based on EWDGA and MVR.

5. CONCLUSION

In order to choose the best input feature subset and improve the parameters of the fault diagnostic
model, a new hybrid feature selection approach that combines the whale optimization algorithm and
extreme learning machine is implemented in this research. The MVR technique creates a more thorough
and instructive feature set by aggregating Relief F, Fisher Score, and Laplacian Score feature selection
methods. The comparison findings show that feature subsets obtained by MVR can provide results that
are more accurate than those generated by MVS or DM aggregating approaches. The fused feature
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selection method in this paper can take into account the rationality of each feature selection algorithm
and the differences in importance of each fault feature, providing a more reasonable ranking for the
selection subsystem and creating a basis for subsequent screening of the preferred fault features

The final selected optimal feature subsets C2H2/EWTHD, C2H4/EWTHH, C2H4/EWTH
C2H6/EWTHD, and H2/EWTH stand for weighted energy DGA. In light of the comparison of feature
subsets and diagnosis outcomes, the optimum fault diagnosis performance, with an accuracy of up to
97.27±0.57%, can be provided by the chosen optimal feature subsets. Testing findings demonstrate the
universality and robustness of the chosen optimal feature subsets, confirming the value and superiority
of the optimal feature subset and the suggested methodology. The energy-weighted processing of the
dissolved gas components in the oil effectively characterizes the information contained in the internal
fault state of the transformer, significantly improving the sensitivity and accuracy of the diagnosis of
transformer faults. Finally, through the validation of the IEEE Dataport database, it is demonstrated
that the new fault characteristics in this paper can achieve higher transformer fault diagnosis accuracy
than the traditional numerical signs and ratio signs, and have certain generalization applicability and
extension adaptability.

In the future work, more features derived from dissolved gas analysis should be investigated.
Besides, other new optimization algorithms, wrapper and embed feature selection techniques, and
classifiers need to be applied to study the diagnosis performance from various aspects. In addition,
most of the current work on transformer fault feature selection is focused on the data-driven perspective.
Some attempts should be made to use the micro-molecular perspective to explain the superiority of the
preferred fault features and thus gain a deeper understanding of the nature of transformer faults.
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APPENDIX A.

Table A1 displays the supplement feature ranks that three filter algorithms produced. It is clear that
feature ranks are influenced by feature selection algorithms and data processing techniques.

Table A1. Feature ranks obtained by different filter algorithms.

Feature
Obtained orders

Feature
Obtained orders

Relief F
Fisher
Score

Laplacian Relief F
Fisher
Score

Laplacian

t1 18 21 13 t14 12 7 3
t2 17 20 18 t15 9 4 2
t3 14 18 17 t16 13 2 7
t4 19 22 15 t17 21 25 24
t5 23 24 25 t18 11 17 22
t6 10 6 6 t19 24 14 14
t7 5 10 10 t20 16 16 16
t8 1 11 11 t21 7 19 20
t9 4 5 5 t22 22 12 19
t10 15 3 8 t23 20 13 12
t11 6 9 9 t24 8 23 23
t12 3 8 4 t25 25 15 21
t13 2 1 1
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The results obtained by the MVS and DM are shown in Table A2.

Table A2. The aggregated results obtained by the MVS and DM.

Feature MVS DM Feature MVS DM

t1 0 0.180 t14 3 0.560

t2 0 0.164 t15 3 0.861

t3 0 0.186 t16 2 0.720

t4 0 0.165 t17 0 0.129

t5 0 0.125 t18 1 0.195

t6 3 0.433 t19 0 0.185

t7 3 0.400 t20 0 0.188

t8 3 1.182 t21 1 0.245

t9 3 0.650 t22 1 0.181

t10 2 0.525 t23 1 0.210

t11 3 0.389 t24 1 0.212

t12 3 0.708 t25 0 0.154

t13 3 2.500

The consistency matrix C25×25 and decision matrix X25×25 are obtained from Equations (2) and
(3), and the results are shown at the end of Appendix A.

C =



0 1 1 −3 −3
−1 0 3 −1 −3
−1 −3 0 −1 −3
3 1 1 0 −3
3 3 3 3 0
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −1 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
3 3 3 3 −1
−1 −1 −1 −1 −3
1 −1 −1 −1 −1
−1 −3 −1 −1 −3
−1 −1 1 −1 −3
1 1 1 1 −3
−1 −1 −1 −1 −3
1 1 1 1 −3
1 1 1 1 −1

3 3 3 3 3
3 3 3 3 3
3 3 3 3 1
3 3 3 3 3
3 3 3 3 3
0 −1 −1 3 −1
1 0 −1 3 1
1 1 0 1 1
−3 −3 −1 0 −1
1 −1 −1 1 0
1 −1 −1 3 1
−1 −3 −1 −1 −1
−3 −3 −1 −3 −3
1 −1 −1 1 −1
−3 −1 −1 −1 −1
1 −1 −1 1 −3
3 3 3 3 3
3 3 3 3 1
3 3 3 3 3
3 3 3 3 3
1 3 3 3 1
3 3 3 3 3
3 3 3 3 3
1 3 3 3 1
3 3 3 3 3

3 3 3 3 3
3 3 3 3 3
3 3 3 3 3
3 3 3 3 3
3 3 3 3 3
−1 1 3 −1 3
1 3 3 1 1
1 1 1 1 1
−3 1 3 −1 1
−1 1 3 1 1
0 3 3 1 1
−3 0 3 1 1
−3 −3 0 −3 −3
−1 −1 3 0 3
−1 −1 3 −3 0
−1 1 3 1 1
3 3 3 3 3
3 3 3 1 3
3 3 3 3 3
3 3 3 3 3
3 3 3 1 1
3 3 3 3 3
3 3 3 3 3
3 3 3 1 1
3 3 3 3 3
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3 −3 1 −1 1
3 −3 1 1 3
3 −3 1 1 1
3 −3 1 1 1
3 1 3 1 3
−1 −3 −3 −3 −3
1 −3 −3 −3 −3
1 −3 −3 −3 −3
−1 −3 −3 −3 −3
3 −3 −1 −3 −3
1 −3 −3 −3 −3
−1 −3 −3 −3 −3
−3 −3 −3 −3 −3
−1 −3 −1 −3 −3
−1 −3 −3 −3 −3
0 −3 −1 −3 −3
3 0 3 1 3
1 −3 0 1 1
3 −1 −1 0 −1
3 −3 −1 1 0
1 −3 −1 1 1
3 −1 −1 −1 1
3 −3 −1 −3 −1
1 −3 1 1 1
3 −1 −1 3 1

1 −1 1 −1 −1
1 −1 1 −1 −1
−1 −1 1 −1 −1
1 −1 1 −1 −1
3 3 3 3 1
−1 −3 −3 −1 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−1 −3 −3 −1 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−3 −3 −3 −3 −3
−1 −3 −3 −1 −3
−1 −3 −3 −1 −3
−1 −3 −3 −1 −3
3 1 3 3 1
1 1 1 −1 1
−1 1 3 −1 −3
−1 −1 1 −1 −1
0 1 1 −3 −1
−1 0 1 −1 −3
−1 −1 0 −1 −3
3 1 1 0 1
1 3 3 −1 0



X =



0 1 1 0 0
0 0 1 0 0
0 0 0 0 0
1 1 1 0 0
1 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
1 1 1 1 0
0 0 0 0 0
1 1 1 1 0
1 1 1 1 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 1 0
1 0 0 1 1
1 1 0 1 1
0 0 0 0 0
1 0 0 1 0
1 0 0 1 1
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
1 0 0 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 0 1
1 1 1 1 1
1 1 1 1 1
0 1 1 0 1
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 1 0 1
0 0 1 0 0
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 0 1 0 1
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 1 1 1
1 0 0 1 1
1 0 0 0 0
1 0 0 1 0
1 0 0 1 1
1 0 0 0 1
1 0 0 0 0
1 0 1 1 1
1 0 0 1 1

1 0 1 0 0
1 0 1 0 0
0 0 1 0 0
1 0 1 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
1 1 1 0 1
0 1 1 0 0
0 0 1 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 0 0
1 1 1 0 1
1 1 1 0 0
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