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Variational Bayesian Learning for the Modelling of Indoor
Broadband Powerline Communication Impulsive Noise

Florence Chelangat* and Thomas Afullo

Abstract—Powerline communication (PLC) noise is the main cause of reduced performance and
reliability of the communication channel. The major source of these noise bursts, which distort and
degrade the communication signal, is the arbitrary plugging in and unplugging of electric devices
from the electrical network. It is therefore important to perform statistical modelling of the PLC
noise characteristics to enable the development and optimisation of reliable PLC systems. This paper
presents the Variational Bayesian (VB) Gaussian Mixture (GM) modelling of the amplitude distribution
of the indoor broadband PLC noise. In the proposed model, a fully Bayesian treatment is employed
where the parameters of the GM model are assumed to be random variables. Consequently, prior
distributions over the parameters are introduced. The VB criterion is used to determine the optimal
number of components where the Bayesian information criterion emerges as a limiting case. To find the
parameters of the GM components, the variational-expectation maximisation algorithm is employed.
Measurements from different indoor PLC environments are then used to validate the model. Thereafter,
performance analysis is carried out, and the VB framework is compared to the Maximum Likelihood
(ML) estimate method. It is observed that while the ML model performs better when the amplitude
distribution contains multiple peaks, the VB framework offers high accuracy and good generalization
to the measured data and is thus effective in modelling the amplitude distribution of the PLC noise.

1. INTRODUCTION

Noise in powerline communication (PLC) indoor environments significantly decreases the reliability of
data transmission through the electrical network. This is due to their sporadic occurrence with varying
amplitudes that impede the efficient transmission of communication signals, burst errors, and corruption
of the transmitted data. These errors between the communication links arise from sources within and
without the electrical network [1]. From within, there is interference by other communication signals
transmitted through amplitude modulation that cause the electrical wires to behave like antennas.
External sources include the various connection points in the PLC network and the unpredictable loads
plugged in and out of the power outlets. Despite this challenge, the PLC technology is still able to
achieve high data rates with the application of multiple-input multiple-output technique in [2] and has
gained more popularity with the development of the smart grid system. Its various applications include
smart metering, internet access, and home automation just to mention a few. In addition, its already
existing vast and well-established infrastructure that covers regions to which other wired and wireless
communication technologies are unavailable makes it a great alternative mode of communication.

For PLC to compete with the existing modes of data transmission, the reliability and performance
of the channel still need to be improved. This is because the PLC noise is impulsive and much stronger
than the noise present in other communication media, thus, cannot be described as an additive white
Gaussian noise [1, 3]. Consequently, accurate modelling of the PLC noise is paramount in combating
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the degradation of data signals and in turn enhancing the reliability of the PLC technology. PLC noise
is broadly categorised as background noise and impulsive noise. The background noise is characterised
by a lower power spectral density that varies with frequency and lasts between a few seconds and up to
hours. It is mainly caused by the transmission of signals over short, medium, and long ranges by radio
broadcasters and by low-power noise sources connected to the powerline. On the other hand, impulsive
noise occurs over short durations, exhibits higher amplitudes, and is generated by switching transients
and power supplies in the powerline network [4, 5]. Impulsive noise has attracted a lot of interest from
researchers as it is the main cause of distortion to the transmitted signal in PLC. As such, extensive
measurement campaigns have been carried out to identify the main generators of PLC impulsive noise
which has also been observed to occur randomly and in bursts, and thus, is also referred to as bursty
impulsive noise [1, 6–8]. Due to the variation in the amplitude characteristics, sporadic occurrence, and
duration of the PLC impulsive noise, the development of a unified model is still a work in progress.

The level of noise that reaches the PLC receiver, or the receiver’s signal-to-noise ratio, is crucial
to the design process for a PLC system. The background and impulsive noise produced by all nearby
devices, coupled with spurious narrowband interferences from the power line network and broadcast
radio stations, together form noise at the receiver. A detailed discussion on the narrowband interference
in the broadband PLC is discussed in [9]. In this study, the PLC noise amplitude distribution is assumed
to be a superposition of various Gaussian components. As such, the major tasks in the implementation
of the Gaussian mixture (GM) model are to determine the number of components in the GM as well
as the amplitude density estimation of the PLC impulsive noise. Machine learning provides a powerful
tool for determining the number of components as well as the parameters of the GM model due to its
ability to learn and adapt to different types of data. Its application in the PLC noise modelling is still
a new research area of interest and can be categorised as supervised learning, unsupervised learning,
and reinforcement learning [10]. While only the input vectors are present in unsupervised learning,
supervised learning involves both the input vectors and the associated target vectors in the training
data. The reinforcement learning technique, on the other hand, entails identifying the best outputs
through trial and error since in a given state, the outputs are not specified [10, 11].

This paper contributes to the modelling of the instantaneous PLC impulsive noise amplitude
characteristics in the low-voltage network by considering an alternative approach known as Variational
Bayesian (VB) learning in order to facilitate the design and implementation of more robust PLC
protocols to improve the PLC performance and reliability. In this approach, a fully Bayesian treatment is
employed where all the parameters are assumed to be random variables, and the number of components
of the GM model is estimated using the VB framework referred to as VB criterion. In addition, the
performance of the VB model is compared to the Maximum Likelihood (ML) model which is popularly
used in parameter estimation.

The subsequent sections are organised as follows. Section 2 describes the various existing
models used to characterise the behaviour of PLC noise and theoretical machine learning parameter
approximation methods. In Section 3, the data acquisition and measurement setup are discussed, while
Section 4, gives a detailed description of the VB GM modelling and model order selection. The results
and discussion are then presented in Sections 5 and 6, where the VB and ML models are compared to
measurements. Section 7 finalises the paper with concluding remarks.

2. RELATED WORKS

PLC noise models can be divided into two groups: those that take into account the temporal correlation
nature of the PLC noise and those that are generated through independent and identically distributed
(i.i.d.) realizations. Most of the models based on the temporal correlation employ Markov chains to
characterise the duration and inter-arrival time of impulse noise. Various models that take into account
the bursty nature of PLC impulsive noise incorporate the memory term, which defines the transition
probability between the impulse noise samples. A generalization of the Gilbert-Elliott model, the
partitioned Markov chain [6], takes into account both a set of impulse-free states and impulsive states
that aim to capture the bursty behaviour of impulsive noise. This method, however, produces binary
outputs and is hence more suited for binary communication channels. To mitigate this drawback, a
continuous noise model that incorporates the memory term -the Markov-Gaussian model- is developed
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in [12], which comprises impulsive and impulse-free time sequences where the noise sample is generated
from a Gaussian distribution. The difference between the two states is the variance that will be lower
in the impulse-free states than impulsive states. The major limitation of the Markov-Gaussian model
is that it is only limited to two states. In order to address the limitations in [6] and [12], the Markov-
Middleton characterisation, a continuous noise model with finite states whose variance is a function of
the physical parameters of the noise incorporating the temporal correlation was developed in [13].

Although the models based on i.i.d. realizations do not capture the bursty nature of PLC noise, this
drawback can be addressed by using multi-carrier modulation. As such, the time domain impulse noise
is spread by discrete Fourier transform on all the sub-carriers in the frequency domain such that the form
in which the noise occurred either in bursts or randomly is irrelevant [14]. The widely adopted PLC noise
models in this category include the symmetric alpha stable, Bernoulli-Gaussian and Middleton Class A
models [15]. It is worth mentioning that the noise models that take into account the bursty nature of
the PLC noise are developed from the discontinuous impulse noise modelling approaches but with an
additional memory term. The heavy tail characteristic of the symmetric alpha stable models, which is
comparable to that present in the impulsive component of the PLC noise, is the basis for their application
in the modelling of PLC noise. The shortcoming of the alpha-stable distributions, however, is that they
have no meaningful analytical or closed form and are defined by solely their characteristic equations [3].
Both the Bernoulli-Gaussian and the Middleton Class A models also exhibit heavy tails, and the PLC
amplitude distribution is modelled using a mixture of Gaussian distributions. Their distinction stems
from the fact that although the Bernoulli-Gaussian model assumes just two states, namely, the impulse-
free and impulsive noise states, the Middleton Class A model considers that impulses occur in a finite
number of states [16]. In addition, the rate of occurrence of the Gaussian components in the Middleton
Class A model follows the Poisson distribution while it follows the Bernoulli distribution in the Bernoulli-
Gaussian model. Nevertheless, it was shown in [8] that while the Middleton class A noise model was
created for man-made impulse interference, it does not adequately describe impulsive noise in PLC.

Various other noise models have also been implemented with the current shift towards machine
learning. In [17], the bit error rate is modelled using the GM model where the parameters of the GM
are estimated using the ML estimation approach. Further improvements on the same model are studied
in [18], where the singularity problem present in the ML estimate is addressed, and the PLC impulsive
noise is modelled using up to four components in the GM. Artificial neural network (which is a supervised
learning approach) has been applied by [19] to detect the noise mixed with messages received in the
orthogonal frequency division multiplexer to enhance the quality of noisy signals. The GM exhibits well-
defined statistical properties and thus has been widely adopted in science and technology for modelling
and approximation purposes. In PLC noise modelling, various noise models are also based on the
GM [5, 13, 17, 20, 21].

The main tasks in the deployment of the GM model are the determination of the model parameters
and finding the appropriate number of components in the GM. The most adopted technique used
in statistical parameter estimation is the ML estimate [22]. In this method, the specific values that
correspond to the local maximum of the likelihood function are chosen for specific values for the model
parameters [22, 23]. A two-step algorithm known as expectation-maximization is then used to find
the ML estimates for incomplete data in parametric models. One problem with this procedure is the
presence of singularities in the likelihood function, and as such the ML is strictly not well defined.
This occurs where one of the component parameters has the same value as one of the data points thus
assigning infinite density at the location of the data point [18, 23]. Additionally, the ML framework
is also known for its tendency to overfit data which becomes even worse for complicated models
incorporating high-dimensional data [23]. Another limitation is that it cannot be used to optimise
the model structure since it prefers complex models such that as the number of parameters increases, a
better fit is obtained [22, 23].

To solve the challenges encountered by the ML framework, a fully Bayesian framework is proposed
where the parameters are assumed to be random. A Bayesian model takes into account a finite or
infinite class of models instead of focusing on a single model [22]. The posterior probability of each
model given the dataset is then calculated. Thereafter, all of the individual models’ predictions are
averaged and weighted by their posteriors to generate predictions for the test data. By integrating the
parameters, the Bayesian framework avoids over-fitting and has good generalization capabilities [22, 24].
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Additionally, complex models are automatically penalized by being given a lower posterior probability;
as a result, optimal structures can be found [22].

The major aims of algorithms based on Bayesian inference are to derive the right algorithms for
integrating over the full parameter space as well as to define appropriate distribution functions for
modelling the parameters. The latter task can be computationally demanding and leads to integrals
that are difficult to solve. Consequently, the Markov Chain Monte Carlo (MCMC), Laplacian method,
and variational learning have been adopted to determine the parameters [11, 22, 24]. In order to
express the integrals, the Laplacian method uses the Taylor expansion approximation. Nonetheless,
this approximation becomes computationally expensive in high dimensions and can produce poor
approximation results [24]. The basis of MCMCs is the development of a Markov chain with the desired
distribution. The validity of a certain sample draw is then determined through a selection mechanism.
The drawback of the MCMC approaches is the difficulty in choosing acceptable distributions and in
designing sampling strategies to create appropriate data samples [11, 22, 24]. MCMC algorithms may
take a long time to converge because they are stochastic in nature. The VB framework simplifies the
analytical computations of posterior distributions over hidden variables, parameters, and structures.
The posteriors arise in standard forms and are then computed using an iterative process known as the
variational expectation maximisation algorithm, whose convergence is guaranteed. Furthermore, the
posteriors result from a free-form optimization procedure that naturally incorporates conjugate priors.
Additionally, model selection is done by computing the posterior over structure, where the Bayesian
information and minimum description length criteria emerge as a limiting case, and averaging over
models to compute predictive values can be done analytically [11, 22, 25].

The VB framework for the GMmodel has been applied in the speaker clustering [26], modelling non-
Gaussian and non-stationary noise processes in [27], as well as colour image segmentation in [24]. This
paper presents the modelling of the PLC noise using the VB approach. The PLC noise is interpreted
as a superposition of noise components, and as such the GM model is used to model the amplitude
distribution. The mixture weights represent the occurrence probability of the impulse noise at the
receiver at a particular time from different sources. The parameters of the GM model, which is the
mixture weights, the means, and the precision are assumed to be random variables and are thus assigned
prior distributions with the same functional form as the Gaussian likelihood function. Consequently, the
resulting prior distributions are the Dirichlet distribution for mixture weights and the Normal-Gamma
distribution for means and precisions. The variational expectation maximization framework is then
used to determine the optimum hyper-parameters of the prior distributions and consequently the best
family of variational distributions that maximises the lower bound.

3. MEASUREMENT SETUP

The increasing development in the number of electronic devices leads to the increase in the number
of noise sources introduced into the PLC network and consequently the reduction in the reliability of
the PLC technology as a mode of data transmission. These electric appliances are the main cause of
impulsive noise that dramatically vary with time as they are randomly turned on and off resulting in
bits and burst errors on the transmitted signal. As a result, extensive measurement campaigns have
been carried out and also need to be performed to adequately capture and understand the behaviour of
the noise in the PLC channel. In this work, measurement campaigns were carried out in three locations
at the University of KwaZulu-Natal Electrical building namely: the Electronic Laboratory, Machines
Laboratory, and Computer Laboratory.

The PLC noise measurements were performed in 1–30MHz using the measurement setup shown in
Fig. 1. The setup consists of a Rigol DS2202A digital storage oscilloscope (DSO), coupling circuitry,
and a personal computer for the storage and processing of information. The DSO has the capability
of measuring 14 million samples and was set to a sampling rate of 1 Giga samples per second utilising
the maximum storage capacity of the oscilloscope with a window length of 14ms. The coupling circuit
isolates the DSO from the low-frequency high-voltage supply preventing damage to the equipment
and comprises series capacitors, transient voltage suppressors, Zener diodes, and a 1:1 broadband
transformer. The capacitors are used to prevent the transformer from saturating as well as filter out
the low-frequency signals while transmitting the high-frequency signals. The transformer on the other
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Figure 1. Measurement setup for PLC noise.

hand provides galvanic isolation while the Zener diodes protect the output against power surges by
maintaining the output voltage at 5V commonly used in communication devices. In [28], the coupling
circuits have been observed to contribute to the effect of PLC impulsive noise by distorting the inter-
arrival time, impulse duration, and amplitude of the impulse signal. This is due to the passive filter
components present in the coupling circuitry where as the PLC noise passes through the coupler it
excites points of resonance. In this work, the main focus is on the PLC noise as seen by the receiver,
and as such, the effect of the coupling circuitry is not considered.

The sample PLC impulsive noise measurements for the Electronic Laboratory are shown in Fig. 2.
In this location, the appliances connected to the PLC network include an electronic trainer board
with components such as silicon-controlled rectifiers, digital multimeter, and cathode ray oscilloscope
that are found in each workstation. The Electronic Laboratory also contains fluorescent lights and
air-conditioners that are switched on during the practical sessions. In the Machines Laboratory, the
powerline network loading comprises dc generators, ac induction motors, adjustable speed drives, air-
conditioners, fluorescent lights, variable resistors, transformers, and measurement devices. The PLC
impulsive noise measurements obtained from the Machines Laboratory are depicted in Fig. 3. Finally,
the PLC noise measurement results obtained from the Computer Laboratory are shown in Fig. 4 where
the main loads are sixty computers connected to the PLC network. In addition, there are also air-
conditioners and fluorescent lights in this location. In all three locations, measurements were carried
out at the peak hours between 2 pm and 5 pm when the students were undertaking their practicals, and
all the electric devices had been switched on. Other than the various loads present in each location,
which also serve as sources of noise generation, these locations serve only as representations of actual

Figure 2. Electronic laboratory PLC noise data.
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Figure 3. Machines laboratory PLC noise data.

Figure 4. Computer laboratory PLC noise data.

PLC channels.
In previous research studies, the main contributors to the indoor PLC impulsive noise include

lightning, switched mode supplies, fluorescent lights, vacuum cleaners, and light dimmers [3]. Further
investigations on the sources of PLC noise in the residential indoor environment was carried out by [7].
It was observed that incandescent light dimmers, switching supplies such as silicon-controlled rectifiers,
and universal motors were the main sources in the 5–500KHz frequency range. Similar results were
observed in [29], where the main causes of PLC impulsive noise comprised vacuum cleaners, hand-held
drilling machines, heaters, and switched-mode power supplies. Although the level of noise produced
by the fluorescent lights in both cases, that is at a frequency below 500KHz, is less than that of the
aforementioned electric devices, the interference levels compete with the electromagnetic compatibility
levels at a higher frequency range of between 150KHz and 30MHz [30, 31]. With regard to the power
supplies at the broadband range of up to 30MHz, [32, 33] found that thermostats, rectifiers within the
DC power supplies and power switches were the main source of impulsive noise. From the measurement
results obtained in this work, the results follow the same trend as those can be observed in Figs. 2, 3,
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and 4, where each environment produces different noise samples as a result of various noise sources.
It is seen that the Electronic Laboratory and Machines Laboratory have higher noise levels than the
Computer Laboratory.

4. VARIATIONAL BAYESIAN GAUSSIAN MIXTURE MODELLING

In this work, the amplitude distribution of the PLC noise is assumed to be independent and identically
distributed (i.i.d) and is modelled as a one-dimensional GM with K components. Thus, all the
component parameters of the GM comprising the means µ = [µ1, . . . , µk], precisions ϕ = [ϕ1, . . . , ϕk]
and mixture weights π = [π1, . . . , πk] can be collectively written as θ := {π, µ, ϕ}. Let the observed
PLC noise amplitude at a particular time be given by xn for n = [1, . . . , N ], where N is the number
of samples at a given observation window, and for each data point xn there is a latent variable zn for
z = 1, . . . , N that indicates which component generated the nth data point. Thus, the likelihood of data
point xn is defined by [11, 25]:

p(xn | θ) =
K∑
k=1

πk

(
ϕk
2π

) 1
2

exp

(
−ϕk

2
(xn − µk)

2

)
(1)

where the mixing probabilities are subject to the constraint:
K∑
k=1

πk = 1 (2)

and 0 6 πk 6 1. However, the mixture weights, means, and precisions of the component Gaussian
distributions are unknown. As such, the VB framework introduces prior distributions to the latent
variables and parameters that have the same functional form as the Gaussian likelihood function.
Consequently, the conjugate prior to the multinomial distribution p(zn | π) is Dirichlet given by [11, 25]:

p(π) = Dir(π | λ0) = C(λ0)

K∏
k=1

πk
λo−1 (3)

where λ0 is the initial number of samples in each Gaussian component and is chosen to be the same for
all the components in the GM, and C(λ0) is the normalization constant for the Dirichlet distribution
and is given by:

C(λ0) =

Γ

(
K∑
k=1

λk

)
K∏
k=1

Γ(λk)

(4)

Similarly, the conjugate prior distribution over the means and precision is a Normal-Gamma distribution
obtained as [11, 25]:

p(µ, ϕ) =
K∏
k=1

N(µk | t0, (s0ϕk)−1)G(ϕk | α0, β0) (5)

where t0 and s0 are the initial hyper-parameters for the means, whereas α0 and β0 are the initial
hyper-parameter values for the precision, and G(ϕk | α0, β0) can be expressed as [25, 34]:

G(ϕk | α0, β0) =

ϕα0−1
k exp

(
−ϕk
β0

)
β0

α0Γ(β0)
(6)

Since the measured data is assumed to be i.i.d., the joint distribution of all the random variables
conditioned on the number of clusters K can be determined as [11, 25, 34]:

p(X,Z, π, µ, ϕ) = p(µ, ϕ)

N∏
n=1

p(π)p(X | Z, µ, ϕ)p(Z | π) (7)
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where:

p(Z | π) =
N∏

n=1

K∏
k=1

πznk
k (8)

and p(µ, ϕ) in (5) can be rewritten as:

p(µ, ϕ) =

K∏
k=1

(
s0ϕk
2π

) 1
2

exp

(−s0ϕk2
(µk − t0)

2

)ϕ
α−1
k exp

(
−ϕk
β0

)
β0

α0Γ(β0)


 (9)

In order to compute the marginal likelihood (model evidence) p(X), the joint distribution in (7) is
marginalised with respect to π, Z, µ, ϕ.

The main tasks in the application of the GM model are to determine the true posterior distribution
and to evaluate the possible number of components. The application of a fully Bayesian treatment
implies that the posterior distribution is obtained as [11, 25]:

p(Z, π, µ, ϕ | X) =
p(Z, π, µ, ϕ,X)

p(X)
(10)

It can be observed that solving for (10) involves a computationally intensive evaluation of multi-integrals
for which expectations are analytically intractable. As such, the variational Bayes method is used to
infer the posterior distribution for the mixture weights, means, and precision where an approximate
joint variational distribution q(Z, π, µ, ϕ) is introduced.

4.1. Variational Approximation Framework

Let the set of all the latent variables and parameters be denoted by η = [Z, π, µ, ϕ]. Thus, the joint
variational distribution will be given by q(η), and the marginal log-likelihood of the observed data can
be obtained as [11, 24]:

log p(X) = log

∫
p(X, η)dη (11)

Multiplying both the numerator and denominator of (11) by q(η), the marginal log-likelihood becomes:

log p(X) = log

∫
q(η)

p(X, η)

q(η)
dη (12)

In order to find a solution q(η) that provides a tight lower bound to the true posterior distribution, the
Jensen’s inequality is applied. Therefore, (12) becomes [11, 24]:

log p(X) = log

∫
q(η)

(
p(X, η)

q(η)

)
dη

≥
∫
q(η) log

(
p(X, η)

q(η)

)
dη = Lq(η)

(13)

where Lq(η) denotes the lower bound (or the negative free energy) of the marginal log-likelihood which
can also be expressed as:

Lq(η) = Eq(log p(X, η)− Eq(log q(η)) (14)

where Eq(.) denotes the expectation over all the variables. To measure the distance between the true
posterior distribution and the approximate variational posterior distribution, the Kullback-Leibler(KL)
divergence is employed. As such, the KL divergence between p(η | X) and q(η) is given by:

KL(q(η) || p(η | X)) =

∫
q(η) log

(
q(η)

p(η | X)

)
dη (15)

From the product rule of probability, p(η | X) can be defined as:

p(η | X) =
p(X, η)

p(X)
(16)



Progress In Electromagnetics Research B, Vol. 100, 2023 117

Substituting (16) in (15), the KL divergence becomes [11]:

KL(q(η) || p(η | X)) = −
∫
q(η) log

(
p(X, η)

q(η)

)
dη

+ log p(X)

= − (Eq(log p(X, η)− Eq(log q(η))

+ log p(X) (17)

Therefore,
KL(q(η) || p(η | X)) = −Lq(η) + log p(X) (18)

Consequently, the variational log-likelihood can be obtained as:

log p(X) = Lq(η) +KL(q(η) || p(η | X))

=

∫
q(η) log

(
p(X, η)

q(η)

)
dη

−
∫
q(η) log

(
p(η | X)

q(η)

)
dη (19)

Since the marginal log-likelihood log p(X) is independent of q(η), maximizing the lower bound is equal
to minimizing the KL divergence which occurs when q(η) = p(X, η) and hence KL(q(η) || p(η | X)) =
0 [11]. Therefore, the main objective in variational Bayes is to minimise the KL divergence given by
(18), which is equivalent to the maximization of the lower bound. As such, the lower bound will be as
close as possible to the true posterior. Assuming that the approximating joint distribution is factorised
over the parameters and latent variables, q(η) becomes [11, 34]:

q(Z, π, µ, ϕ) = q(Z)q(π)q(µ, ϕ) (20)

where q(Z), q(π) and q(µ, ϕ) are given by:

q(Z) =

K∏
k=1

N∏
n=1

γnk
znk (21)

q(π) = Γ(
K∑
k=1

λk)
K∏
k=1

πk
λk−1

Γ(λk)
(22)

q(µ, ϕ) =

K∏
k=1

N(µk | tk, (skϕk)−1)G(ϕk | αk, βk) (23)

Accordingly, the evidence lower bound in (14) can be determined as a functional over the parameters
as [11, 34]:

Lq(η) = Eq

(
log

p(Z, π, µ, ϕ,X)

q(Z)q(π)q(µ, ϕ)

)
(24)

The explicit hyper-parameter values are then derived from estimating the log of the joint
distribution and the lower bound optimised using a coordinate ascent algorithm analogous to the
expectation-maximization.

4.2. Lower Bound Maximization

The log of the joint distribution can be obtained as [11, 34]:

log p(Z, π, µ, ϕ,X) = log p(Z | π) + log p(π) + log p(µ, ϕ) + log p(X | Z, µ, ϕ) (25)

Considering only the terms in the joint distribution that are associated with the latent variable and
absorbing those independent of Z into the additive normalization constant, the optimal solution for the
latent variables q(Z) can be determined as:

log q+(Z) = Eπ(log p(Z | π) + Eµ,ϕ(log p(X | Z, µ, ϕ)) + constant (26)
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Substituting for p(Z | π) and p(X | Z, µ, ϕ), Equation (26) can be further simplified as [11]:

log q+(Z) =

N∑
n=1

K∑
k=1

znk log τnk + constant (27)

where:

log τnk = Eπ,µϕ

(
log πk +

1

2
(log ϕk − log 2π)

)
−Eπ,µϕ

(
ϕk
2
(xn − tk)

2

)
(28)

Evaluating (28) yields [25, 34]:

τnk = exp

(
π̂k +

ϕ̂k
2

− 1

2

(
1

sk
+ αkβk(xn − tk)

2

))
(29)

where:

E(log πk) = ψ(λk)− ψ(λ̄) = π̂k (30)

E(log ϕk) = ψ(αk) + log(βk) = ϕ̂k (31)

E(µk) = tk, E(µk2) = tk
2αkβk +

1
sk

and λ̄ is given by [11, 34]:

λ̄ =
K∑
k=1

λk (32)

ψ(.) represents the digamma function defined by ψ(y) = d log Γ(y)
dy . Thus, the normalized q+(Z) can be

obtained as:

q+(Z) =

N∏
n=1

K∏
k=1

γ+nk
znk (33)

where γ+nk are the responsibilities for the variational approximation and are given by:

γ+nk =
τnk∑K
j=1 τnj

(34)

For a discrete distribution, E(znk) = γ+nk [11]. To characterize the new posterior parameters, the
following quantities are computed from the responsibilities:

Nk =
N∑

n=1

γ+nk (35)

x+k =
1

Nk

N∑
n=1

γ+nkxn (36)

s+k =
1

Nk

N∑
n=1

γ+nk(xn − x+k )
2

(37)

where (35), (36), and (37) represent the number of data points in component K, weighted data values,
and weighted squared data values, respectively. Similarly, considering only the terms in the joint
distribution that are associated with the mixture weights and absorbing those independent into the
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additive normalization constant, the optimal solution for the mixture weights can then be obtained
from (25) as:

log q+(π) = Eπ (log p(π) + log p(Z | π)) + constant

=

K∑
k=1

((Nk + λ0) log πk − log πk) (38)

Hence, q+(π) is a Dirichlet distribution given by:

q+(π) = Dir(π | λ) (39)

and λ is a hyper-parameter given by:
λk = λ0 +Nk (40)

Solving for the optimal solution for the means and precision:

log q(µ, ϕ) = Eµ,ϕ (log p(X | Z, µ, ϕ) + log p(µ, ϕ)) + constant (41)

The corresponding hyper-parameters for the means (tk, sk) and precision (αk, βk) can then be given
by [25, 34]:

tk =
1

sk
(t0s0 + x+k Nk) (42)

sk = s0 +Nk (43)

αk = α0 +
Nk

2
(44)

1

βk
=

1

β0
+

1

2

(
Nksk

+ +
s0Nk

sk
(x+k − t0)

2

)
(45)

The detailed derivations for the updated equations are illustrated in Appendix A. To obtain the
best family of variational distributions that maximize the lower bound, the variational expectation
maximization (VEM) algorithm is employed and involves five steps as follows [22, 25]:

1. Initialize the mixing weights π by the number of clusters which is also a hyper-parameter. Then
initialize means and precision from the measured data X. Consequently, compute the initial hyper-
parameters a0, b0, α0, β0, and vk for the prior distributions.

2. Variational expectation step: Evaluate the posterior probability γnk using the current hyper-
parameters.

γ+nk =
τnk

K∑
j=1

τnj

(46)

where:

τnk = exp

(
π̂k +

ϕ̂k
2

− 1

2

(
1

sk
+ αkβk(xn − tk)

2

))
(47)

3. Variational maximization step: Reevaluate the posterior hyper-parameters in two stages:

– Compute the intermediate variables;

Nk =
N∑

n=1

γ+nk (48)

x+k =
1

Nk

N∑
n=1

γ+nkxn (49)

s+k =
1

Nk

N∑
n=1

γ+nk(xn − x+k )
2

(50)
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– Evaluate the new hyper-parameter values ;

λk = λ0 +Nk (51)

tk =
1

sk
(t0s0 + x+k Nk) (52)

sk = s0 +Nk, (53)

αk = α0 +
Nk

2
(54)

1

βk
=

1

β0
+

1

2

(
Nks

+
k +

s0Nk

sk
(x+k − t0)

2

)
(55)

4. Evaluate the average log-likelihood at iteration t as [24]:

logt p(X | θ) = 1

N

N∑
n=1

log pt(xn | θ) (56)

5. Check for convergence of the log-likelihood by comparing the variation ϵ in the normalized log-
likelihood. If the difference falls below a predefined value (0.01%), the process terminates otherwise
return to step 2 [24].

ϵ >
logt p(X | θ)− logt−1 p(X | θ)

logt p(X | θ)
(57)

4.3. Model Order Selection

Determining the number of components that make up a mixture model in machine learning techniques
is crucial because too many or too few components can cause the measured data to be over- or under-
fitted, which in turn results in poor generalization, or the model’s inability to give a high probability
to data that is randomly selected from the same distribution as the training set [24, 23]. Consequently,
various studies have been done in the modelling of the PLC impulsive noise using mixture models with
different numbers of components. In [15], the Middleton Class A model was modelled using a GM of
up to five components. It was observed that as the number of components increases, the accuracy of
the model also increases. Similar results were also found in [18] where the GM model which employed
the ML estimation method to determine the optimal parameters was used to model the PLC impulsive
noise. In this case, two, three, and four-component GM models were used, and the components that do
not contribute to the GM were automatically pruned out as their mixture weights were reduced to zero.
Further work on the number of components needed to model the GM was done in [17], where the mutual
information theory framework was used to determine the number of components in the estimation of
the bit error rate of bursty impulsive noise in low-voltage PLC networks.

The most common method of parameter estimation in machine learning is the ML framework in
which a specific value of the model parameters is chosen which corresponds to a local maximum of the
likelihood function [11]. The expectation-maximization algorithm is then used to find the ML solutions.
As a result, it offers no guidance about the selection of the number of component since larger values
enable the model to obtain a better fit to the training data and, as a result, assign larger values of the
likelihood function for the observed data set.

The VB approach provides a means of finding the number of components similar to the Bayesian
Information Criterion (BIC) while training the model. Let M represent a large possible number of
model structures and K represent the optimal model for a fixed number of components for K ∈ [2,M ].
If the prior distribution of the number of components is given by p(K), then [34]:

p(Z, π, µ, ϕ,X,M) =

M∏
K=1

p(Z, π, µ, ϕ,X | K)p(K) (58)

where p(Z, π, µ, ϕ,X | K) denotes the joint distribution defined in (7) since it is dependent on a fixed
number of components K. From the VB methodology, the posterior distribution will be given by:

q(Z, π, µ, ϕ,K) = q(Z, π, µ, ϕ)q(K) (59)
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where the updates for q(Z, π, µ, ϕ,K) conditioned on a specific K have already been defined in
Section 4.1. Thus, it can be observed that the normalised posterior distribution q(K) can be obtained
as [25, 34]:

q(K) =
exp(Lq(ηm)p(K))
M∑
K′

Lq(ηm′)p(K ′)

(60)

where Lq(ηm) is the optimal lower bound for the Kth component mixture model. Choosing a uniform
prior distribution p(K) = 1

M , the the optimal posterior distribution becomes [25, 34]:

q(K) =
expLq(ηm)
M∑
K′

Lq(ηm′)

(61)

The lower bound in (24) can be reexpressed as [11, 25, 34]:

Lq(η) = Eq

(
log

p(Z, π, µ, ϕ,X)

q(Z)

)
−KL (q(µ, ϕ) || p(µ, ϕ))−KL (q(π) || p(π)) (62)

Thus, the VB criterion in (62) compares to the BIC, where the first term corresponds to the average log-
likelihood, and the second and third terms correspond to the KL divergence between the approximate
posterior and prior distributions. The KL divergence, therefore, acts as a penalty term that penalises
complex models while the lower bound can be used exactly as a model selection criterion. The parameter
posterior sharply peaks at the most likely values, which are also the ML values θ+, as the number of
samples increases. Consequently, as N → ∞, the penalty term reduces to h

2 logN , where h is the number
of parameters in the model, and the lower bound becomes equivalent to the BIC given by [25, 26]:

BIC(K) = log p(X | θ+)− h

2
logN (63)

Hence, the BIC emerges as a limiting case of the VB framework, and in the case of the univariate GM
model, BIC(m) becomes [25]:

BIC(K) =

N∑
n=1

log

(
K∑
k=1

πkN(xn | µk, ϕk)

)
− 3K

2
logN (64)

The number of components with the highest value of BIC(K) corresponds to the required value of K.

5. RESULTS

The VB model was validated by measurement results obtained at different locations with different
loading conditions. In each venue, two data sets were used so as to ascertain the PLC noise levels
as well as the distribution over time. In order to find the best model that fits the data, the optimum
number of components is first determined and then the VB framework used to approximate the posterior
distribution that provides a tight lower bound. Thereafter, performance analysis is done to check on the
accuracy and significance of the proposed model, which is then compared to the common ML estimation
approach.

5.1. Selection of Number of Components

The VB model provides a mechanism for the determination of the optimal number of components as
summarised in Section 4, where the lower bound is interpreted as the Bayesian information criterion
while the KL divergence acts as a penalty term that penalises complex models. As the number of
components increases, the KL distance between the priors and posteriors increases, and as a result,
the lower bound decreases. Conversely, as the average log-likelihood increases, the lower bound also
increases resulting in a higher lower bound value. Thus, for a model to have a high value for the lower
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bound, the average log-likelihood must exceed the KL distance. As such, the VB criterion is based on
selecting the simplest model, that is, the one with the least number of components, but provides a good
fit to the measured data. The optimal model will thus be the one with the highest lower bound after
the model complexity has been considered indicating a high average log-likelihood which in turn results
in a better fit.

The optimal model selection for the Electronics Laboratory sampled data is shown in Figs. 5(a)
and 5(b). It can be observed that as the number of components increases, the value of the lower bound
also decreases with the maximum lower bound occurring in the two-component GM model. This is
because the increase in the average log-likelihood as the model complexity increases is lower than the
increase in the KL distance. Figs. 5(a) and 5(b) are also observed to follow the same trend. This can
be attributed to the measurement data having almost similar characteristics to those further seen in
Figs. 8 and 9 where the VB model and ML models overlap. As for the Machines Laboratory depicted
in Figs. 6(a) and 6(b), the three-component mixture model has the highest value of the lower bound in
both cases. In Fig. 6(a), it can be seen that the five-component GM has the lowest lower bound value.
This can be attributed to a very small increase in the average likelihood with a high increase in the
penalty term. As for Fig. 6(b), the lower bound peaks at the three-component model after which it
decreases as the model complexity increases. The maximum lower bounds for the PLC noise samples

(a) Model order selection for data-1. (b) Model order selection for data-2.

Figure 5. Electronic laboratory.

(a) Model order selection for data-1. (b) Model order selection for data-2.

Figure 6. Machines laboratory.
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(a) Model order selection for data-1. (b) Model order selection for data-2.

Figure 7. Computer laboratory.

collected from the Computer Laboratory can be seen to occur at the two-component mixture model
for the first data and the four-component model for the second data as shown in Figs. 7(a) and 7(b),
respectively.

5.2. Impulsive Noise Amplitude Distribution

The optimal number of components determined from Section 5.1 for the various locations was then
used to model the PLC noise amplitude distribution using both the VB and the MLE GM models.
The predictions from the model were then compared to the measured data. The probability density
function (PDF) measurement data for the Electronic Laboratory was observed to exhibit spikes in both
the measured data shown in Figs. 8 and 9. The VB and the ML models, in this case, are seen to
superimpose and exhibit the same heavy tails as the measurement PDF. This may be attributed to the
fact that as the number of samples increases, the VB inference converges to the ML [11]. It is noted
in Figs. 8 and 9 that there are outliers in the curves corresponding to measurements. This can be
attributed by the silicon-controlled rectifiers present in the electronic trainer board, which have been

Figure 8. Electronic laboratory PLC noise distribution (data-1).
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Figure 9. Electronic laboratory PLC noise distribution (data-2).

Figure 10. Machines laboratory PLC noise distribution (data-1).

observed to produce significant levels of impulsive noise. The PDF results obtained for the Machines
Laboratory are shown in Figs. 10 and 11. It is observed that the measured impulsive noise PDF has
multiple peaks with the highest peak occurring at zero. Of the three PDFs the ML estimate has the
highest peak while the VB peak at zero is lower than that of the measurement data. In terms of the
other peaks, the ML estimate is seen to follow the measurement result closely as compared to the VB.
This is due to the highly flexible nature of the ML model. Also, the VB model does not provide the
exact solution but rather an approximation that gives the tightest lower bound to the measurement.

Figures 12 and 13 show the PLC noise amplitude distribution for the Computer Laboratory where
the peak-to-peak voltage is low and is between −0.1v 6 x 6 0.1v. In Fig. 12, the VB and the ML
estimates peak at almost the same point and are lower than the peak of the measurement data PDF.
However, in Fig. 13, the ML estimate has the highest peak width and the smallest width of the curve.
The VB, though having a lower peak, has a wider curve that follows closely with the measured data.
In both cases, the PDF is smooth and is characterised by low amplitude and thus can be interpreted as
background noise.
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Figure 11. Machines laboratory PLC noise distribution (data-2).

Figure 12. Computer laboratory PLC noise distribution (data-1).

5.3. Perform Analysis

In this study, the degree of dependence between the GM model and the measured data is assessed using
Pearson’s parametric correlation (R) test. The goodness-of-fit of the GM model is further examined
using the root mean square error (RMSE) and χ2 statistic. The formulations defined in (65), (66),
and (67) are for RMSE, correlation coefficient, and the χ2 statistic which was set to a significance level
of 0.05.

RMSE =

√√√√√√
N∑

n=1

(xo − xg)
2

N
(65)
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Figure 13. Computer laboratory PLC noise distribution (data-2).

R =

N∑
n=1

(xo − xo)(xg − xg)√√√√ N∑
n=1

(xo − xo)
2(xg − xg)

2

(66)

χ2 =

N∑
n=1

(xo − xg)
2

xg
(67)

where: xo is the measured value; xg is the proposed model value; xo and xg are the means of the
measured and the proposed model value while N is the measurement sample size. The performance
results are summarised in Table 1.

Table 1. Performance analysis.

VB ML

Model Order R RMSE χ2 R RMSE χ2 Critical Value

Electronic

Laboratory

Data-1 2 0.9749 0.0146 0.6399 0.9557 0.0193 0.6511 43.773

Data-2 2 0.9544 0.0202 0.5746 0.9548 0.02 0.5674 43.773

Machines

Laboratory

Data-1 3 0.9503 0.0389 16.1014 0.9572 0.0362 6.793 31.4104

Data-2 3 0.958 0.0349 2.361 0.9684 0.0303 1.8832 35.1725

Computer

Laboratory

Data-1 2 0.9946 0.1125 8.1073 0.9835 0.1963 9.5279 27.5871

Data-2 4 0.9724 0.2554 9.2498 0.9792 0.2225 7.8809 26.2962

From Table 1 it is observed that the correlation coefficient for all the measured data is above 0.95,
and thus the VB and the ML models have a good correlation with the data. The RMSE values vary
between 0.0146 and 0.2554 whereas all the χ2 values are below the critical values indicating that both
the proposed model and the ML model fit the data well. There is therefore no significant difference
between the VB and ML models derived, with the density distribution acquired from the measured
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data, and all of the models are consistent with the measured data with a 95% confidence level. As such,
the VB model can be thus used to adequately model the amplitude distribution of the PLC noise. In
all the measured data under consideration, the ML estimate performs better than the VB model due
to its tendency to over-fit data, except for the first data from the Electronic Laboratory where the VB
performs slightly better and the Computer Laboratory data-1 where the VB model outperforms the
ML model. This is because there was the presence of singularity in the Computer Laboratory data-1,
and regression analysis was used to determine the iteration with the parameters that best suited the
measurement.

6. DISCUSSION OF RESULTS

It can be seen that the number of components needed to model the indoor PLC noise amplitude
distribution ranges between two and four for the sampled data collected at various locations at the
University of KwaZulu-Natal. It is observed that as the number of components increases, the accuracy
of the model also increases with more complex models performing better where multiple peaks are
present in the measured data. The ML estimate model captures the multiple peaks better than the VB
model as shown in Fig. 10. This is due to the highly flexible property of the ML technique. However,
it is also observed that the VB model provides a good generalisation of the amplitude distribution of
PLC noise in the Machines Laboratory.

The PLC noise as seen by the receiver is a superposition of noise from various sources in the PLC
network. In this case, the PLC noise is assumed to be independent and identically distributed and to
follow a Gaussian distribution. Thus, the VB criterion seeks to find the optimal number of components
that may have contributed to the final noise observed. From the noise amplitude distribution of the
Machines Laboratory data, there are three peaks depicted in Figs. 10 and 11. This number of peaks
corresponds to the VB criterion predicted value as the maximum lower bound is seen to occur at the
three-component GM model. The four components chosen for the PLC noise amplitude distribution in
the Computer Laboratory may be attributed to an overlap in the various components that comprise
the GM. Although the measured amplitude distribution for the Electronic Laboratory has a higher
amplitude impulsive noise level and outliers, the two-component GM model is selected as the optimum
model. In [18], it was also observed that when the PDF of the amplitude noise has outliers, the likelihood
of the model changes minimally as the model complexity increases.

The same was also found in [35], where the first two to three components were found to adequately
approximate the PDF of the PLC impulsive noise amplitude using the Middleton Class A model. An
extension of the Middleton Class A model four terms was also studied in [13]. Further research was
carried out by [15], where five components were used to approximate the PLC impulsive noise amplitude
distribution using the Middleton Class A model. It was confirmed that as the number of components
in the mixture increases, a more accurate approximation is achieved. The same is also observed in [18],
where the two, three, and four-component GM components were employed in the modelling of the PLC
impulsive noise where the ML approach was employed in the determination of model parameters. In this
study, the VB criterion has been employed to determine the appropriate number of components needed
to adequately approximate the PDF of the PLC impulsive noise amplitude for a given observation
window from different locations with different loading conditions. It is observed that the two, three,
and four components are sufficient in the modelling of the PLC impulsive noise amplitude distribution.

As for the PDFs, the impulsive noise is seen to exhibit outliers in the measurement PDFs observed
in the Electronic Laboratory in Figs. 8 and 9. The Machines Laboratory, in Figs. 10 and 11, is also
characterised by high impulsive noise levels with multiple peaks. This may be attributed to the silicon-
controlled rectifiers coupled with fluorescent lights that have been seen to contribute to high impulsive
noise levels in broadband PLC. On the contrary, the Computer Laboratory exhibits low and smooth
amplitude distribution levels as compared to those present in the Electronic and Machines laboratories
as seen in Figs. 12 and 13. This is because the computers in this location employ switched mode power
supply, which has been found to emit low-amplitude impulsive noise [8]. This is also evident in the time
series analysis of the impulsive noise where the PLC noise amplitude PDF for the Computer Laboratory,
in Fig. 4, is lower than that for the Electronics and Machines Laboratory in Figs. 2 and 3, respectively.
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7. CONCLUSION

In this paper, the amplitude characteristic of the PLC impulsive noise, which is the main source of
decreased performance and reliability of the PLC channel, has been modelled using the VB GM model.
The proposed model provides a tractable and suitable estimation of the amplitude distribution of the
PLC noise and does not suffer from the singularity present in the ML framework. Additionally, the
proposed model provides a mechanism for model-order selection as well as parameter estimation which
is crucial in the application of the GM for modelling of the PLC noise. It is, however limited because
it provides an approximate solution rather than the exact solution since the aim is to maximise the
lower bound. Despite this minor setback, the performance analysis results indicate that the VB model
provides a good correlation as well as a high level of significance to the measured PLC noise data.
Although the ML estimate model provides higher accuracy levels, the VB model also provides a good
generalization of the measurement data. Therefore, either model, ML or VB, can be utilised as a
simulation tool to optimize and develop efficient and reliable transmission schemes for PLC systems.

APPENDIX A. DERIVATION OF UPDATE EQUATIONS

The optimal solution for the kth component means and precisions can be derived from (41) as:

log q(µk, ϕk) = Eµ,ϕ

(
1

2

(
log ϕk − log 2π − ϕ(xn − µk)

2
) N∑
n=1

znk

)

+Eµ,ϕ

(
1

2

(
log ϕk + log s0 − log 2π − ϕks0(µk − t0)

2
))

+Eµ,ϕ

(
(α0 − 1) log ϕk − α0 log β0 − log Γ(α0)−

ϕk
β0

)
+constant (A1)

Adding all terms not related to µ and ϕ to a constant, (A1) becomes:

log q(µk, ϕk) = Eµ,ϕ

((
1

2

N∑
n=1

znk +
1

2
+ (α0 − 1)

)
log ϕk

)

−Eµ,ϕ

(
ϕk
2

N∑
n=1

znk
(
xn − x+k + x+k − µk

)2)

−Eµ,ϕ

(
ϕk
β0

− ϕks0
2

(µk − t0)
2

)
+ constant (A2)

where x+k is defined in (19). Solving (A2):

log q(µk, ϕk) =

(
1

2

N∑
n=1

γ+nk +
1

2
+ (α0 − 1)

)
log ϕk

−ϕk
β0

− ϕk
2

(
N∑

n=1

γ+nkx
+
k
2
+ t20s0 +

N∑
n=1

γ+nk(xn − x+k )
2

)

−ϕk
2

((
N∑

n=1

γ+nk + s0

)
µk

2 − 2

(
N∑

n=1

γ+nkx
+
k + t0s0

)
µk

)
(A3)
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Completing the square for the last term in (A3) yields:

log q(µk, ϕk) =

(
1

2

N∑
n=1

γ+nk +
1

2
+ (α0 − 1)

)
log ϕk −

ϕk
β0

−ϕk
2

(
N∑

n=1

γ+nk(xn − x+k )
2

)
− ϕk

2

(
N∑

n=1

γ+nk + s0

)
µk −

N∑
n=1

γ+nkx
+
k + t0s0

N∑
n=1

γ+nk + s0


2

−ϕk
2


(

N∑
n=1

γ+nkx
+
k
2
+ t20s0

)
+

(
N∑

n=1

γ+nkx
+
k + t0s0

)2

N∑
n=1

γ+nk + s0

 (A4)

Simplifying (A4):

log q(µk, ϕk) =

(
Nk

2
+

1

2
+ (α0 − 1)

)
log ϕk

−ϕk
2
(Nk + s0)

(
µk −

Nkx
+
k + t0s0

Nk + s0

)2

−ϕk
(

1

β0
+

1

2

(
Nks

+
k +

Nks0
Nk + s0

(x+k − t0)
2

))
(A5)

where Nk is given by (20), and the update parameters can then be obtained from (A4).
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