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Nonuniform Structured Waveguides. WKB Approach

Mykola I. Ayzatsky1, 2, *

Abstract—The results of the development of an approximate approach for describing structured
waveguides, which can be considered as an analogue of the WKB method, are presented. This approach
gives possibility to divide the electromagnetic field in structured waveguides with slow varying geometry
into forward and backward components and simplify the analysis of the field characteristics, especially
the phase distribution. The accuracy of this method was estimated by comparing the solution of the
approximate system of equations with the solution of the general system of equations. For this, a
special code was written that combines the proposed approach with the more accurate one developed
earlier. For the case of fast damping of evanescent waves, a simple solution of the matrix equations
is obtained. Based on this approach, the possibility of correcting the phase distribution in a chain of
coupled resonators has been studied.

1. INTRODUCTION

Structured waveguides† based on coupled resonators play an important role in many applications. Their
applications in active devices have several distinctive features. First, transverse magnetic (TM) modes
with a large longitudinal component of electric field are used. These modes also have a radial electric
field component. Such configuration of the electric field leads to a significant increase in the electric
field near some boundary regions. This makes it difficult to describe such distributions analytically by
using simple functions. Second, in accelerators and high-frequency electronic devices, the distribution
of longitudinal electromagnetic fields (especially their phases) over the structure plays a decisive role.
Therefore, we need to have fast and versatile models that can be used for the calculation of electric field
distribution with high accuracy. This demand restricts the usage of many approximate approaches that
are effective in optics and photonics (see, for example, [1]).

There are powerful programs that can be used to calculate the RF characteristics of structured
waveguides, but they are difficult to use for analysis and preliminary design. For these purposes,
simpler models are needed. It is desirable that these models not only allow numerical analysis, but also
are based on equations whose solutions can be analyzed in simple cases. In many cases, at the first
stage of the study, the exact geometry of the waveguide can be replaced with a simpler, but similar one.

Electromagnetic fields in the homogeneously (periodically) structured waveguides can be effectively
described by the Floquet-Bloch’s theory and electrodynamic approach based on the field expansion in
forward and backward waves which constitute a complete orthogonal set of vector functions and have
strict physical foundation. In this case, the problem is one-dimensional as the amplitudes of the waves
depend only on one coordinate and can be found by solving the ordinary differential equations.

In the general case, when the coupled resonators are different, there are no physical concepts that
could simplify the understanding of the electromagnetic process. If the parameters of resonators change
slowly, we can expect that the electromagnetic fields will have some features of forward and backward

Received 26 March 2023, Accepted 2 May 2023, Scheduled 8 May 2023
* Corresponding author: Mykola I. Ayzatsky (mykola.aizatsky@gmail.com).
1 Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. 2 National Science Center Kharkov
Institute of Physics and Technology (NSC KIPT), Kharkov 610108, Ukraine.
† Waveguides that consist of similar (but not always identical) cells.



2 Ayzatsky

waves. In the case of inhomogeneous smooth waveguides, approximate approaches are a powerful tool
for studying its properties [2–5]. The development of asymptotic approaches for structured waveguides
is at an early stage. A formal method based on a generalization of the theory of coupled modes is
proposed [6, 7]. Since the calculation of the modes of periodic waveguides is not a simple task, the
matrix approach, which provides a procedure for direct calculation of the approximate distribution of
the electric field, seems more attractive [8].

For inhomogeneously structured waveguides, the electromagnetic problem becomes two-
dimensional, since the radial distribution of electromagnetic fields varies from one cell to another. As is
customary in electrodynamics, using the surface integral equation approach can reduce the dimension
of the problem. The method of Coupled Integral Equations (CIE) has been developed to calculate the
characteristics of structured waveguides used to create high-frequency filters [9]. Recently, it has been
proposed to use it to calculate the characteristics of accelerating structures [10–12]. Since the surfaces
in the CIE method are flat, an efficient method for solving the CIE system is to expand the unknown
field distributions in an orthonormal basis. In this case, we obtain the matrix difference equation or
the system of the matrix difference equations. In the general case, the vectors to find have an infinitive
dimension. Usually, we reduce them to some finite dimensions. The dimension of the reduced vectors
determines the number of eigenwaves that are involved into consideration. Indeed, let consider the
homogeneous structured waveguide. From the matrix difference equation we can get a transfer matrix
T that maps Vk to Vk+1: Vk+1 = TVk, where Vk ∈ Cn is the vector of coefficients of electric field
expansion. The transfer matrix must have dimension (n× n) (T ∈ Cn×n). It has n eigenvalues λs and

n eigenvectors Us. If Vk0 = Us, then Vk = λk−k0Us, k ≥ k0. In the general case, Vk =
n∑

s=1
λk−k0
s UsCs,

where Cs are constant complex numbers. It follows that n eigenvectors (waves) constitute solution. If
only the main (or several first) wave propagates, then (n − 1) eigenwaves are evanescent, which decay
(or increase) along the waveguide.

So, if we want to increase n (increase the accuracy of calculations), we need to be ready to deal
with a lot of evanescent solutions. This can be a serious problem because the matrix determinant equals
the product of all eigenvalues and will greatly decrease (increase) as n grows. There is also the problem
of calculating eigenvalues for large n. The CIE method is based on the procedure of dividing complex
volumes into simpler ones. The integral equations are formulated on the surfaces that connect these
simple regions. In many cases, electric fields have singularities at the boundaries of these surfaces, and
for a correct description of the field distribution, one has to use a lot of basis functions. To avoid the
above-mentioned problems with bad matrices, it is desirable to choose surfaces where the fields have
no singularities, and we can use a small number of basis functions. In the developed approaches [9],
the transverse electrical fields on the surfaces are unknowns. It is desirable to develop an approach in
which the longitudinal electric fields are unknown as this component plays the main role in the process
of beam-wave interaction.

Moreover, there is a question about the accuracy of approximate models which are widely used
for calculating the characteristics of structured waveguides with a sufficiently slow change in their
dimensions. This is especially important when studying the beam energy spread in accelerators and
its minimum, which can be achieved. Thus, in addition to complex computer models, approximate
approaches with a known accuracy and possibility of field characteristic calculations are needed.

In this paper we present results of investigation that solve some of the described above problems.

2. BASIC EQUATIONS

Consider a segment of a cylindrical structured waveguide (circular corrugated waveguide), whose
geometry is shown in Figure 1. The right and left ends of segment are connected to semi-infinite
circular waveguides. All segment volumes are filled with dielectric ε = ε′ + iε′′, ε′′ > 0. We divide
the segment into subregions, each of which is a circular waveguide. Unlike earlier works [9], we divide
each volume with large cross-section into two equal subvolumes (in general, they can be different) [11].
Volumes with large cross section will be numbered by the index k (1 ≤ k ≤ NR), subvolumes — by
k1 and k2 (k1 = k2 = k, bk1 = bk2 = bk). A small cross-sectional volume placed to the left of a large
cross-sectional volume with an index k will be numbered by the index k′ (1′ ≤ k′ ≤ (NR + 1)′). We will



Progress In Electromagnetics Research C, Vol. 133, 2023 3

Figure 1. Chain of pieces of cylindrical waveguides that is connected with semi-infinite cylindrical
waveguides.

consider only axially symmetric fields with Ez, Er, Hφ components (TM fields). Time dependence is
exp(−iωt).

Longitudinal components of electric field on the new surfaces are represented as

E(k)
z (r, z = zk + dk1) =

∑
m

Q(k)
m J0

(
λm

bk
r

)
, (1)

where J0(λm) = 0.
Using in each volume the standard expansion of the field into simple cylindrical waves and equating

the fields on the boundary surfaces, we obtain the matrix difference equation [11]

T (k)Q(k) = T+(k)Q(k+1) + T−(k)Q(k−1), k = 2, ..., NR − 1, (2)

with such boundary conditions

T (Q1)Q(1) + T (Q2)Q(2) = ZQ1 ,

T (QNR
−1)Q(NR−1) + T (QNR)Q(NR) = 0,

(3)

where T (k), T+(k), T−(k), T (Q1), T (Q2), T (QNR
−1), T (QNR

) are the matrices (see their definition in [11]),

and Q(k) = (Q
(k)
1 , Q

(k)
2 , Q

(k)
3 , ....)T are vectors of the coefficients of longitudinal field expansion in the

cross section inside the resonators. ZQ1 is proportional to the amplitude of the incident wave in the left
semi-infinite cylindrical waveguide.

Equation (2) is very similar in structure to the equations of coupled resonators. The coupled
resonators equations are approximate and relate the amplitudes of only the main eigenmodes (or several
different modes) in three neighboring resonators. The matrix difference equation is exact and takes into

account the coupling of all possible resonator eigenmodes (for infinite size of the vector Q(k)). Thus,
the matrix equation (2) can be considered as an improved model of coupled resonators.

We will use the possibilities of the CASCIE code [12] for computing T (k), T+(k), T−(k) matrices
and to compare the approximate results with the results obtained from solving Equation (2).

Before proceeding with the transformation of Equation (2), we need to characterize the properties

of matrices T (k), T+(k), T−(k). The matrices T (k) do not have any peculiarities (the determinants are
not small and the condition numbers are not large), and we can rewrite Equation (2) as

Q(k) = T̃+(k)Q(k+1) + T̃−(k)Q(k−1) (4)

where T̃±(k) = T (k)−1T±(k).
One of the important properties of the matrices T̃±(k) is its non-defectivity. Equation (4) describes

the electric field at the given frequency ω. It is known that for a homogeneous periodic waveguide
(T̃+(k) = T̃−(k) = T̃ ) the electric field is the sum of an infinite number of eigenwaves, which can differ
greatly from each other. There are the propagation waves and evanescent fields. Floquet multiplies λs

of the evanescent fields take both very small and very large values. If we designate the eigenvalues of
the matrix T̃ as θs, then it follows from (4) that the Floquet multipliers λs of the electromagnetic field
are determined by the characteristic equation

λ2
s − θ−1

s λs + 1 = 0 (5)
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from which we get

λs = 0.5θ−1
s ∓

√
0.25θ−2

s − 1 (6)

To get a set of increasing and decreasing values of λs, the values of θs must decrease as the index s
increases. The same is true for inhomogeneous waveguides. Therefore, the determinants of matrices
T̃±(k) will decrease if we increase their sizes and can become very small. It can lead to large errors when
performing matrix operations. All of the above is confirmed by the results of calculations which are
presented in Table 1. These data refer to a homogeneous disk-loaded waveguide with bk′ = 1.381 cm,
bk = 4.16186 cm, dk = 2.9147 cm, dk′ = 0.5842 cm, phase shift per cell φ = 2π/3, f = 2.856GHz.

Table 1. Determinant and eigen values of the matrix T̃ .

Size of matrix T̃ 2× 2 3× 3 4× 4 5× 5 6× 6

Determinant −1.97E−05 −4.41E−13 −1.36E−23 −5.97E−37 −3.96E−53

θ1 −1.01E+00 −1.00E+00 −1.00E+00 −1.00E+00 −1.00E+00

θ2 1.95E−05 3.98E−05 4.67E−05 4.78E−05 4.79E−05

θ3 1.11E−08 4.44E−08 7.59E−08 8.91E−08

θ4 6.55E−12 4.22E−11 1.10E−10

θ5 3.89E−15 3.49E−14

θ6 3.06E−18

3. TRANSFORMATION OF THE BASIC EQUATIONS

As Equation (4) is of the second order, we can represent the solution of this matrix difference equation
as the sum of two new vectors [13]

Q(k) = Q(k,1) +Q(k,2). (7)

By introducing new unknowns Q(k,i) instead of the one Q(k), we can impose an additional condition.
We write this condition in the form

Q(k+1) = M (k,1)Q(k,1) +M (k,2)Q(k,2), (8)

where M (k,i) are arbitrary nondefecting matrices. Using (7) and (8) we can rewrite (4) as

T̃+(k+1)
(
M (k+1,1) −M (k+1,2)

)
Q(k+1,1)

= −
(
T̃−(k+1) +

(
T̃+(k+1)M (k+1,2) − I

)
M (k,1)

)
Q(k,1) −

(
T̃−(k+1) +

(
T̃+(k+1)M (k+1,2) − I

)
M (k+1,2)

+
(
T̃+(k+1)M (k+1,2) − I

)(
M (k,2) −M (k+1,2)

))
Q(k,2), (9)

T̃+(k+1)
(
M (k+1,1) −M (k+1,2)

)
Q(k+1,2)

=
(
T̃−(k+1) +

(
T̃+(k+1)M (k+1,1) − I

)
M (k,2)

)
Q(k,2) +

(
T̃−(k+1) +

(
T̃+(k+1)M (k+1,1) − I

)
M (k+1,1)

+
(
T̃+(k+1)M (k+1,1) − I

)(
M (k,1) −M (k+1,1)

))
Q(k,1). (10)

We choose the matrices M (k,i) (i = 1, 2) so that they satisfy the quadratic matrix equations

T̃−(k+1) +
(
T̃+(k+1)M (k+1,i) − I

)
M (k+1,i) = 0. (11)
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Then the system (9) is transformed into

T̃+(k+1)
(
M (k+1,1) −M (k+1,2)

)
Q(k+1,1)

=
{
T̃−(k+1)M (k+1,2)−1

(
M (k+1,1) −M (k+1,2)

)
+ T̃−(k+1)M (k+1,2)−1

(
M (k,1) −M (k+1,1)

)}
Q(k,1)

+T̃−(k+1)M (k+1,2)−1
(
M (k,2) −M (k+1,2)

)
Q(k,2), (12)

T̃+(k+1)
(
M (k+1,1) −M (k+1,2)

)
Q(k+1,2)

= −
{
T̃−(k+1)M (k+1,1)−1

(
M (k+1,2) −M (k+1,1)

)
+ T̃−(k+1)M (k+1,1)−1

(
M (k,2) −M (k+1,2)

)}
Q(k,2)

−T̃−(k+1)M (k+1,1)−1
(
M (k,1) −M (k+1,1)

)
Q(k,1). (13)

If elements of matrices M (k,i) vary sufficiently slowly with k, then the differences |M (k+1,i)
s,m −M

(k,i)
s,m |

are small, and we can get approximate equations by neglecting the second terms in the right side of
Equations (12) and (13) [13].

The matrices M (k,i) are the solutions of the same quadratic matrix equations

T̃−(k) +
(
T̃+(k)M (k,i) − I

)
M (k,i) = 0. (14)

For homogeneous waveguide T̃−(k) = T̃+(k), if the waveguide structure varies sufficiently slowly with k,
then the differences between entries of the matrices T̃−(k) and T̃+(k) are small.

The matrices T̃−(k) and T̃+(k) are non-defective, and their eigenvalue expansion can be written as

T̃+(k) = U+(k)Θ+(k)U+(k)−1, (15)

T̃−(k) = U−(k)Θ−(k)U−(k)−1 =
(
U+(k) +∆U−(k)

)(
Θ+(k) + δΘ−(k)

)(
U+(k) +∆U−(k)

)−1
. (16)

Since the matrices ∆U−(k) and δΘ−(k) are small, we can neglect the quadratic terms

T̃−(k) = U−(k)Θ−(k)U−(k)−1 = T̃+(k) +∆1T̃
−(k) +∆2T̃

−(k), (17)

where
∆1T̃

−(k) = U+(k)δΘ−(k)U+(k)−1, (18)

∆2T̃
−(k) = ∆U−(k)Θ+(k)U+(k)−1 − U+(k)Θ+(k)U+(k)−2∆U−(k). (19)

It can be shown that ∥∆2T̃
−(k)∥ ≪ ∥∆1T̃

−(k)∥‡, and it is natural to make the assumption that we

can neglect ∆2T̃
−(k), then

T̃−(k) ≈ T̃+(k) +∆1T̃
−(k) = U+(k)Θ−(k)U+(k)−1. (20)

With this approximation we can find the solutions of the quadratic matrix equations (14). Taking
into account the decompositions (15) and (20), we can find that

M (k,i) = U+(k)Λ(k,i)U+(k)−1, (21)

where i = 1, 2, Λ(k,i) = diag(λ
(k,i)
1 , λ

(k,i)
2 , ...). From (14) we get characteristic equations for λ

(k,i)
s

θ+(k)
s λ(k,i)2

s − λ(k,i)
s + θ−(k)

s = 0, (22)

whose solutions are

λ(k,i)
s =

1

2θ
+(k)
s

∓

√√√√( 1

2θ
+(k)
s

)2

− θ
−(k)
s

θ
+(k)
s

. (23)

‡ We will use the Frobenius norm ∥M∥F =
√∑

i,j
M2

i,j .
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We can also transform Equations (12) and (13)

Q(k+1,1) = M
r(k)
Q1

Q(k,1) =
{
M (k+1,1) + M̃ (k+1,1)

(
M (k,1) −M (k+1,1)

)}
Q(k,1), (24)

Q(k+1,2) = M
r(k)
Q2

Q(k,2) =
{
M (k+1,2) − M̃ (k+1,2)

(
M (k,2) −M (k+1,2)

)}
Q(k,2), (25)

where M̃ (k,i) = U+(k)Λ̃(k,i)U+(k)−1, Λ̃(k,i) = diag
(
λ̃
(k,i)
1 , λ̃

(k,i)
2 , ...

)
,

λ̃(i)
s = λ(k,i)

s

(
λ(k,1)
s − λ(k,2)

s

)−1
. (26)

From (26) it follows that Equations (24) and (25) are not valid for λ
(k,1)
s ≈ λ

(k,2)
s that occur at the

edges of passbands. This case requires special consideration.

We will call Q(k,1) the forward solution (|λ(k,1)
s | → 0, s → +∞) and Q(k,2) as the backward

(|λ(k,2)
s | → 0, s → −∞).
Equation (25) gives growing solutions when moving in the positive direction of the waveguide axis;

therefore, it is necessary to calculate the vectors by moving in the negative direction. For this, we need

to find a matrix inverse to M
r(k)
Q2

Q(k,2) = M
r(k)−1
Q2

Q(k+1,2) = M
l(k)
Q2

Q(k+1,2). (27)

Matrix M
r(k)
Q2

contains the difference (M (k,2) −M (k+1,2)), and its inverse cannot be found directly

by using the properties of eigenvalue decomposition. As (M (k,2) − M (k+1,2)) is small, we can find an

approximate decomposition for M (k,2). We use the same procedure which we used to get the solutions
of the quadratic matrix equations (14). This procedure gives

M
l(k)
Q2

= U+(k+1)Λl(k)U+(k+1)−1, (28)

where Λl(k) = diag
(
λ
l(k)
1 , λ

l(k)
2 , ...

)
, λ

l(k)
s =

(
λ
(k+1,1)
s − λ

(k+1,2)
s

) [
λ
(k+1,2)
s

(
λ
(k+1,1)
s − λ

(k,2)
s

)]−1
.

Finally, our Wentzel-Kramers-Brillouin (WKB) system of equations take the form

Q(k+1,1) = M
r(k)
Q1

Q(k,1), (29)

Q(k,2) = M
l(k)
Q2

Q(k+1,2). (30)

Equations (29) and (30) have such solutions

Q(k+1,1) = M
r(k)
Q1

× ...×M
r(NC)
Q1

Q(NC ,1) =

k∏
k′=NC

M
r(k′)
Q1

Q(NC ,1)

Q(k,2) = M
l(k)
Q2

× ...×M
l(NR−NC)
Q2

Q(NR−NC+1,2) =

k∏
k=NR−NC

M
l(k′)
Q2

Q(NR−NC+1,2),

(31)

where
k∏

k′=NR−NC

Xk′ = Xk × ...×XNR−NC
. Decomposition (7)–(8) and the solutions (31) were used for

k = NC , ...., NR − NC + 1 as the approximate method is not applicable to the ending cells. We used
NC = 5. Using solutions (31), the system of linear equations (2), (3) (size (NZ × NR) × (NZ × NR))
that describe the chain of NR resonators (Q ∈ CNZ ) can be transformed into a new system with much
smaller size (NZ × 2NC)× (NZ × 2NC) as NC ≪ NR.
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4. ACCURACY ESTIMATION

We will investigate the characteristics of a smooth transition between two disk loaded waveguides with
parameters: bk′,I = 1.3810 cm, bk,I = 4.1618 cm, βg,I = vg,I/c = 0.02, bk′,II = 1.0200 cm, bk,II =
4.0785 cm, βg,II = 0.0062, dk,I = dk,II = 2.9147 cm, dk′,I = dk′,II = 0.5842 cm, Dk = dk,I +dk′,I = λ0/3,

ω0 = 2π2.856GHz and the phase shift per cell φI = φII = 2π/3§ The aperture and resonator radii
change according the formulas (see [12])

bk′ = 0.6745 +
√

−0.0506 + 27.4745βg,k, (32)

bk = 0.1576b2k′ − 0.1476bk′ + 4.0652, (33)

where

βg,k =
βg,I + βg,II

2
+

βg,I − βg,II
2

arctan {α(k − k0)}
arctan {α(3− k0)}

, (34)

and k = 3, ..., NR − 2, NR = 201, k0 = 101. Formulas (32) and (33) define the sizes of homogeneous
disk-loaded waveguide which has a phase shift φ = 2π/3 and a group velocity βg,k [12]. Dependences
of the geometric dimensions of three transitions with α = 0.03, α = 0.1, and α = 0.5 (denoted as 1, 2
and 3) are shown in Figure 2.

Figure 2. Dependences of aperture radius bk′ and resonator radius bk on the cavity number for three
transitions: 1 — α = 0.03, 2 — α = 0.1, 3 — α = 0.5.

The distributions of the longitudinal component of the electric field for the three transitions,
calculated with using the CASCIE code, are presented in Figure 3. It can be seen that for a sharp
transition (α = 0.5), a noticeable reflected wave (reflection coefficient R ≈ 0.1) is generated in the
region of the largest gradient.

The accuracy of the considered approximate method can be estimated by comparing the solution
of the approximate system of equations, which uses expressions (31), with the solution of general
system (2). Results of such a comparison are shown in Figure 4. For the homogeneous waveguide there
is no difference between the solutions of the approximate system and system (2) (an error is less than
10−8). It can be seen that for small gradients of geometric dimensions, the approximate approach is a
good method, giving small differences from the general solution.

The above results were obtained under the assumption that the chain under consideration is
connected with cylindrical waveguides through tuned couplers at its ends. If the right end of the
chain is shortened, then a reflected wave should appear, whose amplitude is equal to the amplitude of
the forward wave. The calculation results show that Equation (30) correctly describes the backward
solution for α ≤ 0.1.

The results of all calculations show that the assumptions made do not give permanent differences
between the solutions of the approximate system of Equations (31) and the solutions of the general
system (2). These differences tend to zero as α decreases. This confirms that our approach gives correct
asymptotic results.

§ These parameters correspond to the initial and final cells of the Stanford Linear Accelerator Center (SLAC) 3m section [14].
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Figure 3. Amplitude and phase of the longitudinal electric field at the centers of resonators for three
transitions: 1 — α = 0.03, 2 — α = 0.1, 3 — α = 0.5. Reflection coefficients for these geometries are:
1 — R = 1.1E−03, 2 — R = 3.7E−03, 3 — R = 9.9E−02.

Figure 4. Difference between the solutions of Equations (2) (CASCIE) and the solutions of the
approximate system of equations, which uses the expressions (31), for three transitions: 1 — α = 0.03,
2 — α = 0.1, 3 — α = 0.5.

5. APPROXIMATE SOLUTION OF THE BASIC EQUATIONS

Let us find out the role of evanescent modes in creating the field distribution in an inhomogeneous
waveguide. First of all, consider the homogeneous waveguide. In the passband the forward solution

is described by Equation (29) with constant matrix M
r(k)
Q1

= M (1,1) = U+(1)Λ(1,1)U+(1)−1, in which

eigenvalues Λ(1,1) = diag(λ
(1,1)
1 , λ

(1,1)
2 , ...) and eigenvectors are determined by the matrix T̃+(k). If

the initial vector Q(1,1) equals the sum of eigenvectors U
+(1)
s : Q(1,1) =

∑
s
qsU

+(1)
s , then Q(k,1) =∑

s
λ
(1,1)k−1
s qsU

+(1)
s , k ≥ 2. If

∣∣∣λ(1,1)
s

∣∣∣ ≪ 1 (s ≥ 2), then all evanescent modes decay rapidly, and

only a propagating wave will determine the structure of the field. The situation is more complicated

for an inhomogeneous waveguide. Difference equation (29) contains slightly different matrices M
r(k)
Q1

=

U r(k)Λr(k)U r(k)−1

Q(k+1,1) = M
r(k)
Q1

Q(k,1). (35)

As M
r(k)
Q1

are nondefective, eigenvectors U
r(k)
s can be considered as a basis, and we can represent

vector Q(k,1) as Q(k,1) =
∑
s
q
(k)
s U

r(k)
s . Then from (41) we get Q(k+1,1) =

∑
s
λ
r(k)
s q

(k)
s U

r(k)
s . Changing the
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basis U
r(k)
s =

∑
s′
u
(k+1)
s,s′ U

r(k+1)
s′ gives

Q(k+1,1) =
∑
s

λr(k)
s q(k)s U r(k)

s =
∑
s′

U
r(k+1)
s′

∑
s

λr(k)
s q(k)s u

(k+1)
s,s′ =

∑
s

q(k+1)
s U r(k+1)

s , (36)

where q
(k+1)
s =

∑
s′
λ
r(k)
s′ q

(k)
s′ u

(k+1)
s′,s .

Therefore, the solution of the matrix difference equation of the first order (35) can be written as
the sum of the “local” vectors, which define the radial field distribution. Indeed, for the electric field
we have

E(k)
z (r, z = zk + dk1) =

∑
p

Q(k)
p J0

(
λp

bk
r

)
=
∑
s

q(k)s

∑
p

U r(k)
s,p J0

(
λp

bk
r

)
. (37)

In many cases λ
r(k)
s for evanescent modes have small values. For example, from Table 1 and

formula (6) we find λr
2 = 4, 79E − 05, λr

3 = 8.94E − 08. This circumstance gives possibility to simplify

the described above procedure. We can suppose that λ
r(k)
s = 0 for s > 1 and get simple expressions for

vectors Q(k,1) (| u(k)1,s |≪ 1 for s ≥ 2)

Q(k,1) = q
(k)
1 U

r(k)
1 +

∑
s≥2

λ
r(k−1)
1 q

(k−1)
1 u

(k)
1,sU

r(k)
s ≈ q

(k)
1 U

r(k)
1 (38)

and the longitudinal electrical field

E(k)
z (r, z = zk + dk1) = q

(k)
1

∑
p

U
r(k)
1,p J0

(
λp

bk
r

)
. (39)

The solution to the first order difference equation

q
(k+1)
1 = λ

r(k)
1 u

(k+1)
1,1 q

(k)
1 , (40)

has a simple form

q
(k+1)
1 = q

(1)
1

k∏
s=1

λ
r(s)
1 u

(s+1)
1,1 . (41)

The factor q
(1)
1 is determined by the initial vector Q(1,1) (Q(1,1) =

∑
s
q
(1)
s U

r(1)
1,s ).

For a homogeneous waveguide λ
r(s)
1 = λr

1, u
(s+1)
1,1 = 1 and the longitudinal electrical field takes the

expected form

E(k)
z (r, z = zk + dk1) = q

(1)
1 (λr

1)
k
∑
p

U r
1,pJ0

(
λp

b
r

)
. (42)

It follows from (39) that we have separated the “radial” variation from the “longitudinal” one.

Indeed, q
(k)
1 is a solution to difference equation (40) and depends on the previous values of q

(s)
1 , s < k,

while the vector U
r(k)
1 is determined by the local matrix M

r(k)
Q1

(the first eigenvector of this matrix). For

inhomogeneity (34) the “radial” factors
4∑

p=1
U

r(k)
1,p are real and give changes in electric field up to 10%

(see Figure 5).
Calculations show that for structured waveguides with an inhomogeneity (34) and small gradients

(α ≤ 0.3) the approximate solution (38) gives good amplitude and phase accuracy (see Figure 6). Since

matrices M
r(k)
Q1

are a slow function of the cell number k, the factors u
(k)
1,1 (k ≥ 2) have absolute values

close to 1, but setting them equal to 1 gives a few percent error.
It should be noted that the simplifications used above do not reduce the requirements for the

accuracy of calculating the matrices M
r(k)
Q1

and their eigen characteristics. Analysis shows that for the
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Figure 5. “Radial” factors
4∑

p=1
U

r(k)
1,p at the centers of resonators (r = 0) for inhomogeneity (34) with

α = 0.1.

Figure 6. Difference between the solution of the approximate system of equations, which uses

the expressions (31), |Ez,k|WKB and the solution (39) |Ez,k|WKBSimpl at the centers of resonators for
inhomogeneity (40) with α = 0.3.

waveguides under consideration the necessary accuracy is achieved for the sizes of matricesM
r(k)
Q1

Nz ≥ 4.

It means that the presence of evanescent modes plays an important role in calculating λ
r(k)
1 , uk1,1, U

r(k)
1 .

It follows from the above results that the phase distribution of the longitudinal component of the

electric field in considered conditions is determined only by phases of the first eigen values λ
r(k)
1 of the

matrices M
r(k)
Q1

. It is important to note that the module of λ
r(k)
1 is not equal to one in our lossless, but

inhomogeneous case. Its value is determined by the inhomogeneity gradient.

6. PHASE DISTRIBUTION CORRECTION

It was said above that the distribution of longitudinal electromagnetic fields over the structure plays a
decisive role in the accelerators. To ensure synchronism between an electromagnetic wave and particles,
the phase of the longitudinal electromagnetic field must change according to the law determined by
the speed of the particles. For ultra-relativistic particles, the phase shift along one cell ∆φ(k) must
equal ωDk

c = 2πDk
λ , where ω = 2πf , f = c/λ — the working frequency, Dk — the cell length, c —

the velocity of light. If Dk = λ/3, then ∆φ(k) = 2π/3 and the ideal phase distribution has the form

φ(k) = 2π/3 × k. Phase shift between cells in real structure can differ from ∆φ(k) on the small value,
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but the value
k∑
i
∆φ(i) has to be close to the ideal phase distribution. This circumstance leads to the

need to tune the section after manufacturing (see, for example, [14–16]).
In previous sections, we considered an inhomogeneous waveguide, each cell of which has the radius

equals the radius of a cell of a homogeneous waveguide with ∆φ(k) = 2π/3 (33). Since the aperture
size changes, the phase distribution differs from 2π/3 × k law. It can be seen from Figure 3 that
the full phase deviation is significant, and the acceleration process will change to the deceleration
process. Therefore, correction of the phase distribution is necessary. Typically, such a correction
is carried out by successively changing the natural frequencies of the cells (usually by indenting the
cell walls). So, at the intermediate stage of tuning there can be inner reflections in the waveguide.
Approximate equation (35), in contrast to the exact system of Equations (2), does not correctly describe
such geometrical configurations. It was shown that its solutions become unstable for small, but sharp
changes in the parameters [10]. Nevertheless, the approximate equation (35) can confirm (or disprove)
the possibility of realizing the desired phase distributions.

To correct the phase distribution (Figure 7(a)), we can try to change the cell radii determined by

formula (33) so that the phases of λ
r(k)
1 take equal values 2π/3. We can add to the right hand of (33)

a new function. Since this function must be equal to zero for a homogeneous waveguide, it must be
the function of the gradient. We used correction function bk = b0,k + ∆bk = b0,k + η1(b0,k − b0,k−1) +
η2(b0,k−1 − 2b0,k + b0,k+1), where b0,k are determined by (33). Such correction significantly improves
the phase distribution. The maximum deviation from the 2π/3× k law is 1.8◦ (see Figure 7(b)).

(a) (b)

Figure 7. Phase distributions without (a) and with (b) correction for α = 0.1.

Better result is obtained by using a correction for the case of a linear change in the group velocity
with the cell number (constant gradient). This case plays an important role in accelerator technique
as on the base of such distributions the section with constant accelerating field can be created. The
most known section of this type is the SLAC 3-meter section [14]. Formula (34) with α → 0 gives
values that are very close to the values of group velocity in the SLAC section. With the help of the
correction bk = b0,k + η1(b0,k+1 − b0,k), a maximum deviation of 0.45◦ from the 2π/3 × k law can be
obtained (losses in the structure are also taken into account by introducing the imaginary part of the
permittivity ε = 1 + 0.000073i).

The results obtained show that for considered inhomogeneities there are “smooth” geometric
distributions of cell parameters in which the phase distributions differ from those required by
small values. Since the procedure for tuning the waveguide based on a successive change in the
eigen frequencies of the cells can lead to a “biperiodic” frequency distribution [10], but there are
“smooth” desired distributions, it is necessary to implement a multi-stage tuning procedure to avoid
biperiodicity [15, 16].
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7. CONCLUSIONS

The results of the development of an approximate approach, which can be considered as an analogue of
the WKB method, are presented. This approach gives possibility to divide the electromagnetic field into
forward and backward components and simplify the analysis of the field characteristics. The accuracy
of this method was estimated by comparing the solution of the approximate system of equations with
the solution of the general system of equations. For this, a special code was written that combines
the proposed approach with the more accurate one developed earlier. The main attractive feature of
the proposed approximate approach is the possibility of studying the characteristic of electromagnetic
waves in structured waveguides without taking into account the influence of the end cells (couplers),
which are frequency sensitive. We can also use the resulting equations and its solutions to study the
propagation of waves with different frequencies (within the propagation band), which is important for
taking into account certain characteristics and transient effects. Based on the proposed approach, a
system of equations can be constructed that describes the excitation of a waveguide by an external
current, taking into account the structure of the waveguide.
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