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Analyses of Absorbing Boundary Conditions in 2D FDTD
Simulations for Electromagnetic Wave Propagation

in Anisotropic Ionosphere

Md Yusoff Siti Harwani1, * and Tiem Leong Yoon2

Abstract—Implementing appropriate absorbing boundary conditions (ABCs) in finite-difference time-
domain (FDTD) simulations is essential. Optimal ABCs can help minimize or even eliminate spurious
reflections in simulations involving waves impinging on the edges of simulation grid boundaries. In
this work, 2D FDTD code facilitating ABCs were implemented and incorporated under plug-and-play
conditions. Using this FDTD code, two different types of ABCs were evaluated: a differential ABC
and a perfectly matched layer (PML) for the anisotropic medium of the ionosphere. Furthermore,
numerical experiments were conducted to examine the efficiencies of both these ABCs; a total of
n = 2000 iterations were adopted under grid conditions of 120 in the y-direction, 600 in the x-direction
of spatial step, and ∆x = 1000 km. Additionally, n was set as a time-equivalent variable in these
simulations. For the interval ∆x = 1km between any two adjacent grid points, active conditions for
the grid simulation were determined within 120 km in the y-direction (vertical) and 600 km in the x-
direction (horizontal). Furthermore, numerical experiments revealed that the PML platform yielded
excellent efficiency compared to the differential ABC.

1. INTRODUCTION

When finite-difference time-domain (FDTD) numerical analyses are employed for time-stepping
Maxwell’s equations, employing absorbing boundary conditions (ABCs) is crucial, particularly to
account for the absorption of electromagnetic waves as they propagate through media. Prior to the
introduction of the perfectly matched layer (PML), ABCs were typically implemented using analytical
schemes [1, 2] or alternative methods such as differential ABC approach [3].

However, the PML scheme is preferred over these conventional methods because it is extensive and
efficient for homogeneous, inhomogeneous, linear, nonlinear, isotropic, and anisotropic domains. The
most popular PML method is the approach proposed by Berenger, which entails splitting electric and
magnetic fields [4]. Notably, this technique minimizes the reflections from a boundary by imposing
fictitious conductivities in both these fields. In further investigations based on the work conducted by
Berenger, the unsplit field of a PML was introduced to anisotropic media with complex permittivities
and permeabilities. The numerical stability of this method is achieved by fulfilling the requirement of
Courant stability factor. Berenger’s work has also been examined by several other researchers [5–8].
In addition, numerical stability at high frequency can also be achieved by applying semi-analytical
approach in derivation process, as shown in [9] and [10].

For a linear, isotropic, non-dispersive medium with rectangular coordinates and space-varying
characteristics, developing a 2D FDTD numerical code is not complicated. However, for anisotropic
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(dispersive) media such as ionosphere, the FDTD numerical algorithm required for robust outputs
might rely on nontrivial conditions. This is primarily attributed to the inherent numerical complexity
of Maxwell’s equations for such media [11–15]. There is sphere waves scattering method applicable to
a problems such as ionosphere, known as Watson Transformation, used to compute electric field of the
Earth, mentioning the complexity of the computation for the spherical using extreme low frequency
(ELF) waves [16, 17]. Furthermore, the variations in the physical properties of the ionosphere as a
function of altitude also contribute to this numerical complexity. To address the complexity issue,
this work introduces a 2D FDTD algorithm for ABCs, with the aim of modeling the propagation of
electromagnetic (EM) waves under anisotropic and inhomogeneous ionospheric conditions. Both types
of ABCs are investigated for their effectiveness by executing a numerical simulation and then examining
the relative error acquired in each case.

2. METHODOLOGY

Here, the FDTD algorithm was implemented under inhomogeneous and anisotropic conditions for the
time-stepping of a 2D spherical EM wave in a rectangular coordinate system. The algorithm used was
adapted from the work of Chen et al. [18] and expressed as a functional example for modeling a similar
system using FDTD simulations. This is also termed as J-E convolution. This algorithm was selected
based on the results obtained via tests conducted using a trial-and-error approach and to other previous
numerical schemes for implementing FDTD simulations under anisotropic (dispersive) conditions. A
dispersive medium is either field-, direction-, or frequency-dependent based on its electric and magnetic
properties. Furthermore, the adoption of the J-E convolution scheme was tested thoroughly, and a
reliable output was obtained after extensive pretesting [19]. As a result, Maxwell’s equations for wave
propagation in an anisotropic dispersive medium can be expressed as follows:

∇× E = −µ0
∂H

∂t
, (1a)

∇×H = ε0
∂E

∂t
+ J, (1b)

dJ

dt
+ νJ = ε0ω

2
p E + ωb × J, (1c)

where J is the electric current density in A/m2; E is the electric field intensity, in V/m; H is the
magnetic field intensity, in V/m; and ε0 and µ0 are the permittivity and permeability of the free space,
respectively [20]. The numerical solution for Maxwell’s equations is expressed in terms of the transverse
magnetic (TM) mode, based on the Ez,Hx, and Hy components of the electromagnetic field. These
field components are treated as functions of the temporal variable (t) and 2D spatial coordinates (x, y).
Assuming that the incident wave is uniform and independent of the spatial variable z, B0 is parallel
to the z-axis with angular frequencies of ωbx = 0, ωby = 0 and ωbz = ωb. Thus, Equation (1c) can be
expressed as

dJz
dt

= ε0ω
2
p Ez − νJz. (2)

Thereafter, Equation (2) is Laplace transformed in the s-domain using the following expressions:

dJ (t)

dt
⇔ sJ (s)− J0 (3)

ε0ω
2
p E (t) ⇔ ε0ω

2
p E (s) (4)

ΩJ (t) ⇔ ΩJ (s) (5)

In the s-domain, Equation (3) becomes

J (s) = (sI − Ω)−1 J0 + ε0ω
2
p (sI − Ω)−1E (s) (6)
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where I denotes an identity matrix and Ω =

(
−ν −ωb

ωb −ν

)
. The inverse matrix (sI−Ω)−1 is expressed

in terms of

A = (sI − Ω)−1 =
1

(s+ ν)2 + ω2
b

(
s+ ν −ωb

ωb s+ ν

)
. (7)

Equation (6) can be rewritten as

J (s) = A (s) J0 + ε0ω
2
p A (s)E (s) . (8)

Using the Laplace transform of Equation (8) for the t-domain, J(t) becomes

J (t) = A (t) J0 + ε0ω
2
p K (t) , (9)

where

A (t) = e−νt

(
cosωbt − sinωbt

sinωbt cosωbt

)
(10)

and
K (t) = A (t) ∗ E (t) . (11)

Here, Jz is only dependent on ν and ωp and independent of ωb [15].
In the case of ωbx = 0 and ωby = 0, the FDTD iteration of Equation (2) can be acquired into the

following form (∆t) with the size of the time step, n:

Jz|
n+ 1

2
i,j = e−ν∆t Jz|

n+ 1
2

i,j + ε0ω
2
p ∆te

−ν∆t
2 Ez|ni,j . (12)

ωp in Equation (12) is defined by the electron density Ne. The relationship between ωp and Ne is
represented as in Equation (13):

ωp =

√
Ne (h) e2

meε0
. (13)

The fields in the TM mode, that is Ez, Hx, and Hy, can be obtained by discretizing Equation (1):

Hx |n+
1
2

i,j+ 1
2

= Dax (i, j) ∗Hx |n−1/2
i,j+1/2 −Dbx(i, j) ∗

[
Ez |ni,j+1 − Ez |ni,j

]
, (14a)

Hy|n+1/2
i+1/2,j = Day (i, j) ∗ Hy|n−1/2

i+1/2,j +Dby (i, j) ∗
[
Ez|ni+1,j − Ez|ni,j

]
(14b)

Ez|ni,j = Cax (i, j) ∗ Ez|ni,j − Jz|n+1
i,j +Cbx (i, j)

[
Hy|

n+ 1
2

i+ 1
2
,j
−Hy|

n+ 1
2

1− 1
2
,j
−Hx|

n+ 1
2

i,j+ 1
2

−Hx|
n+ 1

2

i,j− 1
2

]
, (14c)

Jz|n+1/2
i,j = e−ν∆t Jz|n+1/2

i,j + ε0ω
2
p∆te

−ν∆t
2 Ez|ni,j . (14d)

where Cax and Cbx are the coefficients of the electric field, and Dax, Dbx, Day, Dby are the coefficients
of the magnetic field, which are defined as

Cax (i, j) =

(
1− σ∆t

2ε0

)
(
1 +

σ∆t

2ε0

) (15)

Cbx (i, j) =

(
∆t

ε0∆

)
(
1 +

σ∆t

2ε0

) (16)

Dax (i, j) = Day (i, j) =

(
1− σ∗∆t

2µ0

)
(
1 +

σ∗∆t

2µ0

) (17)
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Dbx (i, j) = Dby (i, j) =

(
∆t

µ0∆

)
(
1 +

σ∗∆t

2µ0

) (18)

where σ = σ∗ denotes the conductivity of the material. Under this condition, σ is applied to the electric
field element, whereas σ∗ is applied to the magnetic field element. Further, ∆ = ∆x = ∆y is the spatial
width, expressed in terms of a fraction of the wavelength λ as ∆ = λ/N . N is denoted as either a
positive real or positive integer n, and (i, j) represents the temporal and spatial discretization indices,
respectively. The convergence of the FDTD simulation (where the time-stepping evolution of the EM
profile remains finite and stable even after several steps) depends on the choice of ∆t, which must be
sufficiently small to ensure that the wave has adequate time to propagate through the spatial grid.
This requirement is also known as the Courant (Friedrich) stability factor [20]. The limit of the time
increments to ensure stability in the 2D FDTD simulation can be expressed as

∆t ≤ 1

c0

√
1

(∆x)2
+

1

(∆y)2

(19)

where c0 is the speed of light. We define the Courant-Friedrich-Lewis (CFL) number as

CFL = c0∆t

√
1

(∆x)2
+

1

(∆y)2
(20)

and the stability condition may be written as

CFL < 1. (21)

For simplification, the time increment to satisfy the CFL stability requirement in 2D can be written as

∆t =
∆

2c0
. (22)

In this study, the wave source for the FDTD modeling was implemented by generating a point sinusoidal
source at the grid site i = 2, j = 2, as

Ez |ni,j = A0 sin (2πf0n∆t) , (23)

where f0 is the frequency (30 kHz), and A0 is the amplitude (10m). At the source of the grid site i = 2,
j = 2, Ez is equal to 3.09017V/m, and n is equal to 2000.

The wave propagation cannot be simulated infinitely in an active grid; hence, it must be terminated
at the edges. Furthermore, the mechanism of ABC is based on dampened fields propagating into an
absorbing medium. Thus, in a typical FDTD simulation, the ABC must be set up on all edges enclosing
the active simulation grid.

In this study, two types of ABCs have been employed to develop the FDTD code. One is the
first-order ABC [2], and the other is PML ABC, as proposed by Berenger [21]. These two different
types of ABCs are implemented to investigate the best method for the time-stepping of EM fields in
the anisotropic ionosphere and examine the effectiveness of both approaches. As shown in Figure 1,
the 2D computational grid of the present FDTD modeling has dimensions of 600 km × 120 km along
the x- and y-directions. This modeling is composed of two regions which are the unshaded area known
as the active simulation grid and the shaded stripe area at the edges where the ABC scheme is to be
implemented. Generally, the stripes are commonplace on all sides and vary depending on the parameter
used for the ABC scheme.

The extensive simulation while the ABC in the anisotropic environment is implemented, in the
case of ionospheric studied in this work, shows that the reflection from the boundary is not suppressed
entirely but occurs only to a certain extent. Furthermore, the quantitative performance of two different
types of ABC used in this work is discussed below.
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Figure 1. Two-dimensional computational grids for wave propagation. The shaded stripes along the
edges are grid layers where ABC is to be implemented.

For the ABC mechanism, the electric fields travel within the one-time step. In contrast, the
magnetic field travels at halftime steps, so the alteration of two-time steps is implemented to terminate
the propagated wave. Equation (24) shows the proposed method for how the ABC is to be implemented.

Ez |n+1
0,j = Ez |n1,j (24a)

Ez |n+1
ie,j = Ez |nie−1,j (24b)

Ez |n+1
i,0 = Ez |ni,1 (24c)

Ez |n+1
i,je = Ez |ni,je−1 (24d)

where i = 1, 2, 3, ..., ie, j = 1, 2, 3, ..., je, ie = 600, and je = 120. By implementing this condition, the
wave will be absorbed by the termination at the edges.

The second type of ABC used in this work is the PML ABC which was initially proposed by
Yee [22]. The PML absorber layer is introduced with a damping profile located at the edge of the
simulation grid, which can be characterized spatially by various functions, which constitute of a few
independent variables such as conductivity, PML thickness, and reflection coefficient. To improve the
performance of wave absorption, which covers a large range of frequencies, Rickard and Georgieva have
proposed to introduce conductivity into the function σk which varies in a stepwise manner from one
spatial grid point, k, to the next spatial grid [23]. It is noted that in the 2D simulation grid, k is referred
to either as spatial i in the x-direction or j in the y-direction index. This structure will enable the
development of loss behavior at a different rate when waves (which incident from the active simulation
grid section) propagate into layers. Furthermore, to achieve an almost reflection-free scenario, Rickard
and Georgieva have recommended a PML conductivity function which consists of a loss factor, which
is represented as αk(ρ) in Eq. (25) that assumes the form of

σk (ρ) = σmax

(
ρk
δk

)k+β

(25a)

αk (ρ) = 1 + εmax

(
ρk
δk

)k

(25b)

The user-defined parameter, σmax, is used for controlling the attenuation of propagating waves, as in
Equation (26),

σmax = − [(h+ β + 1) ε0 · c0 · lnR0/ [2/δk]] (26)



108 Siti Harwani and Yoon

where R0 is the reflection coefficient, δk the thickness of the PML in the grid index by k, h the user-
defined rate of growth, β the user-defined difference in the exponent rates, εmax the user-defined
parameter to control the rate of evanescent mode attenuation, ρk the depth in PML (measured
orthogonally from the boundary separating the active simulation grid and the PML), and c0 the speed
of light.

Table 1 shows the range for each parameter, as proposed by Rickard and Georgieva [23].

Table 1. PML absorber parameters and their range.

Parameter User-defined range Proposed value

R0

[
10−2, 10−12

]
10−5

ρk 0 ≤ ρk ≤ δk 25

εmax [0, 10] 0

h [2, 6] 4

β [−3, 3] 0

In this study, a PML strip was added at the edge of the simulation grid, with a total width of 25
cells (each cell had a width of δk). The conductivity σk was incorporated in the FDTD code via the
medium coefficient, as shown below:

Cax (i, k) =

(
1− σk∆t

2ε0

)
(
1 +

σk∆t

2ε0

) , (27a)

Cbx (i, k) =

(
∆t

ε0∆

)
(
1 +

σk∆t

2ε0

) , (27b)

Dax (i, k) = Day (k, j) =

(
1−

σ∗
k∆t

2µ0

)
(
1 +

σ∗
k∆t

2µ0

) , (27c)

Dbx (i, k) = Dby (k, j) =

(
∆t

µ0∆

)
(
1 +

σ∗
k∆t

2µ0

) , (27d)

where σ∗
k = σk.

Table 2 summarizes the values of the FDTD and PML parameters used in the 2D simulation under
the TM mode.

For comparing the effectiveness of the differential ABC and PML technique, the electric field, Ez,
is investigated at six different locations in the active simulation region, designated as A, B, C, D, E,
and F, as shown in Figure 2. All these points are selected randomly for the intention of observation.

In this work, the relative error calculation is implemented to address the accuracy of the
measurement quantitatively. The relative error is denoted as the absolute error divided by the magnitude
of the exact value, which implies the magnitude of the difference between the exact value and its
approximation. It is noted that the lowest relative error is acknowledged as the most excellent accuracy.
Nonetheless, at each site which the calculation implies, the relative error at the given instant time-step
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Table 2. Summary of the values for FDTD and PML parameters.

Parameters Value

Dimensions of active simulation region 600× 120∆x

No. of PML layers 25

EM source 2-D sinusoidal point source

Source location i = 2, j = 2

Frequency, f0 30 kHz

Courant factor for

numerical stability, CLF

∆t = 1.6× 10−6 ∆x = λ/10

CLF = c0∆t/∆x

Numerical dispersion 1 km

Relative permittivity, ε0 1

Relative permeability, µ0 1

Figure 2. The location of the sites in which the relative error of the electric field is accessed.

n is measured using Equation (28) which is written below:

Rel. error|ni,j =
∣∣∣Ez|ni,j − Eref |ni,j

∣∣∣ / ∣∣∣Eref ,max|i,j
∣∣∣ , (28)

where Eref the reference value of an electric field at a probing site with time-step n in a reference
domain is within the extra-large grid of the dimension 1000× 360. Moreover, the value Eref |ni,j refers to
the value of Ez which was measured independently in the reference domain at time n when reflections
from the boundaries have not arrived at (i, j) during the time Ez|ni,j (which may contain contamination

from reflection from the edges) while being recorded. Furthermore, Eref |ni,j is designed to be clear

from contamination located at the edge-reflected waves throughout the entire process of the simulation.
Eref ,max is the maximum amplitude of the electric field from the reference solution Eref , which was
observed during the time-stepping time of interest.

Both types of ABC which were elaborated in the previous paragraph are investigated thoroughly for
their effectiveness by executing a numerical simulation and then examining the relative error acquired
in each case. Last but not least, the relative error is measured for each time step n for PML by varying
the cell number for 5, 10, 15, 20, and 25. Finally, the outcome of the numerical experiment is described
comprehensively, and the effectiveness of both ABC methods is described quantitatively.
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3. RESULTS AND DISCUSSION

3.1. Numerical Experiment with ABCs

The first part of the numerical experiment to investigate the effectiveness of the ABCs entailed
propagating a 2D spherical wave from a point source located at the origin. The EM waves were
then time-stepped sequentially in the active simulation grid. Next, the electric field component Ez was
probed and numerically measured at the selected sites: A, B, C, D, E, and F. The locations of the probes
were designated as A(i = 70, j = 100), B(i = 330, j = 100), C(i = 500, j = 100), D(i = 70, j = 70),
E(i = 330, j = 70), and F(i = 500, j = 70), as shown in Figure 2. Furthermore, in Figure 3, the
simulated EM wave patterns at n = 2000 steps are visualized.

Figure 3. Ez field components for ABC after 2000 steps.

The relative errors obtained at these points for the exact step n were calculated using Equation (28).
Figure 4 shows the variations in the relative error with an increase in the simulated time steps for sites
A, B, C, D, E, and F. In general, for each site, Figure 4 indicates that the relative errors are suppressed
below a value of 1.00. These results suggest that the reflected waves are significantly suppressed after
interacting with the boundaries, as compared with the incident waves, which are partially absorbed.
Furthermore, when the EM waves pass through a different site immediately before the interference of
the reflected waves from the boundaries, the relative errors remain at zero. This phenomenon is depicted
in the subfigures of Figure 4.

Moreover, when the reflected waves from the boundaries reach a specific site at any time,
interference occurs due to the waves originating from the source or the surroundings. This is presented
in Figure 4 in terms of the deviation from zero or the constant trend of each relative error with respect to
the time step. The initial period of the deviation from zero or the flat trend in the graph is indicative of
the arrival of non-absorbed reflected waves from the boundaries. Given that the probing site is located
far from the sources, the EM waves from the source or those reflected from the boundaries arrive much
later. Hence, the deviation at the farthest probing site, as compared with the nearest probing site from
the sources, results in the deviation from the zero values or the flat trend into relative errors values
occurring much later. As such, each site has location-dependent “on-set instance” characteristics, with
certain sites presenting earlier deviations than the other sites. All the expected features were designed
in the numerical experiment to probe the relative errors and examine the inefficiency of the ABCs,
considering the absorption of EM waves during their interaction with the boundaries.

From Figure 4, it can be observed that the relative errors with respect to the time step for all
probing sites typically begin at zero or initially present flat trends; this corresponds to the absence
of interference caused by unabsorbed waves from the boundaries. Thereafter, when these interference
waves arrive at the probe region, the graph gradually deviates from zero or the flat trends; this occurs in
addition to an array of short transitions of approximately 40–150 simulation steps, denoted as “steady
state.” In this region, the relative errors typically oscillate periodically at the frequency of the EM
wave, and the amplitude either increases or varies over an extended period. Subsequently, the steady
state undergoes a transition to one with smaller or larger relative errors. Fundamentally, the amplitude
of the relative errors in the steady-state region for every point in the simulation grid can be examined.
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However, this is significantly time-consuming; this can be reduced to a few representative sites, as
realized in this work. Moreover, the measured maximum amplitude of the relative errors in the steady-
state region is a conventional indicator of the accuracy of FDTD simulations for EM wave propagation
in the ionosphere.

For site A, the simulated data showed that the relative errors reached a periodically steady state
after 1350 steps, resulting in an almost constant trend below 4× 10−1. At site B, the measured relative
errors decreased after 950 simulation steps and were less than 2 × 10−1. At site C, the amplitude of
the relative errors initially appeared exceeding 4× 10−1. Subsequently, after approximately 1430 steps,
the amplitude decreased to less than 3 × 10−1. However, the relative errors at site D were similar to
those at site A, and a steady-state condition was reached after 1350 steps. Furthermore, at site E,
the reflection errors increased after approximately 1740 time-steps; the steady-state amplitude was less
than 4× 10−1. Lastly, the errors at site F increased from zero after 1650 steps. This indicates that the
highest amplitude of the steady-state errors across all sites is 4.6× 10−1.

The overall relative errors for each site were combined to extrapolate the variations in the
interference from sites A to F, as shown in Figure 4(g). It was noted that the relative errors at sites
D and C were comparable; however, site D is the closest to the point source, whereas site C is further
away from the source and closer to the reflecting edges at the top corner. The relative errors at site

(a)

(b)

(d)

(c)

time-steps

time-steps

time-steps

time-steps



112 Siti Harwani and Yoon

(e)

(f)

(g)

time-steps

time-steps

time-steps

Figure 4. (a) Relative errors at site A within 2000 time-steps using ABC. (b) Relative errors at site
B within 2000 time-steps using ABC. (c) Relative errors at site C within 2000 time-steps using ABC.
(d) Relative errors at site D within 2000 time-steps using ABC. (e) Relative errors at site E within
2000 time-steps using ABC. (f) Relative errors at site F within 2000 time-steps using ABC. (g) Relative
errors at sites A, B, C, D, E and F within 2000 time-steps using ABC.

C are larger owing to the pronounced reflections from the top-right corner, as compared with those at
site D.

Furthermore, considering the case wherein waves are absorbed in the boundary under the ABC
in the absence of the PML, by implementing the time step, ∆t, from Equation (22), the typical field
travelling at the speed of light, c0, can be investigated within one time-step. Thus, the field only
travels across half a cell. Hence, to ensure that the field travels across one entire cell, the two-time
step condition is crucial. Additionally, under anisotropic conditions in the presence of a dielectric, the
propagation speed is not equal to the speed of light, c0. This causes extensive reflections and high
relative errors.

Most importantly, based on the relative error graphs obtained from the probing sites, a constant
amplitude of the relative errors is obtained from the simulated EM propagation; this originates from
the inefficiency of the ABC employed. The maximum amplitude was less than approximately 0.5 for
the entire simulation with nmax = 2000, even though the EM propagation oscillated periodically, as
shown in Figure 4(g). This trend appears as a desirable steady-state region wherein the relative error
does not increase beyond the critical value of 1.0 over one time-step. Therefore, the trend is predicted
to be maintained, even for larger values of nmax. This, in turn, indicates that the numerical errors in
the FDTD code for EM propagation in the ionosphere are capped. Moreover, this ensures that the
numerical errors do not increase beyond uncontrollable limits, given that the waves propagate within
time steps, even when the order of the simulation period nmax is set to 103 or less.
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3.2. Numerical Experiment with Perfectly Matched Layer (PML)

This subsection details the outcomes of the numerical experiment conducted to investigate the efficiency
of the ABC using the PML method; this experiment was based on the technique proposed by
Berenger [21].

The setup for this experiment is similar to that for the differential ABC method. However, in this
case, the active simulation grid was surrounded by a PML layer with a width of w = NPML∆x, where
∆x denotes a spatial grid. To investigate efficiency, the thickness of the PML was varied by adjusting
NPML.

Figure 5 illustrates the simulated EM wave for 2000 steps under a PML thickness of w = 25∆x;
the PML, in this case, can be considered to have a thickness of NPML = 25 cells.

Figure 5. Ez field component for 25 cells of PML after n = 2000 steps.

Figures 6(a)–(f) show the collective relative error for the field component Ez, as probed at different
sites, with NPML set to 25. Figure 6 shows the extreme suppression behavior of the relative errors at sites
A and D. Moreover, these relative errors are less than the critical value of 1.00 for all cases, similar to the
previous numerical experiments with the differential ABC method. Moreover, observations performed
at sites B and E revealed that the relative errors reached a steady-state condition after 730 steps and
were also less than 3 × 10−1. At sites C and F, the steady-state region of the relative errors featured
relatively high values of 4.3× 10−1 and approximately 5.5× 10−1, respectively. It should be noted that
the relative errors obtained from site F have the highest values, as compared with those from the other
sites for differential ABC and PML in the condition of NPML = 25.

In Figure 6(g), the relative errors with respect to the time steps for all sites are merged to obtain
descriptive information. For this purpose, the PML was set to NPML = 25. Furthermore, in Figure 6(g),
site F shows the highest relative errors, whereas sites A and D are the most suppressed because both
these sites are located farthest from the PML edges.

Typically, in the differential ABC numerical experiment, the thickness parameter cannot be
adjusted to alter performance. However, under the PML method, the effect of varying the PML layer
thickness, NPML, on the suppression of relative errors has not been elucidated. Hence, the performance
of the PML as a function of NPML was investigated in this study.

3.3. Performance of PML with Varying Thickness

A numerical study was performed by varying the thickness NPML as 5, 10, 15, 20, and 25 in order to
investigate the efficiency of the PML. This was aimed at determining whether increasing the thickness
leads to greater suppression of the relative errors. Moreover, the relative error in Ez was only measured
at site F, which is located at i = 500, j = 70. Site F was selected for this purpose because the relative
errors at this location were the largest under both the ABC schemes. These errors can be interpreted as
the maximum possible errors in the proposed FDTD simulation. Nevertheless, the actual global relative
errors in the FDTD simulation were expected to be less than the conservative errors measured at site F.
Figure 7 presents the relative errors at site F for 5, 10, 15, 20, and 25 cells over 2000 time-steps.
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At site F, for NPML = 5, the steady-state condition was observed after 1790 time-steps, with a
relative error of approximately 1.2. Further, a smaller relative error of approximately 1 was noted for
NPML = 10, where the steady-state condition was reached after 1650 time-steps. Moreover, as NPML

was increased to 15, 20, and 25, the relative errors gradually decreased to 8 × 10−1, 7 × 10−1, and
6× 10−1, respectively.

Figure 8 summarizes the performance of the FDTD code in terms of investigating the error
absorption when using the PML for different values of 6 × 10−1 in the ionospheric medium. Overall,
the graph indicates a slight reduction in the largest steady-state relative error as NPML increases.

Comparatively, similar results were obtained at site F for the PML, and differential ABC approaches
in terms of the largest steady-state region, where the error amplitude was 6 × 10−1. By contrast, on
average the results for the other sites, the overall relative error when using the PML was lower than
that for the differential ABC method. Notably, the errors at certain sites were significantly suppressed
under the PML approach. However, site-specific suppression was not detected for the differential ABC
approach.

Considering site-specific error reduction, the PML method was determined to be superior to the
differential ABC method. However, to confirm this superiority of the PML method, further evidence
is necessary. This can be realized by conducting comprehensive investigations beyond the numerical

(a)

(b)

(d)

(c)

time-steps

time-steps

time-steps

time-steps
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(g)
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time-steps
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Figure 6. (a) Relative error at site A within 2000 time-steps using Perfectly Matched Layer. (b)
Relative error at site B within 2000 time-steps using Perfectly Matched Layer. (c) Relative error at
site C within 2000 time-steps using Perfectly Matched Layer. (d) Relative error at site D within 2000
time-steps using Perfectly Matched Layer. (e) Relative error at site E within 2000 time-steps using
Perfectly Matched Layer. (f) Relative error at site F within 2000 time-steps using Perfectly Matched
Layer. (g) Relative error at site F within 2000 time-steps using Perfectly Matched Layer.

Figure 7. Relative errors at site F for 5, 10,15,20 and 25 PML cells at 2000-time steps.

experiments performed in this work. Ideally, the relative error must be suppressed to the greatest extent
possible.

However, based on the numerical results obtained in this study, the upper limit of the largest
relative error region is capped at 6× 10−1, which is excessively low in terms of efficiency. Nonetheless,
assuming that the time steps in the FDTD simulation do not exceed nmax = 2000, the errors in the
simulated EM propagation are considered acceptable.
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Figure 8. The values of relative error amplitude at a thickness NPML = 5, 10, 15, 20, 25 in the PML
implemented in the anisotropic ionospheric medium at site F.

Furthermore, to ensure that the errors obtained using the PML method are appropriately controlled
for the preferred ABC method during the simulation of EM wave propagation in the ionosphere, an
independent verification test on the efficiency of this FDTD code should be performed in future works.

4. CONCLUSIONS

In this work, numerical investigations were performed to evaluate the performance of two different
types of ABCs: a differential ABC and the PML; these were implemented using FDTD code developed
for dispersive, anisotropic media. The relative errors in the EM field were measured for both these
methods, and the efficiency of the PML method was evaluated by varying its thickness, which cannot
be performed for the differential ABC method. Furthermore, in terms of site-specific error reduction,
the PML method was considered superior to the differential ABC method. This was determined by
averaging the errors at all the other sites adopted in the experiments; notably, the overall relative error
for the PML method was lower than that for the differential ABC method. In particular, the errors at
certain sites were significantly suppressed under the PML approach, whereas site-specific suppression
was not detected under the differential ABC approach. In addition, the highest steady-state relative
error was reduced slightly on increasing the layer thickness, NPML.
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