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Load Angle of Flux Modulated Magnetic Gears

Rong-Jie Wang1, *, Stanley Robert Holm2, Josh Scheepers1, and Stiaan Gerber1

Abstract—In this paper, the authors address the issue of flux-modulated magnetic gear (FMMG),
which offers many potential advantages over traditional mechanical gears for a wide range of applications.
In the proposed FMMG model, two permanent magnet (PM) carriers are of different pole-pairs and
rotate asynchronously, and their relative angular position with respect to the pole parts of the flux
modulator is not as straightforward and simple as it may seem in conventional electrical machines.
Therefore, this paper focuses on the details of the derivation of FMMG load angle, which attempts
to better express the angular relationship between the individual components of an FMMG. Finite
element method (FEM) simulations and experiments are used to validate the load angle concept and
corresponding results, and are complemented by experimental measurements. It is believed that the
concept of loading angle can facilitate the design and simulation of FMMG and magnetically geared
machines (MGM) based on the finite element method under different loading conditions.

1. INTRODUCTION

In the past two decades, magnetic gear (MG) technologies are receiving considerable attention world-
wide, which is evident from the histogram of the number of related publications [1–5] (including
research papers, theses, patents, and research reports) shown in Figure 1. Among the promising
MG topologies, such as harmonic [6], planetary [7, 8], and flux modulated MGs [9], flux modulated

Figure 1. The published work on magnetic gear technologies (1900–2021).
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magnetic gear (FMMG) has received the most attention and has been the focus of research and
development. This is largely due to its relatively simple mechanical construction and the concentric
structure that makes provision for a compact machine-gear integration option. A typical FMMG consists
of three concentric components, i.e., a high pole-count permanent magnet (PM) carrier, a low pole-count
PM carrier, and a flux modulator between them. The gearing function is performed by fixing one of
the concentric components (usually the flux modulator) and allowing the other two components to act
as input/output mechanical ports. In this configuration, the low pole-count and high pole-count PM
carriers are often referred as high-speed (HS) rotor and low-speed (LS) rotor, respectively. Although
radial flux FMMG is the most common [10–15], based on the same working principle, the FMMG can
also be designed for axial flux topology [16, 17] as shown in Figure 2.

(a) (b)

Figure 2. Coaxial flux modulated MG topologies; (a) axial flux type, (b) radial flux type.

Since the two PM carriers have different pole-pairs and rotate asynchronously, their relative angular
positions with regard to the pole-pieces of the flux modulator are not as simple and intuitive as for
classical electrical machines [18]. For the design of magnetic gears, finite element method (FEM) is
undoubtedly the most commonly used. The normal practice is to set up these rotor positions to realize
a maximum transmission torque (also called stall torque) of the FMMG [19]. Surprisingly, no basic
theory can be found in literature that provides basic guidance on how to choose these initial angles.
Researchers seem to be contented with their empirical ways or methods to determine these initial
angles [20]. An interesting concept of load angle was introduced in [21], in which the relationship
between the transmissible torque and angular positions of FMMG’s concentric components was first
revealed. However, because of the scope of the paper, the mathematical derivation was treated in a
brief and simplified manner without necessary validation. As a result, the significance of the load angle
of FMMGs has not been well recognized.

This paper presents a detailed derivation of the load angle of FMMGs, which are validated by
both finite element (FE) simulation and experimental measurements. Further, it attempts to provide
a better understanding of the angular relationship between the concentric components of an FMMG,
which can facilitate the FEM based design and simulation of FMMGs under different load conditions.
The remaining part of the paper is organized as follows. In Section 2, the derivation of load angle
for FMMGs is presented. The experimental validation on a physical FMMG is described in Section 3.
Then, the application of the load angle concept in the design of FMMGs is discussed in Section 4, and
thereafter, conclusions are drawn.

2. DERIVATION OF THE LOAD ANGLE OF FMMGS

In this study, the analytical derivation will be conducted for an axial flux FMMG. This is mainly due to
its unique disc-type mechanical layout, which provides easy access to each co-axial FMMG component
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for experimental investigations. However, the derived load angle concept and angular relationship of an
axial flux FMMG is just as applicable to other FMMG topologies.

Figure 3 demonstrates the reference angles of a singular PM on each rotor disc and a modulator
segment. θL and θH align with the centre of a PM of their respective rotor and are measured relative to
a common reference angle. θM aligns with the centre of a modulator segment, and it is also measured
relative to the same common reference angle.

Figure 3. Component angular relationship.

2.1. Principle of Operation

The following Fourier series expressions shown in (1) and (2) describe the magneto-motive force (MMF)
patterns created by the alternating axial magnetizations of the PMs on both HS and LS rotors. These
MMF patterns created by the PMs pole-pairs result in half wave symmetry of the output, and the
summation is reduced to odd harmonics. Equation (3) accounts for the permeance function of the
axial-flux path between the air-gaps of each rotor [17].

FH =

∞∑
i=1,3,5,...

MHi(r, z) · cos [i · pH (θ − ωH · t− θH)] (1)

FL =
∞∑

j=1,3,5,...

MLj(r, z) · cos [j · pL (θ − ωL · t− θL)] (2)

P = Pavg(r, z) +
∞∑

k=1,2,3,...

PModk(r, z) · cos [k · qM (θ − ωM · t− θM )] (3)

where MHi(r, z) and MLj(r, z) are the MMF harmonic magnitudes, which are assumed to be constant
and distributed evenly over the surface of the magnets for simplification of the model. They are
subsequently referred to as MHi and MLj . Pavg(r, z) accounts for the combined reluctance of the yokes,
air-gaps and magnets, while PModk(r, z) represents the difference in reluctance due to the position of
the modulator segments.

Using (1) and (3), the flux in the LS side air-gap due to the PMs on HS rotor is:

ϕHm =


∞∑

i=1,3,5,...

MHi · cos [i · pH (θ − ωH · t− θH)]


·

Pavg +

∞∑
k=1,2,3,...

PModk · cos [k · qM (θ − ωM · t− θM )]

 (4)
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Likewise, the modulated flux in the HS side air-gap due to the PMs on LS rotor is:

ϕLm =


∞∑

j=1,3,5,...

MLj · cos [j · pL (θ − ωL · t− θL)]


·

Pavg +

∞∑
k=1,2,3,...

PModk · cos [k · qM (θ − ωM · t− θM )]

 (5)

Using identity cosA cosB = 1
2 [cos(A + B) + cos(A−B)], the above equations can be expanded as

follows:

ϕHm = Pavg ·


∞∑

i=1,3,5,...

MHi · cos [i · pH (θ − ωH · t− θH)]

 +
1

2

∞∑
i=1,3,5,...

∞∑
k=1,2,3,...

MHi · PModk

· cos

{
(i · pH + k · qM )

[
θ − i · pH · ωH + k · qM · ωM

i · pH + k · qM
· t

− (i · pH · θH + k · qMθM )

]}
+

1

2

∞∑
i=1,3,5,...

∞∑
k=1,2,3,...

MHi · PModk

· cos

{
(i · pH − k · qM )

[
θ − i · pH · ωH − k · qM · ωM

i · pH − k · qM
· t− (i · pH · θH − k · qMθM )

]}
(6)

ϕLm = Pavg ·


∞∑

j=1,3,5,...

MLj · cos [j · pL (θ − ωL · t− θL)]

 +
1

2

∞∑
j=1,3,5,...

∞∑
k=1,2,3,...

MLj · PModk

· cos

{
(j · pL + k · qM )

[
θ − j · pL · ωL+k · qM · ωM

j · pL + k · qM
· t

− (j · pL · θL + k · qMθM )

]}
+

1

2

∞∑
j=1,3,5,...

∞∑
k=1,2,3,...

MLj · PModk

· cos

{
(j · pL − k · qM )

[
θ − j · pL · ωL−k · qM · ωM

j · pL − k · qM
· t− (j · pL · θL − k · qMθM )

]}
(7)

By analysing these equations, the theoretical air-gap flux spatial harmonic components can be
determined. This is shown in (8) and (9) and represents the effective pole pair and modulator segment
relationship. Equations (10) and (11) describe the relationship between the components’ angular
velocities:

pi,k = |i · pH + k · qM | (8)

pj,k = |j · pL + k · qM | (9)

ωi,k =
i · pH · ωH + k · qM · ωM

i · pH + k · qM
(10)

ωj,k =
j · pL · ωL + k · qM · ωM

j · pL + k · qM
(11)

i = 1, 3, 5... j = 1, 3, 5... k = 0,±1,±2...

For an effective gearing action between the rotors, a coupling is required of the fundamental
component of flux created by either set of PMs with a component of the modulated flux of the other
rotor. As explained in [9, 17], the highest asynchronous spacial harmonic is produced when i or j = 1
and k = −1, and therefore, the relationship of pole-pairs to modulator segments can be described as:

pL = |pH − qM | with (pH < pL) (12)
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With the condition satisfied this yields two possible solutions, of which qM = pH+pL in practice provides
the most effective solution. When the modulator is held stationary, ωM is zero, and the formula for the
angular velocity relationship is reduced to

ωL =
pH · ωH

pH − qM

From this result, the gear ratio for the stationary modulator can be described as

GM =
ωL

ωH
=

pH
−pL

(13)

In general, the respective velocity relationship of the components can be described as

pL · ωL + pH · ωH = qM · ωM (14)

By considering only the highest asynchronous space harmonic, (i.e., i, j = 1; k = −1), Equations (4)
and (5) are reduced to:

ϕHm = {MH · cos [pH (θ − ωH · t− θH)]} · {Pavg + PMod · cos [−qM (θ − ωM · t− θM )]} (15)

ϕLm = {ML · cos [pL (θ − ωL · t− θL)]} · {Pavg + PMod · cos [−qM (θ − ωM · t− θM )]} (16)

Evaluating (15) and (16) at time t = 0, the modulated flux in the LS and HS air-gaps is further
simplified as:

ϕHm = MH · Pavg · cos [pH (θ − θH)] + MH · PMod · cos [pH (θ − θH)] cos [−qM (θ − θM )] (17)

ϕLm = ML · Pavg · cos [pL (θ − θL)] + ML · PMod · cos [pL (θ − θL)] cos [−qM (θ − θM )] (18)

Again, they are expanded as follows:

ϕHm = MH · Pavg · cos [pH (θ − θH)] +
1

2
MH · PMod · cos [pH (θ − θH) − qM (θ − θM )]

+
1

2
MH · PMod · cos [pH (θ − θH) + qM (θ − θM )] (19)

ϕLm = ML · Pavg · cos [pL (θ − θL)] +
1

2
ML · PMod · cos [pL (θ − θL) − qM (θ − θM )]

+
1

2
ML · PMod · cos [pL (θ − θL) + qM (θ − θM )] (20)

Since the magnetic flux in the adjacent air-gap of MMF source can be expressed as:

ϕH = MH · Pavg · cos [pH (θ − θH)] (21)

ϕL = ML · Pavg · cos [pL (θ − θL)] (22)

The total flux in each air-gap is the summation ϕx and ϕxm resulting in

ϕTH = ϕH + ϕLm (23)

ϕTL = ϕL + ϕHm (24)

It should be noted that the following assumption has been made to simplify the analysis [21]:∫ 2π

0
|ϕx|dθ =

∫ 2π

0
|ϕxm|dθ (25)

which implies that there is a continuity of magnetic flux in the integration region (no leakage flux).

2.2. Torque Calculation

The calculation of torque on the rotors now follows the approach described in [22]. The flux density in
the regions of the FMMG is defined as:

B(r, θ) =
ϕTx

Ax
(26)
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The general co-energy equation in the air-gaps is defined as

W ′ =
1

2 · µo

∫
V
B2 dv (27)

For this axial-flux model it can be further calculated as

W ′ =
1

2 · µo

∫ 2π

0

∫ Z

0

∫ ro

ri

ϕ2
Tx(θ)

(π · r2)2
rdrdzdθ (28)

W ′ =
Zx

−4 · µo · π2(r2o − r2i )︸ ︷︷ ︸
Cx

∫ 2π

0
ϕ2
Tx(θ)dθ (29)

where Zx is the axial distance between rotor disc and the modulator for each region (ZH and ZL for
the high-speed and low-speed regions, respectively).

The remaining integral of the co-energy equation is calculated for each region as

IϕTH
=

∫ 2π

0
ϕ2
TH(θ)dθ

=

{
MH · Pavg · cos [pH (θ − θH)] + ML · Pavg · cos [pL (θ − θL)]

+
1

2
ML · PMod · cos [pL (θ − θL) − qM (θ − θM )]

+
1

2
ML · PMod · cos [pL (θ − θL) + qM (θ − θM )]

}2

(30)

IϕTL
=

∫ 2π

0
ϕ2
TL(θ)dθ

=

{
ML · Pavg · cos [pL (θ − θL)] + MH · Pavg · cos [pH (θ − θH)]

+
1

2
MH · PMod · cos [pH (θ − θH) − qM (θ − θM )]

+
1

2
MH · PMod · cos [pH (θ − θH) + qM (θ − θM )]

}2

(31)

The expansion of Equations (30) and (31) yields terms that can be expressed in the form of
either (A1) or (A8). Using (A7) and (A8) to evaluate the integrals, the following simplified equations
can be obtained:

IϕTH
= MH ·ML · Pavg · PMod · cos (qMθM − pLθL − pHθH)

+
π ·M2

L · P2
Mod

2
+ π ·M2

L · P2
avg + π ·M2

H · P2
avg (32)

IϕTL
= MH ·ML · Pavg · PMod · cos (qMθM − pLθL − pHθH)

+
π ·M2

H · P2
Mod

2
+ π ·M2

L · P2
avg + π ·M2

H · P2
avg (33)

The electromagnetic torque induced on a component of an FMMG is defined as the change in
co-energy in both regions due to the relative angular position of the specified component. The resulting
torque on the modulator is the summation of the torque of the two rotors.

TH =
∂W ′

H

∂θH
+

∂W ′
L

∂θH
=

∂(CHIϕTH
)

∂θH
+

∂(CLIϕTL
)

∂θH
(34)

TL =
∂W ′

H

∂θL
+

∂W ′
L

∂θL
=

∂(CHIϕTH
)

∂θL
+

∂(CLIϕTL
)

∂θL
(35)

TMod = TH + TL (36)
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By substituting in the constants and simplifying, the torque on each component can be calculated
as follows:

TH =
pH · (ZH + ZL) ·MH ·ML · Pavg · PMod

4 · µo · π2(r2o − r2i )
· sin (pLθL + pHθH − qMθM )

TL =
pL · (ZH + ZL) ·MH ·ML · Pavg · PMod

4 · µo · π2(r2o − r2i )
· sin (pLθL + pHθH − qMθM )

TMod =
qM · (ZH + ZL) ·MH ·ML · Pavg · PMod

4 · µo · π2(r2o − r2i )
· sin (pLθL + pHθH − qMθM )

(37)

2.3. Definition of the Load Angle

From these equations, the implicit derivation of the load angle is observed as

δg = pLθL + pHθH − qMθM (38)

This load angle describes the relationship between the torque output of an FMMG and the angular
positions of the rotors and modulator. From the above equations, some interesting observations can be
made, i.e.,

• Based on simple laws of trigonometry, an FMMG achieves the maximum torque when the load
angle δg = 90◦ while it realizes the minimum (zero) torque when δg = 0◦;

• For a given load condition (thus a constant δg) of FMMG, the general angular velocity relationship
among FMMG components, i.e., Equation (14), can be obtained by differentiating (38) with regard
to time;

• Since pL + pH = qM for an FMMG, δg determined at another circumferential position with a ∆θ
displacement can be expressed as follows:

pL(θL + ∆θ) + pH(θH + ∆θ) − qM (θM + ∆θ) = pLθL + pHθH − qMθM

Thus, a load angle calculated from any FMMG angular position is essentially the same.

3. TORQUE-LOAD ANGLE CHARACTERISTICS

Based on the load angle concept, the torque characteristics of a magnet gear simply becomes a function
of load angle irrespective of number of PM poles and physical angles. This essentially makes it more
convenient to model and compare different FMMGs under specific load conditions. Although the load
angle is a function of three offset angles of FMMG components with regard to an arbitrary reference,
a simple way of obtaining the torque-load angle characteristics of an FMMG component is to vary its
offset angle while keeping the other two offset angles at zero. Figure 4 shows the torque-load angle
characteristics of a prototype axial flux FMMG obtained by using (37). A photo of the axial flux
FMMG prototype is displayed in Figure 5, and its design specifications are summarized in Table 1.

Alternatively, finite element method can also be used to produce these torque-load angle
characteristics. Figure 6 shows the three offset angles and their transition into a simple 2D FE model
of an axial flux FMMG. In this case, three offset angles θL, θM , and θH are all aligned with a reference
line, which means δg = 0 (no-load condition). Figure 7 shows the flux distribution of the axial flux
FMMG at a time step, where the load angle is 0◦. The software package used for the simulation is
Ansys Electronics Desktop.

To realize a 90◦ degree load angle for an FMMG, either the HS rotor or the LS rotor should be
rotated by 90◦/pH or 90◦/pL, respectively. Figure 8 shows 2D FE model of an axial flux FMMG where
either LS rotor or HS rotor shifts half a pole-pitch resulting in a load angle of 90◦. The 2D FE simulated
torque-load angle characteristics of the prototype FMMG are illustrated in Figure 9, which shows a good
agreement with the analytically calculated results.
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Figure 4. Analytically calculated torque-load angle curves of an axial flux FMMG.

Figure 5. A photo of the axial flux FMMG prototype used in the study.

Figure 6. 2-D FE model of the axial flux FMMG prototype.
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Figure 7. Flux distribution in the 2D FE model of an axial flux FMMG at a time step where δg = 0◦.

Table 1. Design specifications of the axial flux FMMG prototype.

Components Specifications

HS rotor pole-pairs 2

LS rotor pole-pairs 12

Modulator pole-pieces 14

PM outer radius (mm) 70

PM inner radius (mm) 40

HS rotor yoke thickness (mm) 8

HS rotor PM thickness (mm) 4.8

HS rotor PM pitch angle 81◦

HS rotor side air-gap length (mm) 2.5

LS rotor yoke thickness (mm) 6

LS rotor PM thickness (mm) 3.7

LS rotor PM pitch angle 12◦

LS rotor side air-gap length (mm) 2.5

Modulator pole-piece thickness (mm) 7

Modulator pole-piece pitch angle 13.4◦

(a) (b)

Figure 8. 2D FE model of an axial flux FMMG with δg = 90◦ by offsetting (a) the LS rotor or (b) HS
rotor with a half pole-pitch.

4. EXPERIMENTAL INVESTIGATION

The torque-load angle characteristics of the axial flux FMMG prototype was evaluated experimentally
in order to validate the simulated results. The test setup is shown in Figure 10, which consists of a
prototype FMMG attached by a pulley to a brushless DC Servo motor. The motor allows for precise
control of the shaft speed to ensure that accurate measurements are taken. A Lorenz DR-3000 torque
sensor is placed on the shaft between the motor and gear pulley to take measurements as the reference
angle of a single rotor varies. Couplings are placed on either side of the torque sensor to protect it and
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Figure 9. 2-D FEM calculated torque-load angle curves of an axial flux FMMG.

Figure 10. Experimental test set-up for the load angle measurements of an axial flux FMMG.

ensure that it is not damaged due to any overload of forces. The shaft is supported by a stand on the
opposite side of the motor to keep it stationary, and the torque sensor and motor are connected via
USB 2.0 cables to a laptop to record the measurements during testing.

Since the torque on the LS rotor has a smooth profile, it was decided to perform the static torque-
load angle test on LS rotor. Figure 11 shows a close-up of the axial flux FMMG prototype at the initial
position. It can be seen that the three disc offset angles, θH , θM , and θL, are fully aligned, which means
the load angle δg = 0. For this test, the HS rotor disc was held stationary with a G-clamp while the
LS rotor disc was turned by the servo motor at 0.5 rev/min. The sampling rate of the torque sensor
was set as 25 samples/sec. Figure 12 shows the measured torque as a function of load angles together
with the predicted results, which confirms that the maximum torque of the FMMG occurs at a load
angle of 90◦. For this specific FMMG prototype, the corresponding mechanical displacement angle is
90◦/pL = 7.5◦, which is exactly a half PM pole-pitch angle.

So far, the experimental investigations have been limited to the condition where only one FMMG
component rotates while keeping the other two stationary. To demonstrate the load angle of FMMGs
under steady-state conditions, further tests are performed where the FMMG operates under different
load conditions.

For the setup shown in Figure 13(a), two pulley couplings were attached to each FMMG rotor
disc. The LS rotor disc is connected to the brushless DC servo motor and driven at a constant speed
of 30 rev/min. The HS rotor disc is connected to a PM Vernier machine, which operates in generator
mode feeding an adjustable RLC load and acts as the load to the FMMG. With the gear ratio of 1 : 6,
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Figure 11. A close-up picture of the axial flux FMMG prototype showing the offset angles of each disc
at no-load condition.

Figure 12. Comparison of the measured and predicted torque-load angle characteristics.

the HS rotor disc rotates at 180 rev/min in the opposite direction.
Since the modulator of the FMMG is stationary, the centre line of the top surface on one of the

modulator pole-pieces is used as the reference, which means θM = 0◦ and leaves us with two more
degrees of rotational freedom, i.e., rotation of the LS and HS rotor discs. Considering the point in time
at which one of the LS magnet poles aligns with the centre line of the marked stationary modulator
pole-piece, the angle θL is thus taken as 0. At this point, the angular position on the HS rotor disc, θH ,
can be easily observed and converted to the load angle using δg = pHθH . Using a strobe-light, the exact
points in time for different load torques are captured by a camera as shown in Figures 13(b)–13(e). It is
shown that each load condition is associated with a specific load angle of an FMMG under steady-state
operation. With an increase in load torque, the load angle also increases.

5. THE USE OF LOAD ANGLE IN FMMG AND MGM DESIGN

With the concept of load angle, better understanding of angular relationship among three FMMG
components can be developed. The finite element modelling of an FMMG can also be made simpler
by selecting appropriate initial angles. Since magneto-static FE solution is usually used to model
an FMMG, a common practice is to position the gear components so that the peak torque can be
realized [23], which means δg = 90◦. An easy way to realize this is to align the PM pole axis of a rotor
disc with that of a modulator pole-piece and then position the PM pole axis of the other rotor disc with
an offset mechanical angle of 90◦/pL,H as illustrated in Figure 8.
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(a)

(b) (c)

(d) (e)

Figure 13. Load angle tests of the axial flux FMMG prototype under steady-state conditions, where
(a) test set-up, (b)–(e) steady-state operation under different loads showing respective load angles.

It should be noted that if the losses of an FMMG can be ignored, the load angles measured from
steady-state or static condition under the same load torque should be identical. However, owing to the
core losses, the load angle of an FMMG under steady-state is always greater. This offers an alternative
way of determining rotation losses of an FMMG by observing the difference between estimated load
angle δ∗g and true load angle δg. The torque associated with these two load angles can be obtained
by either FE calculation or measurements, which are then used to determine the rotational loss (core,
frictional and windage losses) of an FMMG.

In classical electrical machine theory, the load angle parameter of a synchronous machine closely
relates to its power transfer capability and stability. It is of critical importance to monitor and control
the load angle of the machine to safeguard its reliable operations. Likewise, from an operational
perspective, it is desirable to operate an FMMG within its maximum torque capability, i.e., its load
angle δg < 90◦. Otherwise, the FMMG will move into a unstable region causing pole-slipping and
eventual disengagement between input and output ports. A reengaging of the FMMG usually requires
a complete stop of the system. Thus, it is important to monitor the load condition of an FMMG to
ensure a smooth operation of the system, especially for certain safety critical applications. The load
angle parameter could be very useful for the condition monitoring of FMMGs.

For magnetically geared electrical machines where an FMMG and a PM machine are integrated
into a single volume, it is important to ensure a balanced design between the gear and machine parts. A
method has been proposed in [21] to characterize a magnetically geared machine (MGM) using a single
FE solution under a specific load angle. This could greatly simplify the design optimization process of
these complicated MGMs.
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6. CONCLUSION

In this paper, a detailed derivation of the load angle of flux modulated magnetic gears is presented,
which is validated by both FE simulation and experimental measurements. The study shows that an
FMMG does not transfer any torque at its minimum load angle (δg = 0◦) and attains its maximum
torque capacity at a load angle of 90◦. This implies that the load angle parameter of an FMMG has
a similar significance to that of a classical synchronous machine. By utilizing the load angle concept,
the torque characteristics of an FMMG can be expressed as a function of load angle alone, regardless of
the number of PM poles or physical angles. This simplifies the modelling process and allows for more
convenient comparison of different FMMGs under specific load conditions. Furthermore, the paper also
explores the potential significance and applications of the load angle concept.

To facilitate experimental measurements and observations, an axial flux FMMG was selected in
this research. However, it is worth noting that the load angle concept and angular relationship derived
from the study are also applicable to other FMMG topologies.

To make it viable for some practical applications, a simpler way of determining the load angle
of an FMMG is clearly needed. The main challenge is the acquisition of angular positions of FMMG
rotors, which calls for more innovative methods or magnetic sensing techniques. Future studies should
be encouraged to address these challenges.
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APPENDIX A. LIST OF SYMBOLS

Symbols Definition Symbols Definition

δg Load angle GM Gear ratio
θL LS rotor position θH HS rotor position
pH PM pole-pairs on HS rotor pL PM pole-pairs on LS rotor
ωH Angular velocity of HS rotor ωL Angular velocity of LS rotor
ωM Angular velocity of modulator qM Number of modulator segments
ZH HS air-gap width ZL LS air-gap width
hx General component thickness px General amount of pole-pairs on rotor
FH MMF of HS rotor MH MMF harmonic magnitude of HS PM
FL MMF of LS rotor ML MMF harmonic magnitude of LS PM
ϕTL Total flux in LS air-gap PMod Reluctance due to modulator segments
ϕH Flux in HS air-gap ϕHm Modulated flux in LS air-gap
ϕL Flux in LS air-gap ϕLm Modulated flux in HS air-gap
ϕTx General total flux in a air-gap P Permeance function of axial-flux path
ϕTH Total flux in HS air-gap Pavg Reluctance of yokes, air-gaps & PMs
B(r, θ) Flux density in region ωj,k Angular speed relations for HS rotor
Ax Air-gap effective surface area ωi,k Angular speed relations for LS rotor
W ′

HS Co-energy in HS air-gap IϕTHS
Integral of total flux in HS air-gap

W ′
LS Co-energy in LS air-gap IϕTLS

Integral of total flux in LS air-gap
ri Inner region radius pj,k Pole-pair relationship for HS rotor
ro Outer region radius pi,k Pole-pair relationship for LS rotor
THS Torque on HS rotor ϕx General flux in adjacent airgap
TLS Torque on LS rotor ϕxm General modulated flux in opposite airgap
TM Torque on modulator |Tx(δg)| Torque at variable load angle
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APPENDIX B. INTEGRATION OF FLUX EQUATIONS

The following derivations is used for the integration of modulated harmonics [22]:

ϕx =

∫ 2π

0
cos(ax + b) cos(cx + d)dx (A1)

Using the identity
cos(a± b) = cos(a) cos(b) ∓ sin(a) sin(b) (A2)

the integrand of the flux can be expanded

cos(ax + b)· cos(cx + d) = (cos ax· cos b− sin ax· sin b)·(cos cx· cos d− sin cx· sin d)

= cos b· cos d· cos ax· cos cx− cos b· sin d· cos ax· sin cx

− sin b· cos d· sin ax· cos cx + sin b· sin d· sin ax· sin cx (A3)

Substituting into (A2) the integral expands to

ϕx = cos b· cos d

∫ 2π

0
cos ax· cos cxdx− cos b· sin d

∫ 2π

0
cos ax· sin cxdx

− sin b· cos d

∫ 2π

0
sin ax· sin cxdx− sin b· sin d

∫ 2π

0
sin ax· sin cxdx (A4)

If a = c the result is
ϕx = π·(cos b· cos d + sin b· sin d) = π · cos(b− d) (A5)

If a = −c the result is
ϕx = π·(cos b· cos d− sin b· sin d) = π · cos(b + d) (A6)

For the case where |a| ̸= |c| the equation is reduced to zero.
The integral of the flux equations can be therefore described as

ϕx =


π · cos(b− d) if a = c

π · cos(b + d) if a = −c

0 otherwise

(A7)

if a = c and b = d the integration is reduced to∫ 2π

0
cos2(ax + b)dx = π (A8)
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