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Electromagnetic Scattering from 2-D Conducting Objects
of Arbitrary Smooth Shape: Complete Mathematical Formulation

of the Method of Auxiliary Sources for E-Polarized Case

Vasil Tabatadze1, Kamil Karaçuha2, *, and Revaz Zaridze3

Abstract—The study investigates the mathematical background of the method of auxiliary sources
(MAS) employed in electromagnetic diffraction. Here, the mathematical formulation is developed
for E-polarized plane wave diffraction by perfectly conducting two-dimensional objects of arbitrary
smooth shape, and the comparison with an analytical and a numerical approach is provided in the
numerical part. The results reveal a quite high accuracy among all methods. The importance of the
study is to develop the complete mathematical background of MAS for two-dimensional TM -polarized
electromagnetic scattering problems by conducting objects. Different from the method of moments
(MoM) and other integral equation approaches in electromagnetic scattering problems, here the integral
equation resulting from the boundary condition on the scatterer is solved by expanding the current
density as orthonormalized Hankel’s function with the argument of the distance between the scatterer
actual and auxiliary surfaces. The approach can be summarized by that first the sources are shifted
inside the scatterer, and second, the boundary condition is employed as the total tangential electric field
is zero on the surface and inside the object. Then, such expansion leads to eliminating the singularity
problems by shifting the sources from the actual surface.

1. INTRODUCTION

Electromagnetic scattering and the behavior of electromagnetic waves in the vicinity of obstacles have
always been of crucial importance in science and engineering [1]. Since electromagnetic waves are
employed for noninvasive detection, radar applications, antenna design, and characterization of materials
and surfaces with different electromagnetic or periodic properties, numerous analytical, numerical,
or analytical-numerical approaches have been developed [2–6]. Therefore, apart from the full-wave
simulations, new approximate and well-defined methodologies have been proposed in the literature. One
of these numerical methods is the method of auxiliary sources (MAS) which is based on the solution
of the integral equations resulting from the boundary condition satisfaction on the scatterer where the
currents are induced [7, 8]. The singularity problem in such integral equations is handled by shifting
the currents and locating them on an auxiliary surface instead of a real surface. This is one of the main
advantages of the MAS compared to other methods regarding integral equation solutions. However, still,
the boundary condition is satisfied on the actual surface of the scatterer. MAS has a positive dominance
which is faster computation and requires less computation power by eliminating the singularity problem
when the other numerical methodologies such as MoM and FEM are considered [9, 10]. Therefore, for
electrically large problems, it is very convenient to employ MAS.
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In this study, the complete mathematical theory of MAS is provided for the first time. The
present article investigates the E-polarized electromagnetic diffraction by arbitrary smooth-shaped
perfect electric conduction surfaces. The complete and rigorous mathematical theory was developed
by Georgian Mathematicians Kupradze for general cases [11, 12]. After 1967, Kupradze suggested that
the theory can be realized when there would be enough computing resources in the future. Later, the
method is simplified and approximated by Zaridze et al. which requires less calculation and provides
satisfactory outcomes [13–16]. Now, it is the first time to employ Kupradze’s method in its initial
form. Here, the particular solutions to diffraction problems such as several two-dimensional cylindrical
geometries are provided, and the results are compared with analytical outcomes and MoM. One of
the main aims of the study is to complete and fulfill the mathematical background of the MAS for
electrodynamics since it was not clear to theoretical researchers why this method works and provides
accurate results because the people working on MAS have validated their method by checking and
comparing the boundary and radiation conditions in the given problem. The contribution of the study
is first to reveal the validity of shifting the current densities through the auxiliary surface instead of
the actual scatter surface and then, second, apart from the MoM, to solve the integral equation by
expressing the current density with the orthonormalized Hankel’s function as the basis.

2. FORMULATION OF THE PROBLEM

In this section, the formulation of the problem and mathematical statements are provided. To solve
diffraction problems, the field components need to be expressed in mathematical form first. Then, the
boundary conditions on the scatterer should be satisfied. In Figure 1, the geometry of the problem
is given. Here, S stands for the actual surface of the scatterer, and Saux corresponds to the auxiliary
surface where the current density induced on the actual surface is shifted d amount to eliminate the
singularity problem.
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Figure 1. The geometry of the problem.

As it is known from Maxwell’s equation, it is possible to express the scattered electric field in terms
of Green’s function convolved with the current density on the scatterer in the case of TM polarization
as given in (1). It should be noted that the time dependency is e−iωt and omitted throughout the study.

Esc(x̃) =
ωµ

4

∫
y

J (y)H
(0)
1 (kρ)dy (1)

Here, ω is the angular frequency, µ the permeability, k the wave number, H
(0)
1 the Hankel function of

the first kind and zeroth order, and J(y) the electric current density on the scatter. Besides, ρ = |x̃−y|,
x̃ and y are the observation and source location vectors in two-dimensional space, respectively.

The total tangential components of the electric field should vanish on the conducting scatterer
surface as given below:

Esc (x̃) + Einc (x̃)|onSaux
= 0. (2)



Progress In Electromagnetics Research M, Vol. 114, 2022 119

Then, the following integral equation is obtained:

ωµ

4

∫
y

J (y)H
(0)
1 (k |x̃− y|)dy = −Einc (x̃) (3)

To solve this integral equation, there are various proposed methods in the literature. To solve (3) with
Kupradze’s approach, several definitions should be given here. As the first and very crucial step, a set
of orthogonal functions is introduced as [11, 12]:

ωk (y) = H
(0)
1 (kρk) (4)

Here, ρk = |xk − y|, xk is the variable position vector on the auxiliary surface, and it should be
highlighted that the y vector denotes the scatterer surface. These functions (ωk(y)) represent the
linearly independent set of functions on the S contour. However, they are not orthonormal. To
express the current density as a Fourier series, we need the orthonormal set of functions. Below the
orthonormalization procedure is given.

Before starting the orthonormalization procedure, the norm and the dot product between the
functions are defined as follows:

∥X∥ =

∫
S

|X (y)|2 dS

 1
2

(5)

(x1, x2) =

∫
S

x1 (y) x̄2 (y) dS (6)

Here X(y), x1(y), and x2(y) are functions in L2 space. The bar on the function denotes the complex
conjugation. After that, the orthonormalization process algorithm is given below as (7) and (8) for
ωk(y) [12].

φ̄1 (y) =
ω̄1 (y)

∥ω̄1 (y)∥
(7)

φ̄i (y) =

ω̄i (y)−
i−1∑
k=1

(ω̄i, φ̄k) φ̄k (y)∥∥∥∥∥ω̄i (y)−
i−1∑
k=1

(ω̄i, φ̄k) φ̄k (y)

∥∥∥∥∥
(8)

Then, this orthonormal system can be expanded into orthogonal ωk(y) system as (9) and (10) [11]:

φi (y) =

i∑
k=1

Akiωk (y) (9)

φ̄i (y) =

i∑
k=1

Ākiω̄k (y) (10)

Here Aki and Āki are constant weighting coefficients. To find them, the scatterer surface is discretized,
and (9) is employed for different values of yi. Then, the system of linear algebraic equations (SLAE) is
obtained. By inversion, the corresponding unknowns can be obtained as below:

Aki = [Cki]
−1Di (11)

Here, [Cki]
−1 is the matrix inversion and:

Cki = ωk (yi) (12)

Di = φi (yi) (13)
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After inversion, the constant weighting coefficients Aki are obtained. Then, the current density on
the scatterer surface is expressed as a Fourier series of the orthonormal basis functions φ̄k(y) as given
in (14) [11, 12]:

J (y) =

n∑
k=1

akφ̄k (y) (14)

where ak are unknown Fourier coefficients.
Here, unknown Fourier coefficients can be found by the Fourier approach by employing (6) as

follows:

ak = (J, φ̄k) =

∫
S

J (y)φk (y) dS (15)

Here S stands for the scatterer surface. However, it should be noted that J(y) is not known. Therefore,
we need to propose another procedure such that the total electric field should vanish inside and the
surface of the scatterer. Then, the following equation is obtained:

ωµ

4

∫
y

J (y)H
(0)
1 (k |xk − y|)dy = −Einc (xk) (16)

Finally, (16) can be solved by the proposed approach:
First, both sides of the equation are multiplied by Aki and summed as below:∫

y

J (y)

i∑
k=1

Akiωk (y)dy = − 4

ωµ

i∑
k=1

AkiEinc (xk) (17)

where ωk(y) = H
(0)
1 (kρk).

Then, summation
i∑

k=1

Akiωk(y) at the left side of the corresponding equation is replaced by φi(y),

and (18) is obtained (Please look at (9)).∫
y

J (y)φi (y)dy = − 4

ωµ

i∑
k=1

AkiEinc (xk) (18)

Secondly, by the definition given above, the left side of the equation becomes the Fourier coefficient
and gives the ability to find these unknown Fourier coefficients.

ak =

∫
y

J (y)φi (y)dy = − 4

ωµ

i∑
k=1

AkiEinc (xk) (19)

As a final expression, the scattered field is defined as below:

Esc (x) =
ωµ

4

∫
y

H
(0)
1 (kρ)

n∑
k=1

akφ̄k (y)dy (20)

The proposed approach has various advantages such as singularity elimination, approximate
solution of the integral equation due to truncation and flexibility to be employed in numerous two-
dimensional problems. The most important part of the theory is that the basis for the current densities
is chosen as orthonormalized Hankel’s function with the argument of kρk = k|xk − y|, and xk is the
variable position vector on the auxiliary surface. Lastly, it should be highlighted that the y vector
denotes the scatterer surface.
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3. NUMERICAL RESULTS

In this part, four different conducting objects are investigated. These are circular, elliptical, complex-
shaped, and Cassini Oval cylinders. It should be highlighted that the study aims to fulfill the fully
explained mathematical background of the MAS instead of the numerical results. However, it is crucial
to compare the results with other methods such as analytical or numerical methods. In Figure 2, the
normalized current density on a circular cylinder obtained by three different approaches is provided.
The radius of the cylinder is a. The incidence angle (φ) is defined from x-axis. As seen from the figure,
the three methods give almost the same results. The deviation is less than 0.5%.

In Figure 3, the near-electric fields for two methodologies are provided. Again the angle of incidence
is 180◦ from the x-axis. The results are coinciding. The boundary condition for the total tangential

Figure 2. The normalized current distribution on the circular cylinder with respect to angle obtained
by analytical, moments, and auxiliary sources methodologies [17].

(a) (b)

Figure 3. The electric field distribution for circular cylinder located at origin (a) MAS and (b) MoM.
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electric field for both methods is satisfied, and the same shadow region is observed for the circular
cylinders.

In Figure 4, normalized bi-static radar cross-section of the elliptical cylinder for E-polarized (TM -
polarized case) case is provided for different wavelength values via various methods (MoM and MAS).
Here, a and b correspond to lengths of the semi-major axis (x-axis) and semi-minor axis (y-axis),
respectively. Only a very minor deviation is observed for high frequency which is less than 2%.

Figure 4. Bi-static radar cross-section (σTM
dB ) for different wavelengths [18].

In Figure 5, the near electric field distribution of the elliptical cylinder is provided by MoM and
MAS. They completely coincide with the given parameters.

(a) (b)

Figure 5. The electric field distribution for elliptical cylinder located at origin (a) MAS and (b) MoM.

In Figure 6, both the geometry and the diffraction by this complex geometry are provided. The
dimensions of the figure are given in Table 1. For this geometry, k is chosen as 8. The boundary
condition is satisfied on the surface also for higher values of wavenumber. As expected, the shadow
region is observed behind the object.

In Figure 7, the Cassini Oval cylinder is investigated by MAS and MoM [19]. As it is seen, the
results are coinciding. As expected, there exists a shadow region behind the object concerning the angle
of incidence.
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(a) (b)

Figure 6. The geometry of the complex geometry (a) and the electric field distribution for the geometry.

Table 1. Parameters and their values for Figure 6.

Parameter Value (m) Parameter Value (m)

a 1.00 r1 0.10

b 0.35 r2 0.05

c 0.80 r3 0.20

(a) (b)

Figure 7. The Cassini shaped cylinder. (a) MAS. (b) MoM.

4. CONCLUSION

The study investigates the mathematical background of MAS employed in electromagnetic diffraction.
Here, the mathematical formulation is developed for TM polarized plane wave diffraction by perfectly
conducting two-dimensional objects, and the comparison with an analytical and a numerical approach
is provided in the numerical part. It should be highlighted that the study aims to fulfill the fully
explained mathematical background of the MAS by expressing each detail such as the expansion of
the current densities, orthonormalization procedure, finding the unknown coefficients during expansion,
and boundary condition satisfaction. Furthermore, several well-known perfect conducting geometries
for the diffraction problems are considered to compare the outcomes. The current density, bi-static
radar cross-section, and near electric field distribution of several geometries such as circular, elliptical,



124 Tabatadze, Karaçuha, and Zaridze

and complex geometries are provided in the numerical part. The main advantage of the method is
to eliminate the singularity problems arising from the solution of the integral equation obtained while
satisfying the boundary condition by shifting the current densities induced on the scatterer through
the auxiliary surface. It is observed that the distance between the auxiliary sources and the actual
surface (d) has crucial importance on the speed of the convergence and accuracy. The deviation from
the analytical and moments methods is less than 3% for provided cases (current density, bi-static radar
cross-section, and near electric field distribution) for all cases provided in the study. In future studies,
TE polarization and 3D cases will be investigated.
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