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SVD Compression and Energy Harvesting based Energy Efficient
3D-MI-UWSNs
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Abstract—In underwater wireless sensor networks (UWSNs), the limited availability and non-
rechargeability of sensor node batteries necessitated the advancement of energy optimization techniques.
Optimal clustering is one such technique that reduces the energy consumption of the networks.
In this letter, we propose optimal cluster compression technique jointly with energy harvesting.
In optimal clustering compression, we perform optimal clustering of networks with singular value
decomposition (SVD) as compression technique to reduce the redundant data generated at the cluster
heads (CHs). Besides, adopting energy harvesting technique, node batteries are periodically recharged.
The performance of the proposed model is evaluated in terms of network lifetime and throughput.

1. INTRODUCTION

Nowadays, underwater wireless sensor networks (UWSNs) have demonstrated strength in various
underwater applications like marine hydro-logical data collection, water quality monitoring, marine
pollution detection, disaster prevention, etc. Due to the challenging underwater environment condition
and immense system costs, the deployment of UWSNs is much arduous in comparison to terrestrial
wireless sensor networks (WSNs). Generally, in underwater, acoustic communication is most versatile
and widely used because of longer propagation distance. However, it is adversely affected by low
communication bandwidth, long propagation delay, high error rate, and channel fading and hinder
communication as well. So to address all these shortcomings, magnetic induction (MI) communication
is a promising communication paradigm for underwater applications [1, 2]. The energy efficient design
of MI underwater sensor network (MI-UWSNs) is required because it consists of many sensor nodes,
and these nodes are battery driven. Optimal clustering and data compression technique are the two
techniques that can make the system energy efficient [3].

In the literature, many methods have been proposed for energy efficient design of the UWSNs
based on radio frequency, magnetic communication, and acoustic wave. In [4], the authors have
proposed the concept of a 3-dimensional (3D) multi-layer transceiver coil structure for magnetic
induction communication. The performance of the proposed method is analyzed in terms of power
received and the maximum achievable communication range. In [5], the authors have investigated
the use of a motor-driven rotating permanent magnet as a mechanical transmitter for undersea MI
communication. Further, they have also analyzed the frequency dependency on power consumption
and power-efficient operating frequency range of the mechanical transmitter. In [6, 7], the authors have
designed a transceiver and relay induction coils for energy efficient and fully linked underwater wireless
communication networks. In [8], the authors have modeled MI communication channel and performed
the theoretical analysis and numerical evaluations based on its propagation characteristics. In [9], the
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authors have developed a technique to reduce the redundancy present in an image signal using K-
means clustering. In [10], the authors have focused on reducing the network energy consumption and
prolonging the network lifetime using optimal node deployment strategy in Voronoi UWSNs. In [11],
the authors presented a novel data gathering scheme in clustered large-scale UWSNs.

From the above literature review, we observe that all the previous works have been performed for
the design of energy efficient UWSNs on either clustering technique or data compression. Additionally,
it is also inferred from literature review that no one had considered the impact of external noise on
the performance of MI-UWSNs. In this presented work, we analyze the optimal clustering compression
jointly with energy harvesting for noisy channel.

The primary contributions of the proposed work are as follows;

(i) Analytical formulation of optimal clustering for MI based 3D-UWSNs with consideration of M-
QAM (quadrature amplitude modulation) at sensor nodes for a noisy channel.

(ii) Implementation of algorithms for data compression using singular value decomposition (SVD) for
MI based 3-D UWSNs.

(iii) Employing energy harvesting technique to achieve additional energy efficiency.

2. NETWORK MODEL

In this work, we consider the scenario of clustered UWSNs, in which hundreds of MI homogeneous sensor
nodes with energy-harvesting capabilities are deployed in M ×M ×M cubic volume and are partitioned
into small equal segments called clusters. A time invariant additive white Gaussian noise (AWGN)
channel is taken in account for communication between the nodes. M -ary quadrature amplitude
modulation (M-QAM) technique is employed in this network. Fig. 1 shows the energy dissipation
system model of 3D-MI-UWSNs.
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Figure 1. Energy dissipation system model of 3D-MI-UWSNs.

We assume that N number of sensor nodes are deployed in M × M × M cubic volume of side
length M to observe an event of interest. Further, assume that N sensor nodes are distributed into K
balanced clusters so that in every cluster there are ⌊NK ⌋ nodes where ⌊ ⌋ denotes the rounded down to

the nearest positive integer. In each cluster, one sensor node will act as CH and remaining (NK − 1)
nodes will act as non cluster head nodes (Non-CH). The Non-CH nodes sense data from the underwater
media (depends on application) and expend ENonCH amount of energy for forwarding L bits of data to
the CH. Further, the CH uses SVD data compression technique to reduce the redundant information
present in the data received by Non-CH and finally transmit this to the BS. The purpose of using SVD
compression technique is to remove not only the redundant information but also the information that
is less relevant.

Let we consider that in each cluster, sensed data from (NK − 1) cluster member nodes and CH node
taken over t time instants need to be transmitted via the CH to base station (BS) for a given application.
If we arrange this set of input data in the form of a matrix X, where each row of X represents the
sensed data taken from given sensor nodes at each time instant. Equation (1) represents the convenient
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form to represent the data matrix X. Further, to compress the data, matrix X can be decomposed into
three matrices by enforcing the SVD that can be U, V,Σ and represented as Equation (1) [12]

Xm×t = U (m×m)Σ(m×t)V (t×t) (1)

where Σ is called as the diagonal matrix, which contains the highest to the lowest singular values (SVs)
of X.

In SVD technique, many matrices that exist show that some types of structure contain only a few
SVs which leads to accomplishing data compression. Keeping only the SVs found to be significant in
matrix Σ increases the chance of getting good approximation of matrix X in such cases. Suppose that if
r significant SVs are to be hold in Σ, and assume that matrix XR represents the approximated matrix
X. Then, matrix XR can be evaluated by replacing Σ by Σ′ given in [12]

XR = UΣ′V (2)

where every matrix can be divided in to submatrices as

XR =

[
XR

(r×r)
11 XR

(r×(t−r))
12

XR
((m−r)×r)
21 XR

((m−r)×(t−r))
22

]

U =

[
U

(r×r)
11 U

(r×(m−r))
12

U
((m−r)×r)
21 U

((m−r)×(m−r))
22

]

V =

[
V

(r×r)
11 V

(r×(t−r))
12

V
((t−r)×r)
21 V

((t−r)×(t−r))
22

]
, Σ′ =

[
Σ
(r×r)
11 0

0 0

]
After doing matrix multiplications in Equation (2) using above matrix, we can express matrix XR as[

XR11 XR12

XR21 XR22

]
=

[
U11Σ11V11 U11Σ11V12

U21Σ11V21 U21Σ11V12

]
From the above it can be observed that only sub-matrices needed to compute the approximated matrix

XR are: Σr×r
11 ; U r×r

11 ; U
(m−r)×r
11 ; V r×r

11 ; V
(r×(t−r))
12 . Observing the dimensions of each sub-matrix and

noting that Σ11 is diagonal, it can be concluded that the total number of elements to be stored for those
sub-matrices is equal to (m+ t+ 1)× r.

The compression ratio (CR) is expressed as the ratio between the total number of elements in the
original matrix X and the total number of elements in the sub-matrices that are needed to compute
matrix XR.

CR =
(m× r)

(m+ t+ 1)× r
(3)

From Equation (3), it can be seen that the number of SVs, r, determines the performance of the data
compression in the SVD technique. So, on the basis of SVs data compression is carried out, and it
achieves a good trade-off between the CR and loss of information. The proposed algorithm using SVD
technique for compressing the data in UWSNs is presented as Algorithms 1.

2.1. Energy Consumption Using SVD Technique

In UWSNs, the energy consumed by Non-CH node to send L bits of data to CH node using MI based
communication can be defined as

ENonCH = L
[
ETx
elecMI + α(1 + α)EMI

AWGNE
[
d6toCH

]]
(4)

where,

(1 + α) =
3

η

2(b/2) − 1

2(b/2) + 1
(5)

EMI
AWGN =

2

3

(
2b − 1

b

)
N0 ln

(
2

Pb

)
(4π)2MlNf

GtGr
(6)
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by putting Equations (5) and (6) into (4), ENonCH becomes

ENonCH = L

[
ETx
elecMI + α

2

η

(
(2b − 1)2

b

)
N0 ln

(
2

Pb

)
(4π)2MlNf

GtGr
E
[
d6toCH

]]
(7)

where E[d6toCH ] represents the expected or average distance between the Non-CH and CH, and it can
be evaluated as.

E[d6toCH ] =
K
M3

M
3√K∫
0

M
3√K∫
0

M
3√K∫
0

[(
x− M

2 3
√
K

)2

+

(
y − M

2 3
√
K

)2

+

(
z − M

2 3
√
K

)2
]3

dxdydz =
583

20160

M6

K2
(8)

Similarly, energy consumed by a CH node to receive L bits data from (N/K − 1) Non-CH nodes and
to forward Lζ bits of compressed data to the BS can be defined as,

ECH = ((N/K)− 1)LERx
elecMI + ζL

[
ETx
elecMI +

2α

η

(
(2b − 1)2

b

)
N0 ln

(
2

Pb

)
(4π)2MlNf

GtGr
E[d6toBS ]

]
(9)

where E[d6toBS ] is the expected distance between the CH and BS. The bit error rate (BER) for 16-QAM
modulation can be expressed as,

PQAM
b =

3

8
erfc

(√
4Eb

10N0

)
,

4Eb

10N0
= SNR

BN

R
(10)

The signal to noise ratio (SNR) for MI communication system can be written as

SNR = PT − PL− PN (11)

where PT is the transmitted power, and PL is the path-loss in underwater media. PL in sea water can
be defined as

PLsw = PLMI + PLα (12)

where PLMI = −10 log
RLω

2M2

RTx(RL +RRx)2 +RTx(XL + ωLRx)2
(13)

PLα = 20 log eαr (14)

So with the help of Equations (10) to (14) we can easily obtain the actual value of BER (Pb) for MI
communication. Hence, the total energy consumption (TEC) for a particular cluster is given as [13],

Ecluster ≈ ECH + (N/K)ENonCH (15)

Thus, TEC per round (EMI
round) for K cluster can be calculated as

EMI
Total = KEcluster (16)

EMI
Total = KECH + (N )ENonCH (17)

EMI
Total = (N −K)LERx

elecMI +K

[
ETx
elecMI +

2α

η

(
(2b − 1)2

b

)
N0 ln(

2

Pb
)
(4π)2MlNf

GtGr
ζLE

[
d6toBS

]]
+L

[
NETx

elecMI +Nα
2

η

(
(2b − 1)2

b

)
N0 ln

(
2

Pb

)
(4π)2MlNf

GtGr

583

20160

M6

K2

]
(18)

The expected value between the CHs and BS can be found as,

E[d6toBS ] =
1

M3

M
2∫

−M
2

M
2∫

−M
2

M
2∫

−M
2

(x2 + y2 + z2)3dxdydz =
583M6

20160
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2.2. Energy Consumption Using SVD and Energy Harvesting Technique

2.2.1. Turbine based Harvester

In underwater media, fluid flow kinetic energy can be converted into the electrical energy by turbine
harvesters. The total harvested energy of a stream Eharv basically depends on the fluid density (ρ),
flow speed υf , and wing spanning area A, respectably. So, the total harvested energy Eharv can be
calculated as [14]

ETurb-harv =
1

2
ρAυ3fT (19)

In the above equation A value is πr2d, where rd is the wing radius.

2.2.2. Piezoelectric Harvester

Piezoelectric harvester also works on the same concept of the turbine harvester. In this harvester we
get the electrical energy from the conversion of ambient energy available in fluid flow. The Piezoelectric
harvested energy depends on the pressure difference and cantilever specifications and can be calculated
as a [15]

EPiezo-harv =
1

128
ς2

d231
ϵ0ϵr

BL5

T 3
pzt

(20)

where ϵ0, d
2
31, and ϵr represent the absolute permittivity, piezoelectric constant, and relative permittivity,

respectively. The clockwise and counterclockwise directions pressure difference (ς) can be defined as
ςcw = ρ

2v
2
f and ςccw = −3

2ρv
2
f

EHv = ETurb-harv + EPiezo-harv (21)

Algorithm 1: Algorithm of Energy Efficiency using SVD for MI based UWSNs

1 Cluster Head Election Step:
Among N randomly distributed MI sensors nodes, K nodes are elected as CHs and all other nodes to be CM in
pursuance of DBS algorithm [11]

2 Data Transmission Step:
Non-CH MI sensor nodes send their sensed data once to their CHs at a different t time instant.
Data matrix X is stored at CHs.
Data compression using SVD are performed at every CH on data matrix X
Based on a value of r chosen to achieve a given CR, form submatrices Σr×r

11 ; Ur×r
11 ; U

(m−r)×r
11 ; V r×r

11 ; V
(r×(t−r))
12 ;

Reconstruct matrix X by calculating XR. Forward the compressed z data to the BS
Evaluate the compression ratio: ζ = (m×r)

(m+t+1)×r

Use ζ value for calculation of TEC per round of network in Equations (18) and (23)
After end of the current round go on the step 1 and start the process again.

2.2.3. Total Energy Consumption Analysis

In underwater, when nodes have energy-harvesting capability, the total energy consumption equation
considers harvested energy along with dissipated energy of the each sensor node in network. Hence, the
total energy consumption can be calculated as,

EMI
Total-Hv = K(ECH − EHv) +N (ENonCH − EHv) (22)

EMI
Total-Hv = (N −K)LERx

elecMI +K

[
ETx
elecMI+

2α

η

(
(2b−1)2

b

)
N0 ln

(
2

Pb

)
(4π)2MlNf

GtGr
ζLE

[
d6toBS

]
− EHv

]
+L

[
NETx

elecMI +Nα
2

η

(
(2b − 1)2

b

)
N0 ln

(
2

Pb

)
(4π)2MlNf

GtGr

583

20160

W6

K2

]
−NEHv (23)
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To find the optimal number of cluster that minimizes the total energy consumption, the number of
cluster K could be assumed as a continuous variable, and the problem becomes a convex optimization
problem.

minimize
K

EMI
Total-Hv subject to 1 ≤ K ≤ N

From the total energy consumption of Equations (18) and (23), we can easily obtain the derivative
of EMI

Total with respect to K. To find the optimal number of clusters, we have to check the first and

second derivatives of EMI
round-WR with respect to K. Since second derivatives is

d2EMI
Total

dK2 > 0, EMI
Total will be

minimum. To find such an optimal value of K, i.e., KMI
opt , put the first derivative of EMI

Total with respect
to K equal to zero.

3. RESULTS AND ANALYSIS

In this section, the network lifetime and throughput performance of the proposed approach are
demonstrated on the basis of rounds. Results of lifetime analysis and throughput using the proposed
method are depicted in Figs. 2(a), (b), (c), (d). The variation in number of rounds is noted for both
number of alive nodes and throughput using energy efficient optimal clustering (EEOC), energy efficient
optimal clustering using SVD (EEOC+SVD), and energy efficient optimal clustering using SVD and
energy harvesting (EEOC+SVD+EH) method. The network dimension having BS located at the center
considered for experiment is 300m× 300m× 300m, and (N = 200) MI-sensor nodes are randomly and
uniformly deployed in sensing field. The “Lena” image is used as the original test image for simulation
purpose. The values of other parameters used in this simulation are taken from [3, 6, 14, 15].
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Figure 2. Network lifetime and throughput for different SNR value.
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Figure 2(a) gives the number of alive nodes versus rounds plot for an SNR 23 dB and CR = 0.5.
From the above plot, we can see that as the number of rounds increases, the number of alive nodes
decreases. Here rounds structured with a setup phase and a steady phase and number of clusters in
one round remain the same. So, in one round the energy dissipated by the network (Eround) consists
of the sum of energies dissipated by CHs and Non-CHs. From Fig. 2(a), we can see that for EEOC
technique number of rounds goes to 493, for EEOC+SVD technique number of rounds goes to 807, and
for EEOC+SVD+EH technique number of rounds goes to 988. EEOC+SVD technique increases the
number of rounds because SVD technique reduces the redundancy present in underwater image. So,
CHs need to send the lesser number of image data to reconstruct the same image at the BS. Similarly,
EEOC+SVD+EH increases the rounds because energy harvesting technique is supplying the some
extra energy to the each sensor nodes. From the above results, it can be observe that EEOC+SVD+EH
technique increases the round by 495 and 181 respectably with respect to other techniques.

Figure 2(b) shows the throughput (measures the total rate of data sent over the networks) versus
number of rounds plot. From the above plot, we can observed that, for EEOC technique throughput is
up to 2.8× 104; for EEOC+SVD it is up to 5.3× 104; and for EEOC+SVD+EH technique, it reaches
up to 6.4× 104. The throughput of EEOC+SVD+EH technique is more than EEOC and EEOC+SVD
techniques.

From the above plot, we can also see that after some rounds throughput is almost constant for
EEOC, EEOC+SVD, and EEOC+SVD+EH techniques. This happen because network density is
promptly falling in sensor network, and as a result, nodes are unable to find optimal data forwarders.

Figures 2(c) and 2(d) show the number of alive nodes and throughput versus rounds plot for the
SNR 20 dB (CR = 0.7). From Fig. 2(c), we can observe that, for EEOC technique, the number of
rounds is 493, for EEOC+SVD is 870, and for EEOC+SVD+EH is 1076. From the above results, it is
inferred that as the CR ratio increases, number of rounds also increases. It occurs because increased
CR ratio reduces the amount of data transmission from CHs to BS whose result is the increase of
network lifetime. However, increasing the CR ratio results in the decrease in SNR value. From the
above Fig. 2(c) we can observe that the EEOC+SVD+EH technique increases the round by 583 and
206 in comparison to EEOC and EEOC+SVD techniques, respectively.

In Fig. 2(d), we can observe that for EEOC technique throughput is up to 2.8×104, for EEOC+SVD
technique 6.5× 104, and for EEOC+SVD+EH technique 7.8× 104. So, from the above result it can be
concluded that throughput also increases as a CR ratio is increased, and EEOC+SVD+EH provides
more throughput than the other two techniques. The comparison of proposed method based on network
lifetime and network throughput is given in Table 1.

Table 1. Comparison of proposed method based on network lifetime and network throughput.

Network Lifetime (in Rounds) Network Throughput

when SNR is 23 dB and when SNR is 23 dB and

CR is 0.5 CR is 0.5

EEOC [6] 493 EEOC [6] 2.8× 104

EEOC+SVD [3] 807 EEOC+SVD [3] 5.3× 104

EEOC+SVD+EH 988 EEOC+SVD+EH 6.4× 104
(proposed) (proposed)

Network Lifetime (in Rounds) Network Throughput

when SNR is 20 dB and when SNR is 20 dB and

CR is 0.7 CR is 0.7

EEOC [6] 493 EEOC [6] 2.8× 104

EEOC+SVD [3] 870 EEOC+SVD [3] 6.5× 104

EEOC+SVD+EH 1076 EEOC+SVD+EH 7.8× 104
(proposed) (proposed)
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4. CONCLUSION

In this letter, we have proposed an energy efficient optimal clustering jointly with SVD and energy
harvesting for 3D-MI-UWSNs. It is observed that optimal clustering with SVD compression enhances
the network lifetime and throughput of the considered network. Further, from the results, we also
observe that when SVD compression with optimal clustering is used for a network which contains energy
harvesting enabled nodes, it saves significant amount of energy as compared to optimal clustering with
SVD compression. The energy harvesting technique implemented at nodes supplies some extra energy
to it that can withstand more time in network.
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