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LFM Signal Sources Classification Based on Self-Supervised Learning
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Abstract—Linear Frequency Modulation (LFM) signals are widely used in radar and sonar technology.
Many applications are interested in determining the source of an LFM signal. In recent years, the rapid
development of machine learning has facilitated research in various fields, including signal recognition.
The neural networks can extract the implicit features of the signals, which can help the system to
sort and recognize the signal sources quickly and accurately. High performance of neural networks
requires large amounts of high-quality labeled data. However, it is difficult and expensive to obtain
a large amount of high-quality labeled data. Simultaneously, some features will be lost during data
preprocessing, and feature extraction and classification tasks will be inefficient. The self-supervised
network is proposed in this paper for pre-training the signal waveform and fine-tuning the classification
with a small amount of labeled data. The proposed method can extract more signal waveform features,
save labeling costs, and has higher precision. This method can provide up to 99.7% recognition accuracy
at 20 dB.

1. INTRODUCTION

Linear Frequency Modulation (LFM) is a type of spread spectrum modulation technique that does not
require a pseudorandom code sequence. LFM signals are frequently employed in wireless communication,
sonar, and radar technologies due to their broad temporal breadth and bandwidth [1]. It is of great
significance to the identification of LFM signal sources, and it has been paid attention to by people
for a long time [2]. The traditional signal source identification methods are based on conventional
features such as pulse width, pulse amplitude, and angle of arrival. With the increasingly complex
electromagnetic environment, traditional methods based on inter-pulse parameters are difficult to
distinguish signal sources [3]. The intra-pulse feature is one of the most useful features of radar signals,
which can provide better stability and selectability.

The intra-pulse modulation features are the inherent features of the radar transmission signals and
contain more features of the transmitter, which includes intentional modulation feature and fingerprint
feature. For identifying the signal sources, wavelet packet feature, similarity coefficient, complexity,
bispectral feature, and entropy feature are the most commonly used intra-pulse parameters [4]. The
complexity and dynamic changes of intra-pulse features can be expressed more comprehensively in
time-frequency domain. Therefore, in this paper, the received signal is analyzed in the time-frequency
domain. Signal features with high degree of separation are extracted to complete the recognition and
classification of signal sources. Typical time-frequency analysis methods include Short-Time Fourier
Transform, Wavelet Transform, Choi-Williams Distribution Transform, and others [5]. In [6], a hybrid
classification method is proposed using distance profile (RP) and time-frequency images. Short-time
Fourier transform (STFT) is used to construct time-frequency images from the phase information of
range-compressed signals. Then the data is filtered by RP, and the time-frequency images corresponding
to the filtered data are used for classification. The classification of 6 signal sources can be achieved as
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high as 92% accuracy at the signal-to-noise ratio (SNR) of 0 dB, by using the time-frequency images.
In [7], the Choi-Williams distribution transform is employed to construct time-frequency images for
nine types of low probability of intercept (LPI) radar signals. The denoised time-frequency images are
utilized for feature extraction, and a softmax classifier is employed for signal classification.

In recent years, with the development of artificial intelligence, deep neural networks have been
introduced into the field of radar radiation source recognition [8]. The published works reveal that
better recognition performance can be achieved by neural networks than traditional methods, and the
recognition accuracy can be as high as 100% under high SNR conditions. In [9], a Convolutional Neural
Network (CNN) is constructed. Radar echoes are processed to generate bispectrum images. The dataset
is constructed using data augmentation techniques such as image flipping and random cropping. Three
signal sources are classified with up to 96% accuracy using this method, and better robustness and
generalization than traditional methods. Similarly, in [10], one-dimensional convolutional networks are
also used to complete signal source classification tasks. The difference is that the signal waveforms are
used for training. The classification of 8 types of signal sources can reach 100% accuracy at the SNR
of −10 dB. However, expensive labeled data is needed for supervised networks, and they are not suited
for handling complex tasks.

In this paper, the self-supervised network is proposed for pre-training the signal waveform and fine-
tuning the classification with a small amount of labeled data. This method is used to compensate the
defects of traditional signal recognition in the complex electromagnetic environment and to optimize
the deep learning method for signal source recognition. Compared with the time-frequency images,
the signal waveform contains more abundant information, rather than just the static pixel values.
Specifically, multiple feature dimensions are incorporated in time series data, including the features in
temporal, spatial and frequency. More features can be extracted for identifying. Moreover, the proposed
method does not require large amounts of high-quality labeled data, and avoids the need for manual
preprocessing and feature extraction. Additionally, more features of the signal waveform are retained,
which is more conducive to the downstream task of signal source recognition and classification.

This article is organized as follows. Section 2 introduces the model architecture including an
introduction to the objective function. Section 3 introduces the setup of the experiment. Section 4
provides the experimental procedure and discusses the experimental results. Finally, the primary content
of this paper is summarized in Section 5.

2. MODEL ARCHITECTURE

2.1. Self-Supervised Model

The self-supervised learning is primarily categorized into three types: context-based self-supervised
learning, time-series task-based self-supervised learning, and contrastive-based self-supervised learning.
The contrastive-based self-supervised learning is to compare a sample with other samples to construct
a self-supervised task, so that the learned feature representation is easier to distinguish under a certain
metric. In [11], a contrastive-based self-supervised model is utilized, and a new objective function is
proposed. This function measures the cross-correlation matrix between the outputs of two identical
networks and makes it as close as possible to the identity matrix. In this way, the same features are
extracted across different inputs, and the redundancy between vectors is minimized. The contrastive-
based self-supervised model is mostly used in image classification tasks. Therefore, the LFM signal needs
to be trained in the form of a time-frequency image obtained through time-frequency transformations.
Due to the process of time-frequency transformation, there is inevitable uncertainty between time and
frequency. Some details of the original signal may be lost in the conversion process, especially for some
high-frequency or rapidly changing signals. Thus, accurate signal representation and feature extraction
may be affected.

A self-supervised network model for the signal waveform is proposed in this paper. The model makes
LFM signals represented more accurately, and the loss of signal waveform features can be reduced. The
network flowchart is depicted in Fig. 1.

The valid pulse waveform X is fed into this model and first passes through the multi-layer
convolutional feature encoder f : X 7→ Z to extract features. The feature encoder consists of seven
blocks, each containing 1D convolutions, layer normalization [12], and GELU activation function [13].
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Figure 1. The flow chart of self-supervised network.

Then, the feature encoder output Z is fed into a context network h : Z 7→ C which follows the
transformer architecture [14, 15]. At the same time, Z can be limited in a finite set Q through the
quantization module Z 7→ Q, and Q is used as the target of the predicted value C.

2.2. Objective Function

In the pre-training process, the representation of the signal waveform is learned by solving the contrast
task L1. The task requires the recognition of the true quantized signal representation among a set of
interference terms in the presence of masking. The diversity loss L2 is also referenced to enhance the
training objective function. The output obtained by the feature encoder is squared and then averaged
as L3. The weighted sum of the three losses is used as the objective function for training:

L = L1 + γL2 + δL3 (1)

The contrastive loss is calculated from the results of prediction and quantization. The output Zt

of the feature encoder is masked and then fed into the context network to get the prediction Ct. The
model needs to recognize qt which is quantized from Zt, among k+1 quantized candidate representations
q̃ ∈ Qt. qt and k interference terms are included in Qt. The interference terms are sampled from the
quantized vectors of the same signal according to a uniform distribution. Contrast loss is defined as:

L1 = − log
exp(sim(ct, qt)/k)∑

q̃∼Qi

exp(sim(ct, q̃)/k)
(2)

where sim(a, b) = a⊤b/∥a∥∥b∥ represents the cosine similarity between contextual representation and
quantized vector.
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The goal of diversity loss is to increase the number of quantized representations. The diversity loss
is defined as:

L2 = 1−

G∑
g=1

exp(−
V∑

v=1

pgν log pgν)

GV
(3)

where G is the given number of sets. Each set has V choices.

2.3. Fine-Tuning

For the above trained self-supervised network model, the feature encoder module is frozen, and a
Multilayer Perceptron (MLP) with random initialization parameters is added. Only one hidden layer is
contained in the MLP. The backbone network of the pre-trained model is frozen so that effective transfer
learning can be achieved, especially in cases where the pre-training task is related to the fine-tuning
task. Only the MLP needs to be trained, which makes the fine-tuning process more efficient. The
information learned by a pre-trained model acts as a form of regularization during fine-tuning, which
reduces the risk of overfitting on new tasks. The cross-entropy loss function is used to calculate the
loss value of the model during the training process. Finally, the classification layer is fine-tuned using a
small amount of labeled data. The weights of the MLP are gradually adjusted, which makes it better
adapted to the target classification task.

3. EXPERIMENTAL SETUP

3.1. Data Preprocessing

The LFM signal is the most widely used waveform, because its waveform is easy to generate. The LFM
signal is widely used for pulse compression in radar systems. The pulse signal is periodic, and each LFM
signal has multiple valid pulse signals and invalid signals, so it is necessary to preprocess the sampled
LFM signal. The effective pulse signal is extracted as a sample, and it is fed into the neural network.

To extract the valid signal, it is necessary to frame the LFM signal first. The total length of the
LFM signal is N . Each frame is initialized with frame length L and frame shift l. The total number of
frames of the sampled signal is denoted as Nf .

Nf =
N − L+ l

l
=

N − L

l
+ 1 (4)

The product EZ(i) of the short-time energy E(i) and the zero-crossing rate Z(i) is beneficial to extract
every valid signal exactly. The starting position of the valid pulse can be obtained by setting an
appropriate threshold according to EZ(i). The calculation is as:

E(i) =

N∑
n=1

[x(i− 1)N + n]2 (5)

Z(i) = 0.5

N−1∑
1

|sgn(x(i− 1)N + n+ 1)− sgn(x(i− 1)N + n)| (6)

EZ(i) = E(i)∗Z(i) (7)

where sgn(x) is a symbolic function (sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x ≤ 0).
This method is more accurate in extracting valid signals than using only short time energy or zero

crossing rate [16]. Each valid signal is used as a training sample for the neural network. The valid
signals of the same signal source are taken as one category. The process of extracting each valid pulse
from the sampled LFM signal is described in Algorithm 1.
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Algorithm 1 Extract effective signal algorithm

Require: Yt, LFM signal obtained by sampling; N , Total length of sampled signal.
Ensure: {Initialization}
1: Set the number of Mel filters, Np = 20;
2: Set frame length, Lf = 160;
3: Set frame interval, Li = 80;
4: Divide the frames to get the number of frames, Nf ;
5: Signal after framing, Xt;
6: Xt after normalization, Xm;
7: for i = 1 : Nf do
8: Calculate the short-term energy and get E(i);
9: Calculate the zero-crossing rate and get Z(i);

10: Calculate the product of short-time energy and zero-crossing rate, EZ(i);
11: end for
12: Store the starting position of the valid signal, p = [ ];
13: for i = 1 : 2: size of p do
14: Valid signal Xt = Yt(p(i), p(i+ 1));
15: end for

3.2. Training Method

The pulse signal is fed to the proposed self-supervised model, and features are obtained through the
feature encoder. The next feature value is predicted by the contextual representation module based
on several input feature values. Information leakage may occur in this process. The true values of
the predicted feature might be accessed by the model during prediction. The prediction process is
simplified in that case, making pre-training meaningless. In order to avoid information leakage, feature
values are masked according to a certain proportion. This process is similar to masked speech modeling
in BERT [17]. Based on the input features, the true value of the masked feature is identified by the
model from a set of distractors. After pre-training, the feature encoding module is frozen, and MLP
with random initialization parameters is added. The model is fine-tuned using a small amount of labeled
data to complete the signal source classification.

4. EXPERIMENT AND DISCUSSION OF RESULTS

The LFM signals typically consist of three states: initial transient, steady-state, and ending transient.
In this paper, the LFM signal is analyzed as a entirety without distinguishing between transient and
steady states. Fig. 2 shows a partially sampled analog signal, including valid and invalid signals.

The data used in the experiment is 9 LFM analog signals with the same modulation mode. Each
LFM signal contains 2000 pulse signals. 1500 pulse signals are randomly selected to feed into the
self-supervised network, and the remaining 500 pulse signals are marked for fine-tuning the network
parameters. The data used to fine-tune the network is divided into training and test datasets in a
5 : 1 ratio. The length of each pulse signal is 95200. The maximum length of valid pulses helps the
self-supervised network learn more abstract features. The learning rate is set to 0.001. The batch size
is 8, and the training is performed for 100 epochs.

In this paper, accuracy represents the proportion of correctly predicted samples out of the total
number of samples in a classification task. The loss value is the difference between the model’s prediction
and the true label. It is used to measure the degree of fit of the model on the training and test datasets.
A lower loss value indicates the model’s prediction is closer to the true label. The generalization ability
of the model can be evaluated based on accuracy and loss value.

After the valid pulse signal is segmented from the LFM signal, the method in Section 2 is used to
complete the feature extraction. With a simple fine-tuning, the signal source recognition can be well
completed. Fig. 3 shows the change of classification accuracy in the fine-tuning process. The results
show that the features extracted by the self-supervised network can accurately recognize different signal
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Figure 2. LFM sampling signal. Figure 3. The change of classification accuracy.

Figure 4. The change of loss value.

sources after fine-tuning with a small amount of labeled data. The classification task is accomplished
more efficiently by this model. After the first epoch of fine-tuning, the accuracy reaches as high as 99.5%.
With ten epochs of fine-tuning, the accuracy stabilizes at 99.7%. In Fig. 4, the loss value decreases
during the fine-tuning process on both the training and test datasets, demonstrating the model’s strong
generalization ability.

Table 1 lists the comparison results between the proposed method and other methods used for
waveform classification. From the comparison, it can be observed that the proposed method provides
high accuracy for recognizing LFM signal sources. Moreover, identified categories is used more, and the
labeled data is required less.

In general, the method proposed in this paper has a high recognition and classification effect on
LFM signals. This method also perfectly solves the problem of feature loss in time-frequency images
and the cost of a large amount of labeled data. Moreover, data without labels can be trained by the self-
supervised model, avoiding the waste of data resources. The proposed model outperforms traditional
methods and supervised learning with higher accuracy, efficiency, and generalization.
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Table 1. The recognition accuracy of different methods.

model category acc(%)

CNN1 [18] 11 94.00

DNN [19] 7 100.00

BP & RBF [20] 6 94.17

CNN2 [21] 7 97.70

Proposed Classifier 9 99.70

5. CONCLUSION

A classification method based on self-supervised learning is proposed for LFM signal in this paper.
The self-supervised network is used to pre-train signal waveforms and fine-tune classification with a
small amount of labeled data. The proposed method can extract more signal waveform features and
save labeling costs. Based on the general features obtained by self-supervised learning, the network
is slightly adjusted according to the specific classification task. The convergence speed of the model
is accelerated on the target task. Experimental results show that compared with other signal source
classification methods, the proposed method can save labeling costs while ensuring high classification
accuracy. The efficiency and accuracy of the model classification are improved.
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