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ABSTRACT: In this paper, an SM-PB (Sparse Matrix Canonical Grid method-Physics Based Two Grid) acceleration algorithm is proposed
which can be used to calculate electromagnetic scattering from two-dimensional rough surfaces with large dielectric constants. Firstly,
a two-dimensional rough surface model is established based on the Monte Carlo method and Gaussian spectral function, and a conical
incident wave with Gaussian characteristics is introduced to eliminate the error caused by artificial truncation of the rough surface. In
the scattering calculation, the integral equation of the rough surface is processed by the SMCG algorithm, and then the matrix equation
is further processed by applying the PBTG algorithm to decompose the matrix equation into the very near-field matrix, near-field matrix,
and far-field matrix. The FFT method is then used to calculate the matrix vector product during the iteration for fast computation.
The proposed algorithm and MoM algorithm were compared from the perspectives of computational accuracy and efficiency. Through
comparison, it was found that the two algorithms produced highly consistent results, validating the effectiveness of the proposed algorithm.
The proposed algorithm demonstrated a significant advantage in computational efficiency, with considerable efficiency also observed for
large-scale rough surfaces. The electromagnetic scattering from rough surfaces with large dielectric constants was calculated, and the
influence of the correlation distance rd and dielectric constant on the electromagnetic scattering characteristics was investigated. It was
found that it is important to set a reasonable value of rd in order to balance calculation accuracy and calculation efficiency.

1. INTRODUCTION

After the Second World War, radar technology has been de-
veloped rapidly. In terms of social livelihood, the electro-

magnetic waves emitted by radar generate environmental scat-
tering [1–7] echoes when they irradiate to the ground and sea
surface, which contain rich surface information of ground and
sea surface environment, such as soil type, water content, soil
surface undulation degree, sea surface wind speed, and dielec-
tric constant of seawater. This information can be used for land
resource survey, ecological environment monitoring, agricul-
tural monitoring and crop yield estimation, disaster forecasting
and disaster assessment, marine environment survey, etc. Even
in daily life, weather forecasting and air quality monitoring in-
volve the study of environmental scattering properties, which
can be useful in disaster prevention andmitigation andmeteoro-
logical and geological disaster monitoring. In the military field,
ambient electromagnetic scattering characteristics are the key
to technologies such as radar remote sensing detection [8–13]
and radar image processing [14–18]. Electromagnetic waves
emitted by radar are commonly used to detect and track tar-
gets hidden in the ground and sea surface environment. Since
the target is in various complex natural environments, when the
radar-emitted electromagnetic wave irradiates to the target and
also irradiates to the environmental background, the scattered
echo contains the useful signal scattered back from the target
and the clutter signal scattered back from the natural environ-
ment, and the target signal will be drowned in the environmen-
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tal clutter, which will seriously affect the detection and identifi-
cation of the target signal by the radar signal processing system
and eventually lead to the target cannot be found. In conclu-
sion, the environmental scattering characteristics and its clutter
characteristics should be studied in detail, both in military and
civil applications.
In the development of computational methods, there are

mainly four descriptive approaches for solving the mathemat-
ical model of rough surface scattering: frequency domain dif-
ferential equations (FDDE), time domain differential equations
(TDDE), frequency domain integral equations (FDIE), and time
domain integral equations (TDIE). The classical method based
on FDDE is the finite elementmethod (FEM) [19]. Thismethod
is based on variational principles and transforms the desired
boundary value problem into an appropriate variational prob-
lem, which is then converted into a general multiple function
extremum problem through discretization. Finally, the numeri-
cal solution of the boundary value problem is obtained by solv-
ing an algebraic equation system.
The most typical numerical algorithm based on TDDE is fi-

nite difference time domain method (FDTD) [20]. This method
was first proposed by Yee [21] in 1966. As it directly solves the
time domain Maxwell equations, it can not only calculate scat-
tering excited by time-harmonic field sources, but also calcu-
late scattering excited by pulse wave sources. One of the more
widely used numerical methods based on frequency domain in-
tegral equations (FDIE) is the method of moments (MoM). This
method was proposed by Harrigton [22], and its basic idea is to
first choose suitable integral equations for the electric field or
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magnetic field, then expand the unknown quantities using ex-
pansion functions, and finally perform the inner product on both
sides of the integral equation using weight functions, which
transforms the integral equation into an algebraic equation for
solution.
In researching computational backgrounds, Dölz [23] pro-

posed a higher order perturbation approach for solving the time-
harmonic electromagnetic scattering problems on a perfectly
conducting scatterer with uncertain shape and gave an efficient
solution for its discretization and boundary integral equation so-
lution by three examples. However, this algorithm is not able
to perform an efficient calculation of the scattering from the
medium. Ozgun et al. [24] proposed a novel computational
electromagnetics (CEM) technique, which is based on the peri-
odic finite element method (FEM) with the method of moments
(MoM) and has unique advantages in computing large trun-
cated metasurfaces involving arbitrarily inhomogeneous unit
cells, but it is not widely applicable because the method re-
quires high-order moment and high-order basis function cal-
culations, resulting in relatively low computational efficiency
and high requirements for computer performance. He et al. [25]
developed a multi-stage fast multipole method (MLFMM) al-
gorithm model to study the electromagnetic scattering char-
acteristics of camouflaged grass in different frequency bands.
In order to make the electromagnetic properties of camouflage
grass resemble natural grass as much as possible, he compared
the calculated results with the measured ones several times and
continuously improved the accuracy of the model, discussing
the effects of blade length, width, and density on the electro-
magnetic scattering characteristics. His results can be used for
military camouflage to improve the electromagnetic “stealth”
performance of one’s equipment from enemy detection, thus
improving military strike capability and survivability. In fact,
stealth and anti-stealth has been a topic of widespread concern,
and the study of environmental electromagnetic scattering char-
acteristics can not only improve the stealth capability of one’s
ownweapons and equipment and increase concealment but also
facilitate the identification and detection of enemy equipment,
so that the enemy cannot hide anything. Therefore, it is im-
portant to study the electromagnetic scattering properties of the
environment from several perspectives, and a good algorithm
is the key to effective research, which is related to the accuracy
and practicality of the study.
In this paper, an accelerated SM-PB algorithm is proposed

for calculating two-dimensional dielectric rough surfaces with
large dielectric constants, which first processes the surface in-
tegral equation with the SMCG algorithm and then combines it
with the PBTG algorithm to accelerate the calculation. During
the processing, the matrix equation is decomposed as: (1) Very
near-field matrix: The correlation distance is less than half a
wavelength, and the matrix vector product is done directly. (2)
Near-field matrix: The correlation distance is greater than half
a wavelength and less than the strong and weak correlation dis-
tances, and the free-space surface electromagnetic field is the
average of the dielectric space surface electromagnetic field.
Then, the matrix vector product is performed. (3) Far-field
matrix: The correlation distance is greater than the strong and
weak correlation distance, and the Taylor series expansion is

performed on the free-space Green’s function. Then the matrix
vector is calculated by applying FFT, and its properties in the
iterative method are used to calculate the matrix vector product
quickly respectively, thus speeding up the computation. The
algorithm requires an amount of memory of O(N) and a com-
putation time of O(N log(N)). The accuracy and practicality
of the algorithm are demonstrated by algorithm validation. Fi-
nally, the electromagnetic scattering characteristics at different
rd are calculated, and the effect of the dielectric constant on the
ambient electromagnetic scattering is discussed.

2. GAUSSIAN ROUGH SURFACE AND CONICAL INCI-
DENT WAVE

2.1. Gaussian Rough Surface
The ground environment in nature usually has different shape
characteristics. Before analyzing the electromagnetic scatter-
ing characteristics of the ground environment, Monte Carlo
method combined with Gaussian spectral function is first used
to establish a two-dimensional ground environment geometric
model.
The height profile function of the rough surface is [26]:

f (x, y) =
1

LxLy

∞∑
m=−∞

∞∑
n=−∞

bmn

exp
(
j2πmx

Lx

)
exp

(
j2πny

Ly

)
(1)

where the Gaussian spectral functions W (Km,Kn) and coef-
ficients of the 2D Gaussian rough surface are:
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√
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where lx and ly are the correlation lengths in the x and y di-
rections, respectively; h is the root mean square height; Kxm

and Kyn are the discrete points of the spatial frequencies in
the x and y directions, respectively; Lx and Ly are the contour
lengths of the rough surface in the x and y directions.
In the above equation, N(0, 1) is a sampling point in a ran-

dom sequence that satisfies a normal distribution with mean 0.
The rest of the parameters are labeled in detail in [26] and are
not repeated here.
It is worth noting that the coefficient bmn must be conju-

gately symmetric about the origin for the surface height values
to be real, so there is:

b (m,n) = b∗ (−m,−n)

b (m,−n) = b∗ (−m,n)
(4)

76 www.jpier.org



Progress In Electromagnetics Research M, Vol. 125, 75-85, 2024

(a) (b)

FIGURE 1. Two-dimensional Gaussian rough surfaces. (a) h = 0.1m, lx = ly = 0.5m, Lx ×Ly = 20× 20 (m2). (b) h = 0.3m, lx = ly = 1.0m,
Lx × Ly = 20× 20 (m2).

By further derivation, the partial derivative equation of
f(x, y) with respect to x and y can be obtained:

f ′
x (xm, yn) =

1

LxLy

Nx
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2 +1
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They are all in two-dimensional DFT form, so they can be
solved by the two-dimensional FFT algorithm to improve com-
putational efficiency. Fig. 1 shows the generated rough surfaces
for different parameters.

2.2. Conical Incident Wave
In the actual rough surface scattering, since the simulation gen-
erates a finite rough surface, the electromagnetic wave will pro-
duce a bypassing phenomenon at the edge of the rough surface,
leading to errors in the calculation results. In order to reduce
this error, the incident wave is treated in a certain way to make
it a ‘conical wave’ [27]. The essence of a conical wave is to
add a modulation window function to an infinite plane wave so
that the incident wave intensity at the edge tends to zero. Radar
irradiation waves are also in the shape of a beam, and the use
of conical waves can simulate the actual situation to a certain
extent and has engineering significance.
The incident wave vector can be expressed as:

ki = sin θi cosϕix+ sin θi sinϕiy− cos θiz (7)

where θi is the incident vertical angle, and ϕi is the azimuthal
angle.

For TE incident waves, the EM equation is:

Einc (r) =

∫ +∞

−∞

∫ +∞

−∞
exp (jkxx+ jkyy − jkzz)

·E (kx, ky) hi (−kz) dkxdky (8)

Hinc (r) = − 1

η0

∫ +∞

−∞

∫ +∞

−∞
exp (jkxx+ jkyy − jkzz)

·E (kx, ky) vi (−kz) dkxdky (9)

For TM incident waves, the EM equation is:

Einc (r) =

∫ +∞

−∞

∫ +∞

−∞
exp (jkxx+ jkyy − jkzz)

·E (kx, ky) vi (−kz) dkxdky (10)

Hinc (r) = − 1

η0

∫ +∞

−∞

∫ +∞

−∞
exp (jkxx+ jkyy − jkzz)

·E (kx, ky) hi (−kz) dkxdky (11)

In the above equation, hi is the horizontal polarization direc-
tion; vi is the vertical polarization direction; η0 is the free space
wave impedance; kx, ky , and kz are the spatial spectrum in the
x, y, and z directions, respectively.

E(kx, ky) is the spectrum of the incident wave:

E (kx, ky)=
1

4π2

∫ +∞

−∞
dx

∫ +∞

−∞
exp (−jkxx− jkyy)

· exp (j (kixx+ kiyy) (1 + w)) exp (−t) dy (12)

where

t = tx + ty =
(
x2 + y2

)/
g2 (13)

tx =
(cos θi cosϕix+ cos θi sinϕiy)

2

g2 cos2 θi
(14)

ty =
(− sinϕix+ cosϕiy)

2

g2
(15)
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FIGURE 2. Normalized conical wave schematic.
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FIGURE 3. Schematic diagram of incident.

w =
1

k20

[
(2tx − 1)

g2 cos2 θi
+

(2ty − 1)

g2

]
(16)

The value of the beamwidth g determines the intensity of the
incident wave irradiation, and a reasonable result can be ob-
tained when it satisfies the following relationship:

g ≥ 6

(cos θi)1.5
, L = 4g (17)

When θi = 60◦, φi = 0◦, the two-dimensional normalized
conical incident wave amplitude is shown in Fig. 2.

3. ELECTROMAGNETIC SCATTERING MODEL AND
ALGORITHM VALIDATION

3.1. Surface Integral Equation
The expression of the integral equation for the rough surface of
a two-dimensional medium is given by:

n·Einc(r)=
n·E(r)

2
− n·

{∫
Sr

jωµ0n′×H(r′)g0(r, r′)ds′

+P

∫
Sr
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2
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∫
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]
ds′
}
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2

+n·
{∫

Sr
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−P

∫
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[
∇′g1 (r, r′)

µ0

µ1
n′ ·H (r′)

+ (n′ ×H (r′))×∇′g1 (r, r′)] ds′} (21)

Expanding the above four equations with each vector direc-
tion, we can obtain six scalar surface integral equations. To
save the space of the article, three of these equations are listed
in this subsection, and the remaining equations can be derived
using the same procedure.

F inc
x (r)= Fx(r)

2
+

∫∫ {
−j

k0
η0

g0Ix(r′)
[
∂f(x, y)

∂y

∂f(x′, y′)

∂x′

]

−j
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η0

g0Iy(r′)
(
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∂y
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+
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∂f(x′, y′)

∂x′ (x− x′)−(z − z′)

]

+G0 (R)Fy (r′)
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+
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2
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]
78 www.jpier.org



Progress In Electromagnetics Research M, Vol. 125, 75-85, 2024

+j
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∂x
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]
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+
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]
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[
−∂f (x, y)
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− (x− x′)]} dx′dy′ (23)

Iincn (r)= In (r)
2

+
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[
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∂x
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+
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∂y
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]
−(y−y′)

]

+G0 (R) Iy (r′)
[
∂f (x, y)

∂x
[(z − z′)

+
∂f (x′, y′)

∂y′
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]

+
∂f (x, y)

∂y

∂f (x′, y′)

∂y′
(x− x′) + (x− x′)

]

+G0 (R) In (r′)
[
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(x− x′)

+
∂f (x, y)

∂y
(y − y′)− (z − z′)
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+

∫∫ {
jk0η0g1Fx(r′)

[
∂f(x, y)

∂x
− ∂f(x′, y′)

∂x′

]

+jk0η0g0Fy(r′)
[
∂f(x, y)

∂y
− ∂f(x′, y′)

∂y′

]}
dx′dy′ (24)

The dielectric constant and permeability of medium 1 and
medium 2 are ε1,2 and µ1,2. E1,2(r) and H1,2(r) are the elec-
tromagnetic fields of mediums 1 and 2, respectively; g1 and g2
are the Green’s functions of mediums 1 and 2; η1 and η2 are the
wave impedances of mediums 1 and 2. Then:

g1,2 =
exp (jk1,2R)

4πR
(25)

∇′g1,2 = (r− r′)G1,2 (R) (26)

G1,2 (R) =
(1− jk1,2R) exp (jk1,2R)

4πR3
(27)

In the MoM solution process, it is necessary to discretize the
above six scalar surface integral equations into matrix equa-
tions:

N∑
n=1

6∑
q=1

Zpq
mnI

(q)
n = I(p)incm (28)

where N is the number of discrete points, and Zpq
mn is the

impedance matrix.
At this point, if the matrix is solved directly, the number of

unknowns can reach tens of thousands, and the computational
efficiency is very low, which is unacceptable in practical use;
for this reason, a suitable method is needed to accelerate the
computational process. To solve this problem, the SM-PB ac-
celeration algorithm is introduced next.

3.2. SM-PB Acceleration Algorithm
In the calculation process, the SMCG algorithm is first applied
to the surface integral equation, and the obtained results are
then processed by the PBTG algorithm, which can decompose
the original matrix equation into the extreme near-field ma-
trix, near-field matrix, and far-field matrix, then their properties
in the iterative method to calculate the matrix vector product
quickly, respectively, so as to achieve the purpose of accelerat-
ing the calculation.
Firstly, as shown in Fig. 3, introduce the strong and weak

correlation distance rd, which is determined by the topography
of the scattering surface, to distinguish the near field from the
far field. For example, the distance between two points on a
rough surface is ρR. When ρR > rd, it is considered as near
field; when ρR < rd, it is considered as far field. Therefore,
the surface integral equations in the SMCG algorithm become:(

Z(s) + Z(FS)
)
X(n+1) = b− Z(w)X(n) (29)

where Z(s) represents the near-field strong correlation matrix,

Z(w) the far-field weak correlation matrix, and Z(FS) = Z(w)
0

the planar matrix.
Applying Taylor series to extend Z(w) to orderM , then:

Z(w) =

M∑
m=0

Z(w)
m (30)

Applying the Taylor series expansion to the Green’s function
in Z(w) as well, the expression is as follows:

G1,2 (R)=
(1− jk1,2R) exp (jk1,2R)

4πR3

=

M∑
m=0

a(1,2)m (ρR)

(
z2d
ρ2R

)m

(31)

g1,2 =
exp (jk1,2R)

4πR
=

M∑
m=0

b(1,2)m (ρR)

(
z2d
ρ2R

)m

(32)

zd = f (x, y)− f (x′, y′) (33)
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The first 3 orders of expansion are listed below:

a
(1,2)
0 =

1

0!

exp (jk1,2ρR)
4πρR

(
1

ρ2R
− jk1,2

ρR

)
(34)

a
(1,2)
1 (ρR) =

1

1!

exp (jk1,2ρR)
4πρR

[
−k2

2
− 3jk

2ρR
+

3

2ρ2R

]
(35)

a
(1,2)
2 (ρR) =

1

2!1!

exp (jk1,2ρR)
4πρR[

−jk3ρR
4

+
6k2

4
+

15jk

4ρR
− 15

4ρ2R

]
(36)

. . . . . . . . . . . . . . . . . . . . .

b
(1,2)
0 =

1

0!

exp (jk1,2ρR)
4πρR

(37)

b
(1,2)
1 =

1

1!

exp (jkρR)
4πρR

(
jkρR
2

− 1

2

)
(38)

b
(1,2)
2 =

1

2!1!

exp(jkρR)
4πρR

(
−k2ρ2R

4
− 3jkρR

4
+
3

4

)
(39)

. . . . . . . . . . . . . . . . . .

The iterative formula for the matrix equation is:(
Z(s) + Z(FS)

)
x(1) = binc (40)(

Z(s) + Z(FS)
)
x(n+1) = b(n+1)

inc (41)

During the iteration, both Z(FS) and Z(w) can be decom-
posed into the form of a sum of planar C matrices, so they can
be accelerated with the 2D-FFT algorithm. At the end of the

iteration,
√∥∥∥b(n)inc

∥∥∥/∥binc∥ × 100% < σ.

Based on the SMCG algorithm, the matrix equation is further
processed by applying PBTG to decompose the matrix equation
into the rough surface matrix of the lossy medium, the far-field
matrix of the free-space rough surface, and the near-field matrix
of the free-space rough surface.
In the solution process, sparse dissection is used in free space

and dense dissection is used in medium space. The sparse pro-
file is typically 10 nodes per wavelength, and the dense profile
is typically 20 nodes per wavelength or more. Then, according
to the decaying nature of the Green’s function in lossy media
and the slow variability of the Green’s function on a large grid,
the original matrix is changed into a sparse band matrix, and
then the matrix equations are solved by an iterative method.
For dielectric rough surfaces, the loss of the Green’s function

is also large due to the large imaginary part of the dielectric
constant. Therefore, the boundary distance rl can be defined
as:

rl =
C

k′′2
(42)

where k′′2 is the imaginary part of the wave number k2 in the
medium space, andC is a constant. When the distance between

two nodes of a rough surface r > rl, the interaction between
these two nodes is weak, and the impedance matrix can be con-
sidered as zero. Therefore, the impedance matrix of the rough
surface in dielectric space can be approximated as:

Zpq
mn = Z̃pq

mn =

{
Zpq
mn rmn ≤ rl

0 rmn ≥ rl
(43)

rmn denotes the distance between nodesm and n. As a result,
the matrix equation of the rough surface of the medium space
becomes:

Nsdg∑
n=1

6∑
q=1

Z̃pq

mnI
(q)
n = I(p)incm (44)

where sdg denotes the Single Dense Grid; Nsdg denotes the

total number of nodes of Single Dense Grid; and Z̃pq

mn denotes
the sparse band matrix.
For the far-fieldmatrix of a free space rough surface, the field

values on the nodes of a sparse profile can be obtained by aver-
aging over a large grid due to the slow variation of the Green’s
function at the nodes. Then, it is multiplied with the impedance
matrix of the sparse profiling nodes to obtain the far-field ma-
trix as:

n2
2∑

l=1

Zpq
(m+l)(n+l)I

(q)
n+l ≈ Zpq

mmpnmp

n2
2∑

l=1

I
(q)
n+l

=n2
2Zpq

mmpnmp

1

n2
2

n2
2∑

l=1

I
(q)
n+l

 (45)

where l = 1, 2, . . . , n2
2, andmmp, nmp denote the central nodes

ofm+1,m+2, . . . ,m+n2
2, n+1, n+2, . . . , n+n2

2 respec-
tively.
For the near-field matrix of a free space rough surface, a

boundary distance rf can also be defined, which is considered
as near-field when r < rf and far-field when r > rf . Then the
matrix equation can be decomposed into the sum of the near-
field matrix and far-field matrix, as follows:

Nsdg∑
n=1

Zpq
mnI

(q)
n =

Nsdg∑
n=1

Zpq(s)
mn I(q)n +

Nsdg∑
n=1

Zpq(ns)
mn I(q)n (46)

where the far-field matrix Zpq(ns)
mn and the near-field matrix

Zpq(s)
mn are defined as:

Zpq(s)
mn =

{
Zpq
mn rmn ≤ rf

0 rmn ≥ rf
(47)

Zpq(ns)
mn =

{
0 rmn ≤ rf
Zpq
mn rmn ≥ rf

(48)

The matrix equation can then be transformed into a combi-
nation of densely profiled nodes and sparsely profiled nodes of
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FIGURE 4. Validation of Algorithm. (a) hh polarization. (b) vh polarization.

1.5 2.0 2.5 3.0 3.5
50

100

150

200

250

300

T
 (

s)

 r d (λ)

1.5 2.0 2.5 3.0 3.5
50

100

150

200

250

300

T
 (

s)

r d (λ)

(a) (b)

FIGURE 5. The variation curve of simulation time with rd. (a) TE incident wave. (b) TM incident wave.

the following form:

6∑
q=1

Nsdg∑
n=1

Zpq(s)
mn I(q)n +

6∑
q=1

Nscg∑
ñ=1

Z̃pq(ns)

m̃ñ Ĩ
(q)
ñ


intp

= I(p)incm

(49)
In the calculation, the field values on the sparsely profiled

nodes are first calculated, and then linear interpolation is ap-
plied to find the field values on the densely profiled nodes.
Finally, the polarized bistatic scattering coefficients for

rough surfaces can be derived as follows.

εsh =
jk1
4π

∫
exp (−jk1β

′) [{Ix (x′, y′) cos θs cosϕs

+Iy (x
′, y′) cos θs sinϕs

−Ix (x
′, y′)

∂f (x′, y′)

∂x′ sin θs

−Iy (x
′, y′)

∂f (x′, y′)

∂y′
sin θs

}
−η1{Fx(x

′, y′)sinϕs−Fy(x
′, y′)cosϕs}]dx′dy′ (50)

εsv =
jk1
4π

∫
exp(−jk1β

′)[{Ix(x′, y′)sinϕs−Iy(x
′, y′)cosϕs}

+η1 {Fx (x
′, y′) cos θs cosϕs + Fy (x

′, y′) cos θs sinϕs

−Fx (x
′, y′)

∂f (x′, y′)

∂x′ sin θs

−Fy (x
′, y′)

∂f (x′, y′)

∂y′
sin θs

}]
dx′dy′ (51)

4. VALIDATION OF ALGORITHM AND SCATTERING
ANALYSIS

4.1. Validation of Algorithm
In order to verify the correctness and effectiveness of the SM-
PB algorithm, the scattering coefficients of rough surfaces with
large dielectric constants were calculated and compared with
the results of the MoM algorithm, and the two result curves are
plotted in Fig. 4.
It is found that the two curves match well, which indicates

that the calculation results of the algorithm in this paper are cor-
rect, and it is effective to use it to study the scattering character-
istics of rough surfaces. The parameters used in the calculation
are: the side length of the square rough surface is L = 12λ;
the root mean square height is h = 0.2λ; the correlation length
is lx = ly = 1.0λ; the angle of incidence is θi = 30◦; the di-
electric constant is ε1r = 40 + 20i; the conical wave width is
g = 4λ; the strong and weak correlation distance is rd = 3λ;
the dense profile density is ndg = 16; and the sparse profile
density is ncg = 4.
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TABLE 1. Comparison of computation time(s) between SM-PB and MoM.

N1 = 600 N2 = 1200 N3 = 1800 N4 = 2400 N5 = 6000
MoM 206 1131 3061 4998 7646
SM-PB 39 226 418 681 1076

The curve of simulation time (average time for 20 simula-
tions) with rd is given in Fig. 5. The computer configuration is:
CPUPentium(R)Dual-Core, main frequency 2.5GHz, memory
2G. When rd is small, the scattering from the far-field region
of the rough surface takes up the major part and requires sev-
eral iterations to achieve the required computational accuracy,
leading to more time consumption. When rd is relatively large,
the scattering from the near-field accounts for the major part
and is computationally intensive. Although the number of iter-
ations decreases, the single calculation time increases, leading
to an increase in the overall consumption time. Therefore, a
reasonable choice of rd value can improve the efficiency of the
calculation to a certain extent. However, the optimal value of rd
is not fixed, is different for different rough surface parameters,
and needs to be determined on a case-by-case basis.
To further prove the advantage of the algorithm in compu-

tational efficiency, we used SM-PB and MoM to calculate dif-
ferent sizes of rough surfaces (corresponding to different un-
knowns) and statistically analyzed their calculation times. In
Table 1, we selected five examples, and the results show that
compared with traditional MoM algorithms, the proposed al-
gorithm significantly improves computational speed and sig-

nificantly saves calculation time. Additionally, the proposed
algorithm requires relatively less computation time for calculat-
ing large-sized rough surfaces. These results indicate that the
proposed algorithm has high computational efficiency and is
capable of effectively handling rough surfaces of various sizes.
The parameters used in the calculation are: the side length of

the square rough surface is L1 = 6λ, L2 = 12λ, L3 = 24λ,
L4 = 48λ, L5 = 96λ; the root mean square height is h = 0.2λ;
the correlation length is lx = ly = 1.0λ; the angle of incidence
is θi = 30◦; the dielectric constant is ε1r = 40 + 20i; the
conical wave width is g = 4λ; the strong and weak correlation
distance is rd = 3λ, the dense profile density is ndg = 16; and
the sparse profile density is ncg = 4.
The scattering coefficients of the rough surface are calculated

when rd is 1.5λ, 2.0λ, 2.5λ, 3.0λ, 3.5λ, respectively, and their
resultant curves are plotted in Fig. 6.
From these four plots, it can be seen that when rd is different,

the calculated scattering coefficient of the rough surface varies
greatly, indicating that rd has a great influence on the scattering
coefficient. When rd is smaller, the fluctuation of the curve is
larger, and the degree of agreement with other curves is not very
good, which indicates that the accuracy of the calculation is dif-
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FIGURE 7. The variation curve of scattering coefficient with dielectric constant. (a) hh polarization. (b) hv polarization. (c) vh polarization. (d) vv
polarization.

ficult to be guaranteed at this time. When rd is larger than 2.5λ,
the agreement of several curves at this time is better, which in-
dicates that the accuracy of the calculation is higher.
The simulation results are consistent with the analysis of the

algorithm: when the correlation distance is small, the near-field
matrix only accounts for a small part of the matrix equations,
and most of it is the far-field matrix, which requires several
iterations to achieve the specified accuracy due to the low den-
sity of the far-field profiles. When the correlation distance is
larger, the near-field matrix increases, and the proportion of the
far-field matrix decreases. Due to the high density of near-field
profiles, the amount of data to be computed increases, and al-
though the convergence is better, the huge computational vol-
ume slows down the computational efficiency.
Combined with the observation in Fig. 5, it can be found that

the choice of rd is more reasonable when the value of it is taken
as 2.5λ, considering the accuracy and efficiency of the algo-
rithm. If the computation time is sufficient, and the accuracy of
the algorithm is more important, consider increasing the value
of rd appropriately, and the results obtained will be accurate.
The parameters used in the calculation are: the strong and

weak correlation distance is rd1 = 1.5λ, rd2 = 2.5λ, rd3 =
3.5λ; the side length of the square rough surface is L = 12λ;
the root mean square height is h = 0.2λ; the correlation length
is lx = ly = 1.0λ; the angle of incidence is θi = 30◦; the
dielectric constant is ε1r = 40+20i; the conical wave width is
g = 4λ; the dense profile density is ndg = 16; and the sparse
profile density is ncg = 4.

Figure 7 shows the variation curve of the scattering coeffi-
cient with dielectric constant, whichmainly illustrates the effect
of the dielectric constant of the rough surface on the scattering
characteristics. As can be seen from the figure, in both cases,
the scattering coefficient reaches a maximum near the specular
direction. When the dielectric constant decreases, its specular
scattering intensity decreases due to the weaker reflectivity of
the radar beam at this time. In addition, it can be found that
for larger dielectric constants, the backscattering is very strong
and much larger than the backscattering for smaller dielectric
constants, and this phenomenon is more obvious for hv and hv
polarization modes, which reflects the larger the real part of the
dielectric constant, the stronger the reflection, and the smaller
the imaginary part, the larger the transmission and the smaller
the reflection.
The parameters used in the calculation are: the root mean

square height is h1 = 0.2λ, h2 = 0.4λ, and h3 = 0.6λ; the
strong and weak correlation distance is rd = 3λ; the side length
of the square rough surface is L = 12λ; the correlation length
is lx = ly = 1.0λ; the angle of incidence is θi = 20◦; the
dielectric constant is ε1r = 40+20i; the conical wave width is
g = 4λ; the dense profile density is ndg = 16; and the sparse
profile density is ncg = 4.

To explore the specific impact of different root-mean-square
heights on the scattering properties of rough surfaces, we set
three sets of root-mean-square height parameters: h1 = 0.2λ,
h2 = 0.4λ, and h3 = 0.6λ. After precise calculations, we
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FIGURE 8. The impact of h on the scattering properties of rough surfaces.

obtained the corresponding scattering coefficients and plotted
these data in Fig. 8.
As can be clearly seen from Fig. 8, in most directions, the

scattering coefficient increases with the increase in roughness.
This is because with the increase in roughness, the uneven areas
on the rough surface increase, resulting in more incident light
being scattered in various directions.
However, it is worth noting that the scattering coefficient

exhibits a downward trend in the specular direction. This is
mainly because in this particular direction, the energy of spec-
ular reflection dominates, while the received diffuse reflec-
tion energy is relatively small. Therefore, as the roughness
increases, the energy of specular reflection also decreases ac-
cordingly, resulting in a decrease in the scattering coefficient.
In summary, the influence of root-mean-square height on the

scattering properties of rough surfaces is complex. This in-
cludes both an increase in the scattering coefficient and a de-
crease in the specular direction. This finding is important for
understanding and optimizing the scattering properties of rough
surfaces.

5. CONCLUSION

In this paper, an accelerated SM-PB algorithm is proposed for
the calculation of two-dimensional dielectric rough surfaces
with large dielectric constants. Based on this algorithm, the
electromagnetic scattering is calculated for different rd and dif-
ferent dielectric constants, and it is found that the scattering
is strong for large dielectric constants and much larger than
the backward scattering for rough surfaces with small dielec-
tric constants, and this phenomenon is more obvious in hv and
hv polarization modes, reflecting that the larger the real part of
the dielectric constant is, the stronger the reflection is. And the
smaller the imaginary part is, the larger the transmission is and
the smaller the reflection is. At the same time, in order to bal-
ance the accuracy and efficiency of the calculation, the value of
rd must be carefully considered; otherwise, it will lead to long
calculation time or low calculation accuracy. The next step is
to establish scattering models for different environments, cal-
culate more environmental scattering examples, and study the
electromagnetic scattering characteristics in different environ-
ments.
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