
Progress In Electromagnetics Research B, Vol. 101, 101–117, 2023

A Uniform Additional Term Using Fock-Type Integral to Unify
Edge Diffraction, Creeping Diffraction, and Reflection

in Lit and Shadowed Regions

Xin Du* and Jun-Ichi Takada

Abstract—The uniform geometrical theory of diffraction (UTD) calculating edge diffraction, creeping
diffraction, and reflection has been widely used to predict the shadowing problems for the beyond
5th generation. The limitation of the previous work, which only discussed the relationship between
edge diffraction and reflection in the lit region, has motivated the analysis of the difference between
creeping diffraction and edge diffraction in the shadowed region. In this paper, as the difference between
creeping diffraction and edge diffraction from a dielectric circular cylinder and an absorber screen,
respectively, a novel additional term is derived based on the UTD in the shadowed region. In addition,
a uniform additional term using the Fock-type integral is proposed to unify the formulations in the
lit and shadowed regions. The proposed uniform additional term is validated by the UTD and exact
solutions of a dielectric circular cylinder at millimeter-wave or sub-terahertz bands. From the discussion
of the results, the proposal can not only unify the formulations in the lit and shadowed regions but
also eliminate the fictitious interference. Through the proposal, we can separate the contribution of
the shadowed Fresnel zone number (FZ) and boundary conditions (i.e., the surface impedance and
polarization). The frequency characteristics of the shadowed FZ and boundary conditions are analyzed
and simulated near a shadow boundary at a high frequency (10GHz–100GHz). The results imply that
there is almost no dependency (less than 1 dB) on boundary conditions in the lit region while there
are a few dependencies (more than 1 dB) on boundary conditions in the shadowed region. This work
attempts to unify three different propagation mechanisms, i.e., reflection, edge diffraction, and creeping
diffraction, by using one formula.

1. INTRODUCTION

The uniform geometrical theory of diffraction (UTD) [1–5] has been widely used to predict the
performance of antennas, radar cross sections [6–8], and human-body shadowing problem at millimeter-
wave (mmWave) or sub-terahertz (sub-THz) band in the beyond 5th generation (B5G) mobile
communication systems [9–14]. The UTD based on Fermat’s principle provides the closed-form analytic
solutions of edge diffraction, creeping diffraction, and reflection [1–5]. The coefficients of reflection and
diffraction are derived from the exact solutions of the canonical problems [15]. In the exact solutions, the
total field can be represented as the sum of the infinite series of the Hankel and Bessel functions [15]. The
UTD approximates the Hankel function as the first term of its asymptotic expansion in high frequency
and replaces the Bessel function with contour integrals in the complex plane. Through the Pauli-
Clemmow modified method of steepest descent [16] and residue evaluation in the complex plane [17],
the total fields can be calculated by the uniform coefficients, which overcome the disadvantage of a
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discontinuity at the shadowing boundary in the geometrical theory of diffraction (GTD) [18]. Compared
with the numerical methods such as the Kirchhoff approximation (KA) [19–22] and the physical theory
of diffraction (PTD) [23, 24], the UTD using analytic uniform coefficients can achieve a faster prediction
with a lower computational load at a high frequency.

In a 2-dimensional problem, there are mainly two kinds of canonical problems, i.e., the wedge and
circular cylinder. Therefore, two types of UTD calculations exist. One of them calculates edge diffraction
from a wedge [1, 2], and the other calculates creeping diffraction and reflection from a circular cylinder [3–
5]. Similarly, there are mainly two types of modeling for the human body in shadowing problems. One
of them models the human body as an absorber screen [15, 25, 26], which can be seen as the wedge with
a wedge angle of zero. The other models the human body as a dielectric circular cylinder [27–31], which
considers the permittivity of the human skin.

In our previous work [32], a formula to unify edge diffraction and reflection from the absorber
screen and circular cylinder, respectively, was proposed in the lit region. Through [32], a reflected field
from a dielectric circular cylinder can be separated as an edge diffraction from an absorber screen and
an additional term. The work in [32] also showed a detailed derivation of that the diffraction from an
absorber screen is determined by the shadowed Fresnel zone (FZ) alone while the additional term is
determined by the boundary conditions (i.e., surface impedance and polarization) only. In addition, the
work in [32] analyzed that the edge diffracted field separated from the reflected field becomes dominant
near a shadow boundary (SB) when the frequency increases. Therefore, the work in [32] figured out
that the contribution of the FZ is larger than the contribution of the boundary conditions in the lit
region near the SB, especially at a high frequency. However, those analyses in the shadowed region have
not been studied yet.

This paper aims to derive an additional term between creeping diffraction from a dielectric circular
cylinder and edge diffraction from an absorber screen in the shadowed region. In addition, a uniform
additional term is proposed to unify the formulations in the lit and shadowed regions.

The additional term proposed in this work is different from the finger field mentioned in the
PTD [33]. The PTD improves the accuracy of the physical optics (PO) [34] by introducing the fringe
wave derived from the analytic solution based on PO. The fringe wave can be seen as the difference
between the PO and GTD diffraction coefficients. However, the additional term proposed in this work is
the difference between the edge and creeping diffraction coefficients of the UTD. Therefore, the proposal
in this work is different from the finger field in the PTD.

The remainder of this paper is organized as follows. The formulation of an additional term in the
shadowed region is derived in Section 2. A uniform additional term in the lit and shadowed regions is
proposed in Section 3. The validation of the proposal by using the simulation of the exact solutions of a
dielectric circular cylinder is conducted, and the results are shown in Section 4. A discussion of results
is explained in Section 5. Finally, Section 6 concludes this work, as well as the limitation of this work
and future work.

2. PROPOSED MODEL IN THE SHADOWED REGION

In this section, the proposed model is introduced in (1)–(5) first, and then its derivation will be explained
in (6)–(18). For the sake of simplicity, the two-dimensional (2D) problems of the infinite-height objects
with incident plane waves are considered.

As shown in Fig. 1, an additional term Ac between creeping diffraction and edge diffraction in the
shadowed region is proposed as

Ec ≈ Ed +Ac, (1)

Ac = −EiM

√
2

k0
p∗(ξc, qs,h)e

−jk0aθe−jπ
4
e−jk0s

√
s

(2)

with

ξc = Mθ, (3)

qs,h = −jM

(
η0
ηd

)±1

, (4)
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Figure 1. Model of the proposal in the shadowed region.

M =

(
k0a

2

) 1
3

(5)

where Ec denotes the creeping diffracted electric field from a dielectric circular cylinder. The quantity Ei

denotes the incident wave to the object, whose direction can be arbitrary. The quantity Ed denotes the
edge diffracted electric field from an absorber screen, which is generalized from the incident diffraction
point with a direction perpendicular to the incident direction. Parameter a denotes the radius of the
circular cylinder. Parameter s denotes the distance from the diffraction point to the receiver (Rx).
Parameter θ denotes the center angle of the circle. Quantities M and ξc are the UTD parameters
mentioned in [3–5]. Quantities qs and qh are parameters related to the boundary condition for the
perpendicular polarization (soft) and parallel polarization (hard), respectively. The ± sign in (4) is
directly associated with the s, h subscript of q. Quantity k0 denotes the wave number in the free space.
Quantities η0 and ηd denote the free-space impedance and surface impedance of the dielectric cylinder,
respectively. Function p∗(·) denotes the associated Fock-type integral, which is explained in Appendix A.

Similar to the work in [32], which only studies in the lit region, the application of (1) is that we
can separate the contribution of the shadowed FZ and boundary conditions (i.e., the surface impedance
and polarization) in the entire lit and shadowed regions. Since edge diffraction Ed is determined by
the shadowed FZ alone while the key factor qs,h corresponding to the boundary conditions (i.e., surface
impedance and polarization) is directly associated with the additional term Ac, the contribution of the
shadowed FZ and boundary conditions can be separated by (1).

A detailed derivation of the proposed formula is explained as follows. As shown in Fig. 2(a), the
diffracted field from an absorber screen derived from [1, 2] can be calculated as

Ed = EiD
e−jk0sd

√
sd

(6)

with

D =
−e−jπ

4

2
√
2πk0

sec
ϕd − ϕi

2
F

(
2k0s

d cos2
ϕd − ϕi

2

)
(7)

whereD denotes the edge diffraction coefficient of an absorber screen. Parameter sd denotes the distance
from the diffraction point to the Rx in Fig. 2(a). Parameters ϕi and ϕd denote the angles of the incident

absorber screen Rx Rx

circular cylinder

diffraction points

(a) (b)

Figure 2. Parameters of the models. (a) Model of edge diffraction. (b) Model of creeping diffraction.
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and diffracted rays, respectively, measured in a plane perpendicular to the edge at the diffraction point.
Function F (·) is the modified Fresnel integral mentioned in [1]. Parameter d is the distance parallel to
the direction of an incident wave from the diffraction point to the Rx. Parameters x and −x are the
distances perpendicular to the direction of the incident wave from the diffraction point to the Rx in the
lit and shadowed regions, respectively.

For x < 0, the small argument of the edge diffraction coefficient derived in [1] is approximated as

D ≈
√

2πk0sd + 2k0s
d
(
π −

(
ϕd − ϕi

))
ej

π
4

2
√
2πk0

. (8)

Since the diffraction points in Figs. 2(a)–2(b) can be seen as one point for x → 0, the slope angle of the
direction of diffraction in Figs. 2(a)–2(b) is equal to the center angle θ in Fig. 2(b). Therefore, ϕd − ϕi

can be approximated as π + θ. By applying the small argument of the sine function, we have

π −
(
ϕd − ϕi

)
≈ π − (π + θ) = −θ ≈ − sin θ =

x

sd
. (9)

By substituting (8) and (9) into (6), edge diffraction can be asymptotically approximated as

Ed ≈ 1

2
Eie−jk0sd +Ei e

−jk0sdej
π
4

√
2πsd

√
k0x =

1

2
Eie−jk0sd − Ei e

−jk0sdej
π
4

√
2πsd

√
k0|x| (10)

given that the condition |k0x| < 1 rad is held according to the radius of convergence for the Taylor series
expansion.

On the other hand, creeping diffraction from a dielectric circular cylinder derived from [3–5] is
calculated as

Ec = EiC
e−jk0sc

√
sc

(11)

with

C = −Me−jk0aθ

√
2

k0

{
e−jπ

4

2
√
πξc

[1− F (X)] + P̂ (ξc, qs,h)

}
, (12)

X =
k0s

cξc2

2M2
(13)

where C denotes the creeping diffraction coefficient. The quantity X is the UTD parameter mentioned
in [3–5]. Parameter sc denotes the distance from the diffraction point to the Rx in Fig. 2(b). Function

P̂ (·) denotes the Fock-type integral, which is explained in Appendix A.
For x → 0, (3) and (13) can be approximated as

ξc ≈ M sin θ = −M
x

sc
, X ≈ k0x

2

2sc
(14)

given that θ < 5◦ is satisfied according to the condition of the approximation sin θ ≈ θ. The vertical
component of sc is also considered as x because of sd ≈ sc for x → 0. The associated Fock-type integral
in (15) and the small argument of the Fresnel integral in (16) are applied as

P̂ (ξc, qs,h) =

(
p∗(ξc, qs,h)−

1

2
√
πξc

)
e−jπ

4 , (15)

F (X) ≈
(√

πX − 2Xej
π
4

)
ej(

π
4
+X). (16)

By substituting (14)–(16) into (11), creeping diffraction can be asymptotically approximated as

Ec ≈ 1

2
Eie−jk0sc −Ei e

−jk0scej
π
4

√
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√
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√
2
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4
e−jk0sc

√
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(17)

given that the condition |k0x| < 1 rad is held. Parameter s can denote either sd or sc because of sd ≈ sc

for x → 0. Therefore, by comparing (10) and (17), the additional term Ac in the shadowed region is
proposed as

Ac = −EiM

√
2

k0
p∗ (ξc, qs,h) e

−jk0aθe−jπ
4
e−jk0s

√
s

. (18)
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3. UNIFICATION OF FORMULAS IN THE LIT AND SHADOWED REGIONS

In our previous work [32], an additional term Ar between the reflected and diffracted fields in the lit
region was proposed as

Er ≈ Ed +Ar, (19)

Ar = −EiM

√
2

k0
p∗ (ξr, qs,h) e

−j ξ
r3

12 e−jπ
4
e−jk0s

√
s

(20)

with
ξr = −2M cos θi (21)

where Er denotes the reflected electric field from a dielectric circular cylinder. Parameter θi denotes
the incident angle, as shown in Fig. 3. Quantity ξr is the UTD parameter mentioned in [3–5].
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Figure 3. Model of the proposal in the lit region.

In this section, a uniform additional term in the lit and shadowed regions is proposed. The small
argument of ξr is derived in [32] as

ξr ≈ −M
x

sr
(22)

where sr is the distance from the reflection point to Rx. Because of sc ≈ sr for x → 0, we have ξc ≈ ξr

for x → 0 by comparing (14) with (22). Accordingly, ξ can denote either ξc or ξr. In addition, both θ
in (2) and ξr3 in (20) approach zero for x → 0. Therefore, Ac in (2) and Ar in (20) can be approximately
unified to one equation as

Ar ≈ Ac ≈ Au = −EiM

√
2

k0
p∗(ξ, qs,h)e

−jπ
4
e−jk0s

√
s

(23)

where Au denotes the uniform additional term for both lit and shadowed regions. The cases of ξ > 0,
ξ < 0, and ξ = 0 represent that the Rx is in the lit region, shadowed region, and SB, respectively.
Although |k0x| < 1 rad is the condition of the approximations (10) and (17), it is not the condition of
the proposal (23). From the validation in the next section, we will find that the proposal is still valid
for |k0x| > 400 rad.

4. VALIDATION OF PROPOSAL

In this section, the simulations using the exact solution of a dielectric circular cylinder are conducted
to validate the methods including the proposals. Specifically, the validation is designed to evaluate the
effect of the additional terms Ac,r,u. Therefore, edge diffraction adding the additional term is compared
with the reflection and creeping diffraction in the lit and shadowed regions, respectively.

Figure 4(a) shows the simulation environments of a semi-infinite-long absorber screen to calculate
edge diffraction Ed. The width of the screen is set to 2a. Fig. 4(b) shows the simulation environments
of a dielectric circular cylinder to calculate creeping diffraction or reflection Ec,r. The radius of the
circular cylinder is set to a. A uniform plane wave is incident to the object. The continuous wave (CW)
is used for simulation. Parameters x and d are distances perpendicular and parallel to the incident wave
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Figure 4. Simulation environment (top view). (a) Model of an absorber screen. (b) Model of a
dielectric circular cylinder.

from the object to the Rx, respectively. The cases of x > 0 and x < 0 represent the lit and shadowed
regions, respectively. Parameter f denotes the center frequency, which is considered at the mmWave
and sub-THz bands. Parameter ϵ̇r denotes the relative complex permittivity of the dielectric circular
cylinder. The relative complex permittivity and the dimension of the human skin are used [35]. Each
parameter of the simulation is summarized in Table 1.

Table 1. Simulation parameters.

Parameters Values

f (GHz) 40, 60, 80, 100

x (m) [−0.2, 0.2]

d (m) 2

a (m) 0.2

ϵ̇r

11.7− j14.3 (at 40GHz)

8.0− j10.9 (at 60GHz)

6.4− j8.6 (at 80GHz)

5.6− j7.1 (at 100GHz)

Ei (V/m) 1

There are four methods in the simulation, i.e., the UTD, proposal (Ar,c), proposal (Au), and exact
solution. As a reference of accuracy, the exact solution calculates the total field using the eigen-function
expansions as shown in Appendix B. In the UTD, the total field EUTD is calculated as

EUTD =

{
Eie−jk0d + Ec

r + Er
l (lit region)

Ec
r + Ec

l (shadowed region)
(24)

where Eie−jk0d denotes the incident wave to the Rx. The l and r subscripts of E are directly associated
with the fields from the left and right of the object, respectively, as shown in Figs. 4(a)–4(b).

In the proposal (Ar,c), the total field EPro1 is calculated as

EPro1 =

{
Eie−jk0d + Ed

r +Ed
l +Ac

r +Ar
l (lit region)

Ed
r + Ed

l +Ac
r +Ac

l (shadowed region)
(25)

where l and r subscripts of A are directly associated with the fields from the left and right of the object,
respectively, as shown in Figs. 4(a)–4(b).

In the proposal (Au), the total field EPro2 is calculated as

EPro2 =

{
Eie−jk0d +Ed

r + Ed
l +Au

r +Au
l (lit region)

Ed
r + Ed

l +Au
r +Au

l (shadowed region)
(26)
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The processor of the calculating computer is an Intel(R) Core(TM) i9-12900K CPU @ 3.19GHz.
The usable installed memory of the calculating computer is 63.7GB. The system type of the calculating
computer is a 64-bit operating system with an ×64-based processor. The simulation software is
MATLAB.

Figures 5–8 show the plots of the spatial distributions of the normalized receiving power (NRP),
which is the power density of the total field normalized by a free-space incident wave, at 40, 60, 80,
and 100GHz, respectively. For each frequency, both perpendicular polarization (perp.) and parallel
polarization (para.) are simulated. Parameter x is varied from −0.2 to 0.2m with an interval of 0.02m,
and hence each figure has 200 tests. The results show that the proposal (Au) and UTD are in good
agreements with the exact solution. Considering the exact solution as a reference, the authors calculate

(a) (b)

Figure 5. Validation of the proposed model at 40GHz. (a) Perpendicular polarization. (b) Parallel
polarization.

(a) (b)

Figure 6. Validation of the proposed model at 60GHz. (a) Perpendicular polarization. (b) Parallel
polarization.
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(a) (b)

Figure 7. Validation of the proposed model at 80GHz. (a) Perpendicular polarization. (b) Parallel
polarization.

(a) (b)

Figure 8. Validation of the proposed model at 100GHz. (a) Perpendicular polarization. (b) Parallel
polarization.

the root-mean-square error (RMSE) by (27).

RMSE =

√√√√ m∑
i=1

(
NRPMethod

i −NRPExact
i

)2
m

(27)

where NRPExact
i is the NRP calculated by the exact solution on a dB scale for the ith test. The quantity

NRPMethod
i is the NRP calculated by the other methods on a dB scale for the ith test. Parameter m

is the total number of tests per figure (i.e., m = 200). The comparison of the RMSEs among all the
methods is shown in Table 2.

The results show that the proposal (Ar,c) has accuracy with an RMSE of over 1 dB. However, the
proposal (Au) achieves a good accuracy with a low RMSE of less than 0.2 dB as well as the UTD,
compared with the exact solution. Therefore, the uniform additional term is validated in the lit and
shadowed regions. More validation results are shown in Appendix B. The comparison of the average
computational time for each method and frequency is summarized in Table 3.
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Table 2. The comparison of the RMSE among the UTD, proposal (Ar,c), and proposal (Au).

Methods UTD Proposal (Ar,c) Proposal (Au)

40GHz (perp.) 0.01 dB 3.18 dB 0.09 dB

40GHz (para.) 0.03 dB 2.00 dB 0.12 dB

60GHz (perp.) 0.01 dB 3.26 dB 0.11 dB

60GHz (para.) 0.04 dB 2.37 dB 0.15 dB

80GHz (perp.) 0.01 dB 3.67 dB 0.14 dB

80GHz (para.) 0.04 dB 3.50 dB 0.17 dB

100GHz (perp.) 0.01 dB 3.69 dB 0.16 dB

100GHz (para.) 0.05 dB 2.95 dB 0.20 dB

Table 3. The comparison of the average computational time for each method and frequency.

Methods Exact solution UTD Proposal (Au or Ar,c)

40GHz 0.0141 s 0.0244 s 0.0247 s

60GHz 0.0182 s 0.0235 s 0.0235 s

80GHz 0.0231 s 0.0240 s 0.0274 s

100GHz 0.0351 s 0.0305 s 0.0284 s

From Table 3, we can find that the computational time of the exact solution becomes high when
frequency increases. However, similar to UTD, the computational time of the proposal is frequency-
independent, since they are analytic approaches.

5. DISCUSSION

From the results shown in Figs. 5–8, we can find that Au and Ar work well while Ac has an error in the
shadowed region. The reason for the error is considered fictitious interference by the phase difference
between edge diffraction and additional term. To validate the above consideration, the fields only
from the left side of the object are simulated. Simulations in this Section are of the same conditions
as Section 4, but simulation methods are different. Four methods are used, i.e., the proposal (Ar,c),
proposal (Au), UTD, and UTD (without A). The UTD is considered a reference to validate the proposal
(Ar,c) and proposal (Au). The UTD (without A) means that reflection or creeping diffraction is replaced
by edge diffraction to figure out the role of the additional term. The total field ignoring the field from
the right side of the object is defined as the ‘left field’ E2. The left fields EPro1

l , EPro2
l , EUTD1

l , and

EUTD2
l for the proposal (Ar,c), proposal (Au), UTD, and UTD (without A), respectively, are calculated

as

EPro1
l =

{
Eie−jk0d + Ed

l +Ar
l (lit region)

Ed
l +Ac

l (shadowed region)
(28)

EPro2
l =

{
Eie−jk0d + Ed

l +Au
l (lit region)

Ed
l +Au

l (shadowed region)
(29)

EUTD1
l =

{
Eie−jk0d + Er

l (lit region)

Ec
l (shadowed region)

(30)

EUTD2
l =

{
Eie−jk0d + Ed

l (lit region)

Ed
l (shadowed region)

(31)
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(a) (b)

Figure 9. The receiving power of the left field at 40GHz. (a) Perpendicular polarization. (b) Parallel
polarization.

(a) (b)

Figure 10. The receiving power of the left field at 60GHz. (a) Perpendicular polarization. (b) Parallel
polarization.

Figures 9–12 show the plots of the NRP of the left field at 40, 60, 80, and 100GHz, respectively.
For each frequency, both perpendicular polarization and parallel polarization are simulated. Parameter
x is varied from −0.2 to 0.2m. To reproduce the ripple of the blue line in Figs. 9–12, each method
is simulated 1000 points per figure for the sufficient samples [22]. The results show that the proposal
(Au) is in good agreement with the UTD while the proposal (Ar,c) has a fictitious interference ripple in
the shadowed region. To explain the reason, the phase of each field is analyzed in the shadowed region.
According to (11), (6), (18), and (23), the phases of Ec

l , E
d
l , A

c
l , and Au

l are

arg(Ec
l ) ∼ k0sl +

π

4
, (32)

arg(Ed
l ) ∼ k0sl +

π

4
, (33)

arg(Ac
l ) ∼ k0sl +

π

4
+ k0aθ, (34)

arg(Au
l ) ∼ k0sl +

π

4
(35)
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(a) (b)

Figure 11. The receiving power of the left field at 80GHz. (a) Perpendicular polarization. (b) Parallel
polarization.

(a) (b)

Figure 12. The receiving power of the left field at 100GHz. (a) Perpendicular polarization. (b)
Parallel polarization.

where arg(·) denotes the phase function. Parameter sl is the distance from the left diffraction point to
the Rx.

From the phase analysis in (32)–(35), we can figure out the reason for the fictitious interference. For
the proposal (Au) in (29), each term in the case of the shadowed region has the same phase, and hence no
fictitious interference occurs. However, for the proposal (Ar,c) in (28), Ac

l and Ed
l have different phases,

and hence a fictitious interference occurs. Especially, at a high frequency where k0 is large, the fictitious
interference is significant, as shown in Figs. 9–12. That fictitious interference is not significant in the lit
region, since the incident wave Eie−jk0d only exists in the lit region and is dominant (corresponding to
0 dB in Figs. 9–12. Therefore, the contributions of the proposed uniform additional term are not only to
unify the formulations in the lit and shadowed regions but also to eliminate the fictitious interference.

Furthermore, Figs. 9–12 show that there is a maximum 5.91 dB gap between the UTDs with and
without A. Therefore, the proposed uniform additional term plays a nonnegligible role in accuracy.
One application of the proposal is to figure out the structure of the field. Similar to the previous work
in [32], the contributions of the shadowed FZ and boundary conditions (i.e., the surface impedance and
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polarization) can be separated as

Er,c ≈ Ed +Au (36)

where Er,c denotes either the reflected electric field or the creeping diffracted electric field. Quantities
Ed and Au correspond to the influences of the shadowed FZ and boundary conditions, respectively.

Through (36), we can analyze the frequency characteristics of the separated terms representing
the surface impedance and polarization in the first FZ, where the prediction of the shadowing effect is
important in the B5G [32]. Simulation conditions are the same as in Section 4 but use a conducting
circular cylinder at 10–100GHz. Figs. 13(a)–13(b) show the frequency characteristics among the sum
of the edge diffracted and incident waves, the sum of the reflected and incident waves, and uniform
additional term at the frequencies from 10 to 100GHz when x is set to 0.03m (within the first FZ at
100GHz) in the lit region. Figs. 14(a)–14(b) show the frequency characteristics among edge diffraction,
creeping diffraction, and uniform additional term at the frequencies from 10 to 100GHz when x is set
to −0.03m in the shadowed region. From the results, we can find that the uniform additional term

(a) (b)

Figure 13. The frequency analysis of the field in the lit region (x = 0.03m). (a) Perpendicular
polarization. (b) Parallel polarization.

(a) (b)

Figure 14. The frequency analysis of the field in the shadowed region (x = −0.03m). (a) Perpendicular
polarization. (b) Parallel polarization.
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becomes weak when frequency increases, since the magnitude of Au is the order of f− 1
6 according to (23)

as

Au = −Ei

(
k0a

2

) 1
3
√

2

k0
p∗(ξ, qs,h)e

−jπ
4
e−jk0s

√
s

∼ O

(
k
− 1

6
0

)
∼ O

(
f− 1

6

)
(37)

where O(·) is the symbol of the order. The other components become strong with an increase in
frequency in the lit region according to [32] as

lim
x→+0

Ed + Eie−jk0d ≈ 1

2
Eie−jk0d + Ei e

−jk0sej
π
4

√
2πs

√
k0|x| ∼ O

(
k

1
2
0

)
∼ O

(
f

1
2

)
(38)

while they are weak in the shadowed region with an increase in frequency according to (10) as

lim
x→−0

Ed ≈ 1

2
Eie−jk0d − Ei e

−jk0sej
π
4

√
2πs

√
k0|x| ∼ O

(
−k

1
2
0

)
∼ O

(
−f

1
2

)
. (39)

Therefore, at a high frequency, the contribution of the boundary condition is not dominant in the lit
region, but it is still significant in the shadowed region.

The contribution of boundary condition is evaluated by simulating the dependencies on the surface
impedance and polarization. To evaluate the dependencies on the surface impedance, the exact solutions
of the NRPs for a dielectric cylinder and a perfect electric conductor (PEC) circular cylinder are
simulated and compared. To check the dependencies on polarization, the exact solutions of NRPs for a
dielectric cylinder with perpendicular and parallel polarization are simulated and compared. The size
and location of the simulated object are mentioned in Section 4. Fig. 15(a) shows the comparison of the
exact solutions between the PEC and human skin for the parallel polarization at 40GHz. By calculating
the RMSEs between PEC and human skin in Fig. 15(a), we can find that there are RMSEs of 0.67 dB and
2.72 dB in the lit (x > 0) and shadowed (x < 0) regions, respectively. Moreover, Fig. 15(b) shows the
comparison of the exact solutions between the perpendicular polarization and parallel polarization for
the human skin at 40GHz. By calculating the RMSEs between perpendicular and parallel polarizations
in Fig. 15(b), we can find that there are RMSEs of 0.28 dB and 1.99 dB in the lit (x > 0) and shadowed
(x < 0) regions, respectively. The results imply that there is almost no dependency (less than 1 dB) on
boundary conditions (i.e., the surface impedance and polarization) in the lit region while there are a
few dependencies (more than 1 dB) on boundary conditions in the shadowed region.

(a) (b)

Figure 15. The exact solutions of scattering from a circular cylinder in different boundary conditions.
(a) Dependency on the surface impedance. (b) Dependency on polarization.

Although this work only focuses on an absorber screen and a dielectric circular cylinder, it
attempts to unify three different propagation mechanisms, i.e., reflection, edge diffraction, and creeping
diffraction, by using one formula. The authors expect that people will deeply understand the physical
phenomena inside of natural behavior from this work.
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6. CONCLUSION

This paper derived an additional term based on a UTD to model the difference between creeping
diffraction and edge diffraction from a dielectric circular cylinder and an absorber screen, respectively,
in the shadowed region. In addition, a uniform additional term using the Fock-type integral was proposed
to unify the formulations in the lit and shadowed regions. The proposals were validated by the UTD
and exact solutions of a dielectric circular cylinder at mmWave/sub-THz bands. From the discussion
of the results, the proposed uniform additional term could not only unify the formulations in the lit
and shadowed regions but also eliminate the fictitious interference. The contributions of the shadowed
FZ and boundary conditions (i.e., the surface impedance and polarization) could be separated. The
frequency characteristics of the shadowed FZ and boundary conditions were analyzed and simulated near
the SB at a high frequency (10GHz–100GHz). The results implied that there was almost no dependency
(less than 1 dB) on boundary conditions in the lit region while there were a few dependencies (more
than 1 dB) on boundary conditions in the shadowed region. Although this work was only limited to a
dielectric circular cylinder, it attempted to unify three different propagation mechanisms, i.e., reflection,
edge diffraction, and creeping diffraction, by using one formula. In the future, the structure of the field
behind an arbitrarily shaped object will be analyzed.
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APPENDIX A. COMPUTATION OF THE FOCK-TYPE INTEGRAL

The Fock-type integral P̂ (·) is defined as

P̂ (ξ, q) =
e−jπ

4

√
π

∫ ∞

−∞

v′(τ)− qv(τ)

w′
2(τ)− qw2(τ)

e−jξτdτ (A1)

with

v(τ) =
√
πAi(τ), (A2)

w2(τ) = 2
√
πe−jπ

6 Ai
(
e−j 2π

3 τ
)

(A3)

where Ai(·) is the Airy integral defined as

Ai(τ) =
1

2π

∫ ∞

−∞
e
±j

(
t3

3
+τt

)
dt. (A4)

Equation (A1) can be calculated by using the associated Fock-type integral as

P̂ (ξ, q) =

(
p∗(ξ, q)− 1

2
√
πξ

)
e−jπ

4 (A5)

where p∗(·) is the associated Fock-type integral, which can be calculated as

p∗ (ξ, q)=
1

2
√
π

∫ ∞

0


[
e−jπ

3 Ai′ (τ) + qAi (τ)
]
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π
6 Ai′

(
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) − [Ai′ (τ)− qAi (τ)] e−jξτ
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π
6 Ai′

(
e−j 2π

3 τ
)
+qe−jπ

6 Ai
(
e−j 2π

3 τ
)
dτ (A6)

with
r = e−j 2π

3 . (A7)

In MATLAB, Ai(τ) and Ai′(τ) can be calculated by using the codes of airy(τ) and airy(1, τ), respectively.
The numerical integral in (A6) can be categorized as

I(ξ) =

∫ ∞

0
f(τ)e−jrξτdτ. (A8)
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To evaluate the above type of numerical integration, a simple extension of a Fourier quadrature
method [5] is applied as

I(ξ) ≈ f(0)

(
1

jrξ
− e−jTrξ

T (rξ)2
+

1

T (rξ)2

)
+ T

sin2(Trξ/2)

(Trξ/2)2

N∑
n=1

f(τn)e
−jnTrξ (A9)

where T and N are the sampling interval and sampling number set to 0.1 and 180, respectively [5].

APPENDIX B. SCATTERING FROM A CIRCULAR CYLINDER

The electric field of a uniform plane wave is assumed to be incident, as shown in Fig. B1(a). The total
electric field EExact(·) scattered from a dielectric circular cylinder can be expressed as

EExact(ρ, ϕ) = Ei(ρ, ϕ) + Ei
(
ρ,±π

2

) ∞∑
n=−∞

j−nanH
(2)
n (k0ρ) e

jnϕ (B1)

with

an =
−ϵ̇

± 1
2

r Jn (k0a) J
′
n

(
k̇da

)
+ J ′

n (k0a) Jn

(
k̇da

)
ϵ̇
± 1

2
r H

(2)
n (k0a) J ′

n

(
k̇da

)
−H

(2)′
n (k0a) Jn

(
k̇da

) (B2)

where ρ denotes the distance from the center of the circular cylinder to the Rx. Parameter ϕ denotes the
azimuth angle of Rx measured from the incident direction, as shown in Fig. A1(a). Quantity Ei(ρ, ϕ)

denotes the incident electric field at the point (ρ, ϕ). Functions Jn(·) and H
(2)
n (·) denote the Bessel

function of the first kind and the Hankel function of the second kind, respectively, for the nth order.

Functions J ′
n(·) and H

(2)′
n (·) are the derivatives of Jn(·) and H

(2)
n (·), respectively. The ± sign in (B2) is

directly associated with perpendicular and parallel polarizations. k̇d denotes the complex wave number
in the dielectric cylinder. Parameters a and ϵ̇r denote the radius and relative complex permeability
of the circular cylinder, respectively. The real and imaginary parts of ϵ̇r correspond to the relative
permittivity and conductivity, respectively. Especially for a PEC, where the conductivity is infinity, the
coefficient is reduced as

aPECn =

{
−Jn(k0a)/H

(2)
n (k0a) (for perpendicular polarization)

−J ′
n(k0a)/H

(2)′
n (k0a) (for parallel polarization)

(B3)

where the derivation of coefficients an and aPECn can be found in Chapter 11 of [15].

circular cylinder

plane wave
Rx

Incident

direction

(a) (b)

Figure A1. The scattering from a circular cylinder. (a) Simulation model. (b) Simulation results
(a = 0.2m, ρ = 2m, f = 40GHz, ϵ̇r = 11.7− j14.3, and parallel polarization).
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Figure A1(b) shows the plot of the amplitude variation of the NRPs with respect to observation
angle ϕ. The simulation is under the conditions of a = 0.2m, ρ = 2m, f = 40GHz, ϵ̇r = 11.7 − j14.3,
and parallel polarization. The RMSE between the proposal and the exact solution is calculated as
0.45 dB. The results show that the proposed method presents a good accuracy, which has a low RMSE
of less than 0.5 dB by comparing it with the exact solution.
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11. Doré, J. B., Y. Corre, S. Bicais, J. Palicot, E. Faussurier, D. Ktenas, and F. Bader, “Above−90GHz
spectrum and single-carrier waveform as enablers for efficient Tbit/s wireless communications,”
2018 25th Inter. Conf. Telecom. (ICT), 274–278, Saint-Malo, France, 2018.

12. MacCartney, G. R., S. Deng, S. Sun, and T. S. Rappaport, “Millimeter-wave human blockage at
73GHz with a simple double knife-edge diffraction model and extension for directional antennas,”
2016 IEEE 84th Vehi. Tech. Conf. (VTC-Fall), 1–6, Montreal, QC, Canada, 2016.

13. Sun, S., T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “MIMO for millimeter-wave
wireless communications: Beamforming, spatial multiplexing, or both?,” IEEE Commun. Mag.,
Vol. 52, No. 12, 110–121, Dec. 2014.

14. Sun, S., G. R. MacCartney, M. K. Samimi, and T. S. Rappaport, “Synthesizing omnidirectional
antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave
communications,” Proc. IEEE Global Commun. Conf. (GLOBECOM), 3948–3953, San Diego, CA,
USA, Dec. 2015.

15. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, Hoboken, New Jersey, USA, 1989.

16. Clemmow, P. C., “Some extension to the method of integration by steepest descent,” Q. J. Mech.,
Appl. Math. III , 241–256, 1950.

17. Osipov, A. V. and Tretyakov, S. A., Modern Electromagnetic Scattering Theory with Applications,
274–277, Hoboken, New Jersey, USA: Wiley, 2013.

18. Keller, J. B., “Geometric theory of diffraction,” J. Opt. Soc. Am., Vol. 52, No. 2, 116–130, 1962.



Progress In Electromagnetics Research B, Vol. 101, 2023 117

19. Du, X., K. Saito, J. Takada, and P. Hanpinitsak, “A novel mirror Kirchhoff approximation method
for predicting the shadowing effect by a metal cuboid,” Progress In Electromagnetics Research M ,
Vol. 104, No. 18, 199–212, Sep. 2021.

20. Du, X. and J. Takada, “Mirror Kirchhoff approximation for predicting shadowing effect by a PEC
convex cylinder,” 2021 Appl. Computa. Electromagn. Soci., Hamilton, Canada, Aug. 2021.

21. Du, X. and J. Takada, “Low computational cost mirror Kirchhoff approximation for predicting
shadowing effect,” IEEE Access, Vol. 10, 23829–23841, Feb. 2022.

22. Du, X. and J. Takada, “Design of parameters of fast Fourier transform for three-dimensional split
step parabolic equations and mirror Kirchhoff approximation,” IEEE Access, Vol. 11, 44964–44976,
May 2023.

23. Basdemir, H. D., “Nonuniform currents flowing on a perfectly conducting cylinder,” 2011 XXXth
URSI General Assembly and Scientific Symposium, 1–4, Istanbul, Turkey, 2011.

24. Basdemir, H. D., “Fringe waves on an impedance cylinder,” Optik , Vol. 124, No. 21, 4999–5002,
2013.

25. Qi, Y., B. Currie, W. Wang, P. Y. Chung, C. Wu, and J. Litva, “Measurement and simulation
of radio wave propagation in two indoor environments,” Proc. 6th Inter. Symp. Pers., 1171–1174,
Toronto, Ontario, Canada, 1995.

26. Jacob, M., S. Priebe, A. Maltsev, A. Lomayev, V. Erceg, and T. Kürner, “A ray tracing based
stochastic human blockage model for the IEEE 802.11ad 60GHz channel model,” Proc. 5th Euro.
Conf. Antennas Propag. (EUCAP), 3084–3088, Rome, Italy, 2011.

27. Villanese, F., N. E. Evans, and W. G. Scanlon, “Pedestrian-induced fading for indoor channels at
2.45, 5.7 and 62GHz,” 2000 IEEE 52nd Vehi. Tech. Conf. (VTC-Fall), 43–48, Boston, MA, USA,
2000.

28. Fakharzadeh, M., J. Ahmadi-Shokouh, B. Biglarbegian, M. R. Nezhad-Ahmadi, and S. Safavi-
Naeini, “The effect of the human body on indoor radio wave propagation at 57–64GHz,” 2009
IEEE Antennas Propag. Soc. Inter. Symp., 1–4, North Charleston, SC, USA, 2009.

29. Duarte Carvalho de Queiroz, A. and L. C. Trintinália, “An analysis of human body shadowing
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