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ABSTRACT:Reconstructing a range profile from radar returns, which are both noisy and band-limited, presents a challenging and ill-posed
inverse problem. Conventional reconstruction methods often involve employing matched filters in pulsed radars or performing a Fourier
transform of the received signal in continuous wave radars. However, both of these approaches rely on specific models and model-based
inversion techniques that may not fully leverage prior knowledge of the range profiles being reconstructed when such information is
accessible. To incorporate prior distribution information of the range profile data into the reconstruction process, regularizers can be
employed to encourage specific spatial patterns within the range profiles. Nevertheless, these regularizers often fall short in effectively
capturing the intricate spatial correlations within the range profile data, or they may not readily allow for analytical minimization of the
cost function. Recently, Alternating Direction Method of Multipliers (ADMM) framework has emerged as a means to provide a way
of decoupling the model inversion from the regularization of the priors, enabling the incorporation of any desired regularizer into the
inversion process in a plug-and-play (PnP) fashion. In this paper, we implement an ADMM framework to address the radar range profile
reconstruction problem where we propose to employ a Convolutional Neural Network (CNN) as a regularization method for enhancing
the quality of the inversion process which usually suffers from the ill-posed nature of the problem. We demonstrate the efficacy of deep
learning networks as a regularization method within the ADMM framework through our simulation results. We assess the performance of
the ADMM framework employing CNN as a regularizer and conduct a comparative analysis against alternative methods under different
measurement scenarios. Notably, among the methods under investigation, ADMM with CNN as a regularizer stands out as the most
successful method for radar range profile reconstruction.

1. INTRODUCTION

Range profile formation plays a pivotal role in various radar
applications, including runway radar surveillance [1] and

the automatic target recognition of high-resolution radar sys-
tems [2], where achieving high-quality range resolution is of
great significance. This process involves the estimation of re-
flectivity for each radar range cell and constitutes an inherently
challenging inverse problem. The primary goal is to reconstruct
the range profile of a scene using radar return measurements at
a specific viewing angle. These radar returns are characterized
by bandwidth limitations and are often affected by measure-
ment noise, primarily attributed to receiver electronics.
Traditional range profile formation typically hinges on the

mathematical inversion of the measurement model. This is
typically accomplished by applying Fourier Transform (FT) to
the measurements in Frequency Modulated Continuous Wave
(FMCW) radar as in [3] or passing measurements through a
matched-filtering/pulse-compression blocks in the context of
pulsed radar as in [4] to compress the return signals. Nonethe-
less, the efficacy of these approaches is significantly con-
strained by the available bandwidth, and they do not consider
any prior knowledge about the range profile. To introduce prior
knowledge into the inversion process, one can embrace regular-
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ized inversion. This involves minimizing a cost function, typi-
cally composed of a data-fidelity term and a regularization term.
The data fidelity term ensures that the reconstructed range pro-
file aligns with the measurements, while the regularization term
accentuates specific features in the reconstructed range profile.
Through regularization, it becomes possible to mitigate the

challenges introduced by the ill-posed nature of the inverse
problems. For instance, a regularized deconvolution tech-
nique is used in [5] to improve the range resolution of a
ground-penetrating radar. Point-based and region-based fea-
tures are enhanced through regularization in synthetic aper-
ture radar (SAR) imaging, as demonstrated by in [6]. Like-
wise, sparsity-based regularization has found application in
near-field multiple-input multiple-output (MIMO) radar imag-
ing [7]. Nevertheless, in any regularized inversion scheme, reg-
ularizers often fall short of capturing intricate and hidden data
features, as they inherently tend to emphasize fixed and prede-
fined characteristics based on prior assumptions about the re-
constructed field, whether in its original space or a transformed
one.
As a proximal method, the ADMM framework [8] has gar-

nered substantial attention in the realm of computational imag-
ing as it is possible to separate the optimization of data fidelity
and priors within this framework. ADMM has found diverse
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applications, ranging from computational tomographic imag-
ing [9] to Synthetic Aperture Radar (SAR) imaging applica-
tions [10].
The ADMM framework allows for the optimization of the

data fidelity and prior terms to be treated as independent mod-
ules with their updates occurring in alternating steps during
the ADMM iterations. Consequently, the modularity of the
ADMM framework enables the use of any regularizer in a plug-
and-play fashion, as in [11, 12]. This “plug-and-play” approach
empowers the incorporation of various denoisers as a way of
regularization within the ADMM framework, all while leaving
the data fidelity optimization steps untouched. Various types of
denoisers have been applied across a spectrum of applications,
including B3MD [13], Total Variation (TV) [14], Recursive Fil-
ter (RF) [15], and Non-Local Means (NLM) [16].
PnP ADMM framework has been applied to the field of

radar imaging, yielding superior image reconstruction perfor-
mance. [17] introduces a PnP ADMM framework for SAR im-
age reconstruction, integrating convolutional neural networks
(CNNs) as regularizers. Similarly, [18] and [19] employ this
approach for sparse ISAR imaging. In [18], the PnP ADMM
framework is extended to the so-called PAN architecture, where
all parameters in the reconstruction, denoising, and multiplier
update layers are learned through end-to-end training via back-
propagation. In [17], separate CNNs are trained for diverse
measurement conditions. However, in practice, the measure-
ment conditions such as the signal-to-noise ratio (SNR) of
radar echo signals from targets is often uncertain. Hence, a
practical solution capable of performing consistently across a
wide range of SNR values is necessary. Considering this issue
and drawing inspiration from [17], in this work, we present a
PnP ADMM framework for radar range profile reconstruction
for frequency-modulated continuous wave (FMCW) radar, in
which the variable SNR conditions arising in practical scenar-
ios are addressed. We demonstrate the potential of using a CNN
trained on a dataset withmixed SNR levels, proposing amethod
that utilizes a single network for this purpose. This approach
therefore enhances efficiency and practical applicability, ensur-
ing robust performance across varying SNR conditions.
We begin by establishing an observation/measurement

model for a side-looking FMCW radar. After obtaining a
discrete observation model that relates the radar measurements
to the unknown range profiles we seek to estimate, we formu-
late the problem within the ADMM framework, effectively
isolating the model inversion step from the prior optimization
step. To capture and learn the intricate spatial patterns within
the radar range profile, we introduce a denoising CNN as a
regularizer and train it using our proprietary dataset, derived
from Gotcha SAR data. Through our simulations, we rigor-
ously evaluate the performance of the ADMM-based range
profile reconstruction method and compared it against various
alternative approaches including conventional methods.
We believe that the proposed technique holds promise for

enhancing the performance of range profile reconstruction in
side-looking radar systems. In summary, our contributions to
the radar literature encompass the following: We provide a
comprehensive formulation of the range profile reconstruction

problem for side-looking radar systems, presenting both con-
tinuous and discrete observation models. We derive the sub-
optimization problems within the ADMM framework along
with their respective solutions, offering a systematic approach
to solving the reconstruction problem. We provide an itera-
tive algorithm to execute the ADMM steps efficiently, facil-
itating the implementation of our approach in practical radar
systems. We implement a denoising convolutional neural net-
work (CNN) to capture complex spatial patterns in range profile
data. Our method is capable of performing across varying SNR
conditions as it utilizes a single network trained on mixed SNR
data.
The remainder of this paper is structured as follows. In Sec-

tion 2, we present the derivation of both continuous and dis-
crete observation models for a side-looking FMCW radar. Sec-
tion 3 delves into the inverse problem of radar range profile
reconstruction, elucidating the ADMM steps from a Bayesian
perspective. Additionally, we provide an in-depth explanation
of how we tackle the ADMM subproblems within this section.
Our simulation results are detailed and discussed in Section 4.
Finally, we conclude with a summary of our findings in Sec-
tion 5.

2. OBSERVATION MODEL FOR SIDE-LOOKING
MONO-STATIC RADAR
We focus on the range profile formation problem in side-
looking mono-static imaging radars in this paper. A highly
simplified representation of this imaging setup is described in
Figure 1(a), where a side-looking radar is illuminating a radar
scene shown with the grey footprint to measure the range pro-
file information associated with its look angle. Range profile is
the reflectivity of the radar scene along the look angle direction
and a representative range profile is shown in Figure 1(a) with
∆r denoting a radar range cell. Since each scatterer in a given
range cell is assumed to be equidistant to the radar, they con-
tribute to the reflectivity of that range cell. Therefore, the range
profile can be considered as the projection of the equidistant
scatters onto a specific distance r. Each range profile captures
a slice from the reflectivity map of the radar scene. For a mono-
static setup, the radar beam is typically steered to different di-
rections either mechanically or electronically to scan the entire
radar scene. At each scan angle, the radar returns are stored in
a matrix. Through specific procedures applied to this matrix,
we generate an image that represents the illuminated scene. A
radar typically transmits chirp signals of the following form:

s(t) = cos
(
ω0t+

1

2
mt2

)
, 0 ≤ t ≤ Tc (1)

with a linearly increasing instantaneous frequency in time with
a slope ofm such that ω(t) = ω0 +mt. The instantaneous fre-
quency ω(t) of the chirp increases for Tc seconds, then returns
to the its initial value, ω0 after sweeping a band of∆ω = mTc.
This continuous cycle of transmission is shown in Figure 1(b).
The echo signal from a point target located at a radial distance
ofR0 will arrive at the radar after two-way propagation delay of
τ0 = 2R0

c , where c is the speed of light in free-space. Therefore,
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(a) (b)

FIGURE 1. Measurement setup & FMCW waveform. (a) Simplified representation of a side-looking radar observation scenario. (b) FMCW wave-
form.

the received echo signal from a point target is the amplitude-
scaled and time-shifted version of the transmitted signal s(t) as
follows:

a(t) = A0 cos
(
ω0(t− τ0) +

1

2
m(t− τ)2 + θ0

)
(2)

Here, A0 = |A0|ejθ0 is the complex-valued reflectivity of the
point scatterer. Let f(x, y) denote the reflectivitymap of the 2D
scene illuminated by the radar. If we take equidistant point scat-
terers on a slice from this scene as shown in Figure 1(a), then
q(r)would be the sum of the reflectivity contribution from each
of these scatterers as a function of radial distance, r, and can be
expressed as the Radon transform of the reflectivity function
f(x, y) [20].

q(r) =

∫∫
{x, y}∈S

f(x, y)δ(u− x cos θ − y sin θ)dxdy (3)

This is the projection of the reflectivity field onto a single point
at a distance of r. Here S represents the total scene illuminated
by the radar. The received signal at the receiver is then given
by the convolution of the projection of the reflectivity function
and the transmitted signal:

b(t) =

Rmax∫
Rmin

q(r)s

(
t− 2r

c

)
dr (4)

where Rmin and Rmax denote two ends of the radar scene in the
radial direction. By plugging (1) into (4) we obtain

b(t)=

Rmax∫
Rmin

q(r) cos

(
ω0

(
t− 2r

c

)
+
1

2
m

(
t− 2r

c

)2
)
dr (5)

The received signal given in (5) is the integral sum of signals
from each scatterer in the scene, which are time-shifted and
amplitude-scaled. The received signal is then mixed with
2 cos

(
ω0t+

1
2 mt2

)
and 2 sin

(
ω0t+

1
2 mt2

)
and passed

through a low-pass filter to obtain in-phase I(t) and quadrature

Q(t) components of the received signal. Letting r(t) denote
the complex demodulated equivalent of the received signal
in (5), we can write it as follows:

r(t) = I(t) + jQ(t) (6)

So, using Euler’s identity, r(t) is represented in the following
equivalent complex baseband representation

r(t) =

Rmax∫
Rmin

q(r) exp
{
−j

[
m

(
2r

c

)
t+ ω0

(
2r

c

)]}
dr

where we have ignored the term 1
2 m

(
2r
c

)2 since 4mr2 ≪ c2.
Letting Ω(t) = 2

c (ω0 +mt), r(t) boils down to the following
nice form

r(t) =

Rmax∫
Rmin

q(r) exp {−jΩ(t)r}dr (7)

Note that (7) is the band-limited spatial Fourier transform of the
projections, q(r). Here Ω(t) represents the spatial frequency
variable. Since both the observation time (i.e., chirp time, TC)
and chirp slope are finite, Ω(t) is limited to a finite band. It is
also worthwhile to note that Ω(t) is offset with an amount of
ω0 from the origin of the Fourier space. One important param-
eter that can be derived from (7) is the radar range resolution,
which determines the minimum distance between two scatter-
ers required to be resolved as two different peaks in the range
profile data. Considering a single point scatterer in the range
profile, if we take its Fourier transform and bandlimit the spec-
trum to a finite band, B, and take the inverse Fourier transform
to go back to the spatial domain, what we get back is a one-
dimensional sinc function. As bandwidthB gets larger, the sinc
function becomes more squeezed, giving rise to a sharper peak
in the range profile data. This is also called Point Spread Func-
tion (PSF), and it fully characterizes any linear space-invariant
imaging system by revealing the impulse response of the sys-
tem. The Rayleigh resolution criterion is the difference be-
tween the first null positions of the PSF and is determined by
the available bandwidth. Rayleigh range resolution of a radar
is given by δr = c

2B .
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The relation between the radar measurements and the range
profile given in (7) can be discretized once the range profile
q(r) is uniformly sampled with a sampling interval of ∆r into
N range bins such that

q(r) =

N−1∑
k=0

q[k]δ (r − k∆r) (8)

where q[k] denotes the sampled value of the range profile at the
ith range cell. Substituting (8) into (7), we obtain

r(t) =

Rmax∫
Rmin

(
N−1∑
k=0

q[k]δ (r − k∆r)

)
exp {−jΩ(t)r}dr (9)

which is further simplified to

r(t) =

k0+N−1∑
k=k0

q[k] exp
{
−jΩ

′
(t)k

}
(10)

with Ω
′
(t) = Ω(t)∆r. After the discretization of the received

signal r(t), the discrete observation model with the additive
measurement noise can be formulated as follows:

r = Tq+ w (11)

where T ∈ C(M×N) is a known matrix which describes the
measurement model, with M denoting the number of radar
measurements and N denoting the number of radar range cells
to be estimated. In the case of our scenario, measurement ma-
trix T is specifically the spatial Discrete Fourier Transform
(DFT) operator and w ∈ C(N×1) is measurement noise. r ∈
C(M×1) is radar measurements and q ∈ C(N×1) is the range
profile which we want to estimate from the measurements. Es-
timating radar range profiles from noisy radar measurements
is an inverse problem. This inverse problem may not have an
exact solution due to the measurement noise presence or may
have infinitely many solutions if the null-space of measurement
matrix is not empty. For ill-conditioned measurement matri-
ces, the measurement noise can be amplified during inversion.
To make the solution more robust against the noise and pos-
sible perturbations in the measurement data, as a common ap-
proach, inverse problems are usually regularized by leveraging
prior knowledge about the underlying unknown vector. In the
next section, we will formulate a regularized problem from a
Bayesian perspective and construct the ADMM steps.

3. PLUG-AND-PLAY RANGE PROFILE FORMATION
We start our problem formulation by assigning Bayesian prob-
abilities to the parameters in Equation (11). Let pq(q) and pr(r)
be the probability density functions (pdf) of priors andmeasure-
ments, respectively. Let pr|q (r|q) denote the conditional prob-
ability density, which fully characterizes how r stores informa-
tion about q, generally specified by the measurement model,
which in our case involves the linear operator T and the mea-
surement noisew. Let us also use q̂(r) to denote our estimate of
q based on the observation vector r. In the Bayesian approach,

we choose the “best” estimator based on a performance metric.
For this purpose, we define a cost function C(x, x̂), which re-
turns the cost of estimating an arbitrary vector x by x̂. Then the
“optimal” estimator is the one which minimizes this expected
cost. When the following cost function is chosen,

C(q, q̂) =

{
1, if |q− q̂| > ϵ

0, otherwise
(12)

in the limiting case where ϵ approaches to zero (limϵ→0), we
obtain “Maximum A Posteriori”, shortly MAP estimator. That
is,

q̂MAP = argmax
q

{
log
(
pq|r (q|r)

)}
= argmax

q

{
log
(
pr|q (r|q)

)
+ log (pq (q))

}
(13)

Assuming that measurement noise samples are independent and
identically distributed from a complex Gaussian distribution
with a variance of σ2, pdf of w is given by:

pw (w) ∝ exp
(
− 1

2σ2
∥w∥22

)
In this case, the likelihood has the following pdf:

pr|q (r|q) ∝ exp
(
− 1

2σ2
∥r− Tq∥22

)
(14)

Let us define the following pdf for the priors:

pq (q) ∝ exp (−µR (q)) (15)

and substitute (14) and (15) into (13), where maximization be-
comes minimization after a sign-change:

q̂MAP = argmin
q

{
1

2σ2
∥r− Tq∥22 + µR (q)

}
Defining the data fidelity as D(q) = ∥r − Tq∥22 and letting
λ = 2σ2µ, MAP estimator in (16) can be written as:

q̂MAP = argmin
q

{D(q) + λR(q)} (16)

This is a weighted sum of data fidelity and prior terms. While
λ can in principle be determined through the noise and prior
pdf parameters, in practice neither of those is perfectly known,
hence one needs to tune λ or use a data-driven automated se-
lection method. λ ∈ R+ serves as a control parameter which
determines the relative strength of the data fidelity and prior
terms.

3.1. Formation of ADMM Sub-Problems
In order to be able to formulate problem (16) in the ADMM
framework, we start by splitting variable q as follows:(

q̂, ĥ
)
= argmin

q, h
{D(q) + λR(h)} s.t. q− h = 0 (17)
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FIGURE 2. A block diagram representation of alternating optimization steps of ADMM.

The augmented Lagrangian for (17) is given by

L(q, h, y) = D(q) + λR(h) + yT (q− h) + ρ

2
∥q− h∥22 (18)

where y is the Lagrange multiplier, and ρ > 0 is the penalty pa-
rameter. Having defined the augmented Lagrangian objective
function, we set the ADMM iterations as follows:

qk+1 := argmin
q∈C(N×1)

L(qk, hk, yk) (19a)

hk+1 := argmin
h∈C(N×1)

L(qk+1, hk, yk) (19b)

yk+1 := yk + ρ(hk+1 − qk+1) (19c)

with k denoting the ADMM iteration number. As a more com-
mon version, ADMM can be written in a scaled form. For this
purpose, we define a residual vector, v = q− h. Then last two
terms in the augmented Lagrangian in (18) is

yT v+ ρ

2
∥v∥22 = yT v+ ρ

2
∥v∥22 +

1

2ρ
∥y∥22 −

1

2ρ
∥y∥22

=

∥∥∥∥√ρ

2
v+ 1√

2ρ
y
∥∥∥∥2
2

− 1

2ρ
∥y∥22

=
ρ

2
∥(v+ u)∥22 −

ρ

2
∥u∥22 (20)

where we have added and subtracted 1
2ρ ∥y∥

2
2 and defined

u = 1
ρ y as a scaled dual variable. With this substitution, the

augmented Lagrangian objective function in scaled form is
given by

L = D(q) + λR(h) + ρ

2
∥(q− h+ u)∥22 −

ρ

2
∥u∥22

The local minima ofL can be found by solving the following
sub-minimization problems:

qk+1 := argmin
q∈C(N×1)

L(q, hk, uk) (21a)

hk+1 := argmin
h∈C(N×1)

L(qk+1, h, uk) (21b)

uk+1 := uk + (hk+1 − qk+1) (21c)

Thus, the whole optimization procedure to find the minimum
ofL involves iterative steps which alternate betweenminimiza-
tion over q and h, while updating the scaled dual variable. By
introducing two extra variables q̃ = h − u and h̃ = q + u,

expressions for the ADMM iterations can be written in the fol-
lowing way:

q̂k+1 := argmin
q∈C(N×1)

{
D(q) + ρ

2
∥q− ~qk∥22

}
(22a)

ĥk+1 := argmin
h∈C(N×1)

{
λR(h) + ρ

2
∥h− ~hk∥22

}
(22b)

uk+1 := uk + (hk+1 − qk+1) (22c)

Here, sub-problem (22a) defines an inversion operator of the
forward model and depends only on the forward model and
measurements. Sub-problem (22b) is the denoising operator on
h̃k and depends on the selection of the regularization function
R (i.e., priors). (22c) is the auxiliary updates of ADMM. The
alternating sub-minimization steps of ADMM are illustrated in
a block diagram in Figure 2.
It is worthwhile to note that the model optimization is decou-

pled from the prior optimization in this framework. This flex-
ible modularity of ADMM allows for plug-and-playing of dif-
ferent denoisers in a fully isolated manner, so that model/data
optimization steps remain unaffected.

3.2. Solutions for ADMM Sub-Problems
An analytical solution exists for sub-problem (22a). We take the
partial derivative of the objective function to find the minimum
of (22a) with respect to q and get the following gradient vector
∇q:

∇q = −2THr+ 2THTq+ ρ (Iq− q̃) (23)
Arranging (23), we get

∇q =
(
2THT+ ρI

)
q−

(
2THr+ ρ~q

)
By equating ∇q to zero, we get the first-order optimality con-
dition as follows:(

2THT+ ρI
)︸ ︷︷ ︸

A

q =
(
2THr+ ρq̃

)︸ ︷︷ ︸
b

(24)

with a closed-form solution of:

q̂ =
(
2THT+ ρI

)−1 (
2THr+ ρq̃

)
(25)

The linear system of equations described by Aq = b in (24)
can be solved using any linear system solver, and we prefer to
use the conjugate-gradient algorithm. The role of ρ here is to
control the balance between data-fidelity error and priors of q.
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FIGURE 3. Convolutional neural network architecture.

Note that in case ρ = 0, the problem is simplified to the least-
squares regression with the following pseudoinverse solution:

q̂ =
(
THT

)−1 THr (26)

Note that if R(hk) in sub-problem (22b) is chosen as
R(hk) = − log(p(hk)), then (22b) is the MAP estimator
designed to remove additive Gaussian noise with the power of
σ2 = λ/ρ from the noisy version of h and acts as Gaussian
denoiser on h̃, trying to minimize the residue between clean
and noisy signal using priors h̃k.
Note that sub-problem (22b) only depends on the priors.

Since the prior optimization step given by sub-problem (22b)
is basically an denoising operator, it can be approximated by
any denoiser. In [11], authors propose to use any off-the-shell

FIGURE 4. Flow chart describing the ADMM iterations for model/data
and priors update. Model/data update is executed by computing the
solution in (25), and priors update is accomplished through a denoising
CNN.

denoising algorithm for this problem in what they call the Plug-
and-Play ADMM framework. Motivated by this, we use a
similar approach where we utilize a convolutional neural net-
work (CNN) as in [17] to tackle the sub-problem (22b). After
successful training, this network takes one-dimensional noisy
range profile data as input and generates a denoised version at
the output. Essentially, the network is trained to learn the pro-
cess of denoising radar range profiles. Through this training,
the network learns the complex and intricate spatial patterns
present in the data.
A simplified architecture of the implemented network is

shown in Figure 3. The first layer has a convolution layer
and a ReLU layer and is followed by three Convolution-Batch
normalization-ReLU layers. At the output, a regression layer
is used to perform the final mapping. Training of this network
is discussed in detail in Section 4. In Figure 4, a flowchart il-
lustrating the ADMM updates is presented. Here, a single it-
eration of the ADMM framework is depicted, and this process
continues until convergence. The ADMM procedure initiates
with conventional fast Fourier transform (FFT)-based estima-
tion, succeeded by a model-data alignment update and priors
update via a denoising CNN. The pre-trained CNN processes
noisy range profiles and generates a cleaned version for utiliza-
tion in the subsequent iteration of ADMM.
To implement the ADMM flow outlined in Figure 4, Al-

gorithm 1 is implemented in MATLAB. The ADMM itera-
tions terminate either when the change in the auxiliary vari-
able u becomes smaller than the specified tolerance value, i.e.,
∥u(k+1) − u(k)∥22 < ϵ, or when the maximum number of
ADMM iterations is reached.
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FIGURE 5. A sample set of range profiles used in the simulations. (Horizontal axis is the range axis and vertical axis is the radar reflectivity
magnitude).

4. NUMERICAL RESULTS

In order to test the performance of the ADMM based range pro-
file reconstruction framework described in the previous section,
we use the Gotcha Volumetric SARData Set, Version 1.0 which
is publicly available in [21]. The data set contains SAR phase
history data from a scene consisting of numerous civilian vehi-
cles and calibration targets. Measurements are taken using an
X-band radar with a bandwidth of 640MHz from a 360◦ az-
imuth coverage at 8 different elevation angles with all possible
polarization combinations. The data set comprises phase his-
tory data collected during each 1◦ scan, comprising 117 pulses
with complex IQ samples. Since the radar measurements are
collected in the Fourier space, conversion from measurements
to range profile data is carried out by Fourier Transform as sug-
gested by relation (7). Measurement model T for this setup is
therefore an inverse Fourier Transform matrix.
Using the Gotcha SAR phase history data, we derive our own

data set of range profiles in the following way: we first convert
each and every fast-time radar data in the phase history matrix

to a range profile by taking its DFT. Since the DFT result will be
complex-valued, we take the absolute value of each of these 117
range profiles. Then, we perform a non-coherent pulse integra-
tion using all the the range profiles formed in order to get a rel-
atively less noisy range profile data and finally pass it through
a low-pass filter to further reduce the background noise in the
reconstructed range profiles. A sample set of range profiles ob-
tained from the phase history data set is shown in Figure 5. The
total number of range profile samples obtained in the described
way is 11520. Note that the reconstructed range profile data is
real-valued. This might mirror situations where the radar foot-
print is narrow and there are only dominant scatterers on the
radar footprint.
The reason for us to make our own data set for range profile

data is that we want to simulate our own measurements based
on these generated range profiles considering different levels
of measurement bandwidth and noise. We simulate our own
measurements by using the measurement model given in (11)
and use a DFT matrix as the measurement model T, and w is
chosen to be complex white noise. In order to test the perfor-
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Parameter Value Parameter Value
Epoch 100 L2 Regularization 0.001

Initial Learning Rate 0.1 Learning Rate Drop Period 10
Momentum 0.9 Learning Rate Drop Factor 0.1

TABLE 1. Training parameters for CNN. FIGURE 6. Loss during training of the network.

mance of the proposed framework under different noise and
bandwidth conditions, we consider six different bandwidth lev-
els (5%, 10%, 15%, 20%, 25%, 30%) and six different relative
noise levels (σ0, 2σ0, 3σ0, 4σ0, 5σ0, 6σ0). Bandwidth level is
adjusted by means of a mask chosen around the middle row of
the DFT matrix, which corresponds to DC frequency. For ex-
ample, 5% data availability case is obtained by slicing 20 rows
around the center row (rows corresponding to the low frequen-
cies) of the 400 × 400 DFT matrix. Hence for 5% data avail-
ability, we use a 20 × 400 DFT matrix as a forward measure-
ment model. The reconstruction problem would be estimating
radar range profile of 400 range cells from 20 radar measure-
ment samples, which corresponds to solving a highly under-
determined system of equations.
Data set for the implemented CNN consists of noisy and

clean range profile data pairs. The noisy range profile data
is obtained by adding measurement noise with a variance ran-
domly drawn from these 6 noise power levels. For the training
of CNN, we divide the range profile data set into a training set
(80%), a test set (10%), and a validation set (10%). We use
Stochastic Gradient Descent with Momentum (SGDM) as an
optimizer for the training of the network. Other training pa-
rameters are summarized in Table 1. Training is performed in
MATLAB 2020 using the Deep Learning Toolbox running on a
NVIDIAGeForceMX250GPU. The loss of the network during
100 epochs of training is plotted in Figure 6. To gauge the ef-
fectiveness of our ADMM-based range profile reconstruction,
we utilize the Mean Squared Error (MSE) metric. This metric
calculates the average of the squared differences between a test
vector and the reference vector as follows:

MSE =
1

N

∥∥q̂− qref
∥∥2
2
=

1

N

N∑
i=1

(
q̂m(i)− qrefm (i)

)2
We evaluate the performances of different methods on the

test data set considering different measurement bandwidths
and noise variances. We compare the proposed range profile
formation method (ADMM-CNN) with a conventional FFT
and l2-norm regularized reconstruction, as well as ADMM
based reconstruction with two different denoisers, namely
Total-variation (TV) [14] and Recursive-filter (RF) [15]. We

call these methods ADMM-TV, ADMM-RF depending on
the denoiser used. Among these methods, FFT-based recon-
struction is the conventional and most commonly employed
approach, relying solely on the Fourier measurement matrix
without the use of any regularization techniques. l2-norm
regularized reconstruction on the other hand regularizes the
solution in l2-norm sense. The other methods are implemented
within the ADMM framework, differing only in the denoising
technique employed to address the prior optimization step
in (22b).
In Figure 7, we present a representative range profile recon-

structed through various methods, with corresponding Mean
Squared Error (MSE) values displayed atop each subplot. Fig-
ure 7(a) shows an illustrative range profile reconstructed from
simulated measurements at three distinct noise levels and the
full bandwidth. In contrast, Figure 7(b) depicts a reconstruction
experiment with three different bandwidth levels without any
measurement noise. In these figures, columns represent distinct
reconstruction methods, each denoted at the top, while rows
signify variousmeasurement conditions, including the presence
of measurement noise and bandwidth variations. The original
range profile is represented in red, while the range profiles re-
constructed from simulated measurements are depicted in blue.
Upon close examination of these plots, it becomes evident

that conventional FFT-based reconstruction and l2-norm regu-
larized reconstruction suffer significantly under conditions of
low bandwidth and/or high measurement noise. In contrast,
the ADMM-based reconstruction methods consistently deliver
superior performance. Notably, among the ADMM-based ap-
proaches, employing a CNN as a denoiser in the prior optimiza-
tion step of the ADMM framework yields the most outstanding
reconstruction results. ADMM-CNN method stands out for its
ability to effectively capture the distinct peaks within the range
profile data while substantially mitigating noise in the signal,
resulting in the lowest MSE across all test cases. It is note-
worthy that the ADMM-CNN algorithm exhibits remarkable
resilience, showcasing promising reconstruction performance
even in scenarios featuring limited measurement data or high
levels of measurement noise.
For a comprehensive evaluation of the ADMM-CNN range

profile reconstruction method and to establish a statistical
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(a)

(b)

FIGURE 7. Comparison of various range profile reconstruction approaches on an example range profile in terms of MSE performance under different
noise and bandwidth conditions. (a) Reconstruction at three different measurement noise values (full-bandwidth). (b) Reconstruction at three
measurement bandwidth values (no measurement noise present).
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(a) (b)

FIGURE 8. MSE performance comparison of different reconstruction methods under different bandwidth availability and measurement noise condi-
tions. (a) MSE as a function of noise power. (b) MSE as a function of measurement bandwidth.

overview of its MSE performance, we apply each reconstruc-
tion method over a small subset of the test dataset, comprising
100 range profile samples. We then compute the MSE values
for each sample, calculate their average. We present the results
in Figure 8, which encapsulate the MSE performance across all
100 range profiles. Figure 8(a) shows the average MSE of each
method with respect to noise power, whereas Figure 8(b) shows
the average MSE with respect to measurement bandwidth.
The average MSE values further affirm that the ADMM-CNN
method excels in terms of reconstruction performance when
compared to the other investigated reconstruction methods
under the examined measurement conditions.

5. CONCLUSIONS

In this study, we explore the radar range profile reconstruction
problem using a Plug-and-Play ADMM framework. We derive
the observation model tailored for side-looking FMCW radar.
We formulate ADMM steps, where a denoising CNN acts as
a solver for the prior optimization subproblem. We showcase
the potential of utilizing a denoising CNN as a powerful tool to
learn the intricate spatial patterns embedded within the range
profile data and use it as a means of regularization. Through
comprehensive simulations, we substantiate the effectiveness
of employing deep learning networks as a regularization mech-
anism within the ADMM framework for radar range profile
formation, as we present extensive performance evaluation of
ADMM framework with CNN regularizer in comparison to al-
ternative methods across diverse measurement scenarios. We
also demonstrate the potential of using a CNN trained on a
dataset with mixed SNR levels while ensuring robust perfor-
mance across varying SNR conditions. Remarkably, among
the reconstruction techniques under investigation, the ADMM
approach with CNN emerges as the most successful solution

for radar range profile reconstruction problem in terms of MSE
performance.
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