Equivalent Circuit Model of Antenna Array Utilizing an Archimedean Spiral Sequential Feed Network for C-Band Applications

Khalid S. Ahmad1,2, Fauziahanim C. Seman1, Shipun A. Hamzah1, Khaled Alhassoon3, Tale Saeidi4, Zahri Radza Zakaria5, and Ahmed Jamal Abdullah Al-Gburi5,6

1 Research Center for Applied Electromagnetic (EMCenter), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Malaysia
2 Department of Electronic Engineering, Mosul Technical Institute, Al-Majmaa street, Mosul, Iraq
3 Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Saudi Arabia
4 WiSAR Lab, Atlantic Technological University (ATU), Letterkenny, Co. Donegal F92 FC93, Ireland
5 Center for Telecommunication Research & Innovation (CeTRI), Faculty of Electronics and Computer Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hung Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia

ABSTRACT: This paper introduces the configuration of a microstrip antenna array with a new Archimedean spiral sequential feed network (SSFN) for the upper half of the C-band application. The Archimedean SSFN mechanism uses four circular patch elements to structure the proposed antenna array. The optimized reflection loss (S_{11}) of the proposed SSFN mechanism was obtained by tuning the dimensions of each transformer and then connected with an antenna array. Aiming to make the suggested antenna array compact in size, bending feed lines were utilized. The antenna array is designed with the overall physical dimensions of 75 mm × 75 mm × 1.575 mm, with an electrical size of 1.85λ_e mm, 1.85λ_e mm, 0.038λ_e at a frequency of 7.43 GHz. An equivalent circuit model (ECM) is designed and analyzed to verify the proposed Archimedean SSFN and the designed antenna array. Reflection losses of SSFN and microstrip spiral antenna array (SAA) were confirmed with the suggested circuit model utilizing Computer Simulation Technology (CST) Microwave Studio and Applied Wave Research (AWR) Microwave Office software. According to the empirical results, the SAA has a reflection loss bandwidth of 2.08 GHz (6.15–8.23 GHz) and a maximum gain of 10.2 dBi at 7.43 GHz. The axial ratio (AR) of the proposed antenna covers a bandwidth of 1.6 GHz (6.2–7.8 GHz), which is approximately 22.85% of the entire bandwidth. These results demonstrate a perfect agreement between the simulated and measured outcomes, making the suggested SAA suitable for the C-band wireless application.

1. INTRODUCTION

With the latest continuing advance in communications, circularly polarized (CP) radiators have obtained [1] significant interest due to their attractive characteristics for non-line-of-sight purposes, supplying better moving than linearly polarized radiators, and they have been extensively utilized in satellite, radar, and portable communication equipment [2, 3].

Microstrip technology is the preferred choice for many implementations for its attractive properties, small dimension, light weight, and low cost [4, 5]. Corporate microstrip feed network is utilized to feed the antenna elements. Unfortunately, the number of discontinuities is significantly high, thus increasing feed loss and pattern disturbance [6]. On the other hand, series sequential feed network (SFN) has smooth bends, a high transmission line impedance [7], and low complexity, and is the best solution to reduce discontinuities, feed losses, and pattern disturbance [6]. Various configurations of CP antenna arrays are suggested, but sequential feed mechanism is one of the most popular methods explored in the literature to produce CP implementation [2, 3, 8–14].

SFN technique, which was first characterized by Hall et al. [15], is an interesting technique and has been used extensively for patch arrays to improve cross-polarization rejection in the main beam [1], increase bandwidth, improve input voltage standing wave ratio (VSWR) [16] and gain [17]. In [2, 3], many methods have been proposed for different applications [8–12, 14, 18, 19]. In [3], a sequentially rotated network feeds four Archimedean spiral elements integrated with a circular slot at the back of each antenna. The feed network used a branch line, 90°, and a rat-race coupler, 180°, to achieve the required phase distributions. Moreover, a cavity-backed structure integrated with each antenna improves the peak gain and realizes a directional radiation pattern, but the array size increases. In [20], a feed network consists of three transmission lines as phase-shifting power dividers and four additional transmission lines that provide impedance transformation between the network outputs and the antenna input ports. This work proposed a circular patch with an elliptical cut in the center as an element. In [21], an array comprises 2 × 2 elements fed...
by a sequential rotation network. The feeding network contains three T-junction sections, one anti-phase delay line and two 90-degree delay lines, with phase distributions of 0, 90, 180, and 270 degrees. The element used is a slot antenna equipped with a 4 × 4 EBG unit cells. In this study [22], researchers developed a 2 × 2 sequentially rotating antenna array as a feedline and utilize circular-arc feedlines to minimize discontinuity and reduce loss within the feeding network. Each element is excited by a corporate microstrip feed network, which controls phase and impedance matching. In [23], a sequential feed network consists of seven quarter wave transformer sections curved and linked in a consecutive sequence to form a four-port network. Four antennas are used, and each antenna is constituted from a square aperture with a ground-plane conductor and excited by a sequentially rotating network. The feeding network contains a 4 × 4 EBG unit cells. In this study [22], researchers develop a sequential rotating antenna array as a feedline and provide power splitting and phases at the output ports similar to the common SFN and are usually oriented sequentially at 0°, 90°, 180°, and 270°.

2. THE PROPOSED SSFN DESIGN

2.1. The SSFN with Straight Feed Lines (SFL)

The SSFN shown in Fig. 1 is similar to SFN, consisting of seven quarter-wave transformers. \((T_1 - T_7)\) represents the numbering of transformers. Table 1 illustrates the dimensions and impedance of each transformer. \(T_2\), \(T_4\), and \(T_6\) at first look like to have circular-like common shapes [13, 20], but in fact, they are Archimedean spiral shapes. The following equations are the general form for generating these three transformers in a Cartesian coordinate system.

\[
x(t) = a_t \cos t, \tag{1}
\]
\[
y(t) = a_t \sin t, \tag{2}
\]
where \(a\) and \(t\) are constant and angle, respectively, while \(r(t)\) is the radius of the spiral shape in the polar coordinate system.

\[
r(t) = a_t. \tag{3}
\]

where \(t\), \(r\), and \(\theta\) are constant and angle, respectively, while \(t\) is the degree of the rotation network.

\[
x_2(t_2) = 0.099t_2 \cos t_2, \tag{4}
\]
\[
y_2(t_2) = 0.099t_2 \sin t_2, \tag{5}
\]
where \(t_2, 45\pi/2 \leq t_2 \leq 46\pi/2\).

For \(T_4\)

\[
x_4(t_4) = 0.0999t_4 \cos t_4, \tag{6}
\]
\[
y_4(t_4) = 0.0999t_4 \sin t_4, \tag{7}
\]
where \(t_4, 46\pi/2 \leq t_4 \leq 47\pi/2\).

For \(T_6\)

\[
x_6(t_6) = 0.105t_6 \cos t_6, \tag{8}
\]
\[
y_6(t_6) = 0.105t_6 \sin t_6, \tag{9}
\]
where \(t_6, 47\pi/2 \leq t_6 \leq 48\pi/2\).

The radii of \(T_2\), \(T_4\), and \(T_6\) are \(r_2(t_2)\), \(r_4(t_4)\), and \(r_6(t_6)\), respectively.

\[
r_2(t_2) = 0.099t_2, \tag{10}
\]
\[
r_4(t_4) = 0.0999t_4, \tag{11}
\]
\[
r_6(t_6) = 0.105t_6, \tag{12}
\]

It is necessary that the width of the feed network \(T_1\), \(T_3\), \(T_5\), and \(T_7\) is as narrow as practically possible [7, 27] to minimize spurious radiation and coupling impacts, as shown in Table 1 and Fig. 1. Figs. 2(a), (b), and (c) display the reflection loss

<table>
<thead>
<tr>
<th>Transformer No.</th>
<th>(W) (mm)</th>
<th>(L) (mm)</th>
<th>(Z) (1 to 7) ((\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_1)</td>
<td>0.5923</td>
<td>20.227</td>
<td>134.81</td>
</tr>
<tr>
<td>(T_2)</td>
<td>2.857</td>
<td>29.91</td>
<td>68.99</td>
</tr>
<tr>
<td>(T_3)</td>
<td>0.5696</td>
<td>17.863</td>
<td>136.43</td>
</tr>
<tr>
<td>(T_4)</td>
<td>2.135</td>
<td>30.16</td>
<td>80.59</td>
</tr>
<tr>
<td>(T_5)</td>
<td>1.4812</td>
<td>13.133</td>
<td>95.85</td>
</tr>
<tr>
<td>(T_6)</td>
<td>0.82155</td>
<td>30.68</td>
<td>121.01</td>
</tr>
<tr>
<td>(T_7)</td>
<td>1.4812</td>
<td>9.133</td>
<td>95.85</td>
</tr>
</tbody>
</table>
at port 1, and magnitudes and phases at ports 2, 3, 4, and 5, respectively, at 7.473 GHz. The proposed network provides a reflection loss (11 > −43.9 dB), as displayed in Fig. 2(a). Fig. 2(b) displays a balanced distribution of the power magnitude at the output ports (6.7 ± 1 dB). In addition to their service as an impedance transformer, T₁–T₇ provide a phase difference of 90° among output ports 2, 3, 4, and 5, according to Fig. 2(c) and as mentioned in [27]. Fig. 2(c) displays the simulated output phase. This network provides feed phases of (89.89°, 89.85°, and 89.78°) at 7.473 GHz and provides relative feed phases of 90° at ports 2–5 for other frequencies between 6 and 9 GHz.

2.2. Compact SSFN

In order to make the proposed SSFN with a compact shape, and hence compact SAA, the transformers (feed lines) T₁, T₃, and T₅ were changed from straight lines to bending lines, as seen in Fig. 3.

Figures 4(a), (b), and (c) show the reflection loss at port 1, magnitudes, and phases at ports 2, 3, 4, and 5, respectively, at 7.419 GHz. Fig. 4(a) shows that the maximum reflection loss of the compact network shifted about 54 MHz downwards from 7.473 GHz with a reflection loss of −43.9 dB to 7.419 GHz with a reflection loss of −41 dB, compared with SSFN using SFL shown before in Fig. 2(a), due to employing bending feed lines. Fig. 4(b) shows a balanced distribution of the power magnitude on the output ports (7.4 ± 0.6 dB). Fig. 4(c) displays the simulated output phase. This network produces feed phases of...
(90.59°, 90.17° and 90.71°) at 7.419 GHz, and provides relative feed phases of 90° at the antenna ports 2–5 for other frequencies between 6 and 9 GHz.

For preparing the design for fabrication, it is necessary to reduce the size of the board, as seen in Fig. 5(a), and the fabricated prototype is shown in Fig. 5(b). The replacement of the waveguide ports with SMA ports is shown in Fig. 5(c), and a photo of the manufactured prototype is displayed in Fig. 5(d). It is observed that by reducing the board size, the frequency shifted 19 MHz downwards, from 7.419 GHz with a reflection loss of -41.21 dB (Fig. 4(a)) to 7.40 GHz with a reflection loss of -45.12 dB, as seen in Fig. 6. Furthermore, by changing waveguide ports to SMA ports, the frequency shifted 610 MHz upwards from 7.40 GHz to 8.01 GHz with a reflection loss of -34.9 dB, as shown in Fig. 6. For validation purposes, a compact SSFN has been fabricated based on the geometrical dimensions, which were realized on RT/Duroid 5880 ($\varepsilon_r = 2.2$, loss tangent = 0.009, substrate thickness = 1.575 mm, and copper thickness = 0.035 μm). The maximum reflection loss was centered at 8.09 GHz, with a reflection loss of -20.68 dB, as seen in Fig. 6.

As a comparison between Fig. 4 and Fig. 7, the simulated balanced distribution and phase difference at the output ports slightly changed due to using the SMA port and board reduction. The differentiation among simulated and measured balanced distributions and phase difference (SSFN with SMA) at 8.01 GHz is shown in Fig. 7 and Table 2. The simulated results of the (SSFN with SMA) provide feed phases of (109.26°, 83.37°, and 98.28°) at the operating frequency of 8.01 GHz. Further, the measured results provide feed phases of (111.72°, 69.9°, and 108.4°) at the same operating frequency.

Table 2. Contrasting simulated and measured magnitudes and phase differences at the output ports at a frequency of 8.01 GHz.

<table>
<thead>
<tr>
<th>S-parameters</th>
<th>Magnitude (dB)</th>
<th>Phase difference (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>simulated</td>
<td>measured</td>
</tr>
<tr>
<td>S_{21}</td>
<td>8.55</td>
<td>9.11</td>
</tr>
<tr>
<td>S_{31}</td>
<td>9.19</td>
<td>9.06</td>
</tr>
<tr>
<td>S_{41}</td>
<td>4.08</td>
<td>4.12</td>
</tr>
<tr>
<td>S_{51}</td>
<td>10.61</td>
<td>11.11</td>
</tr>
</tbody>
</table>
FIGURE 5. (a) SSFN design with waveguide ports using CST software, (b) image of the SSFN prototype, (c) SSFN design with SMA ports, and (d) image of the SSFN prototype undergoing testing within the measurement setup using a VNA.

FIGURE 6. Contrasting the reflection loss between simulated and measured values.

can observe an excellent agreement between simulated and measured results. For the remaining frequencies in the 6–9 GHz range, the measured transmission phases were somewhat shifted compared to the simulated values due to the difference in the length of the coaxial line between the measurement and simulation.

2.3. ECM for the Compact SSFN

The ECM was designed and analyzed in this study using Applied Wave Research (AWR) software. Many researchers have developed an ECM as suggested in [12, 19, 26]. However, they used complicated methods and investigations. This work simply explains the ECM by using the model for a rectangular patch antenna to extract the equivalent model for each $\lambda/4$ transformer in SSFN.

A simple idea has been proposed based on using the ECM for a rectangular patch antenna to extract the ECM for each $\lambda/4$ transformer in SSFN. Each transformer is represented by a parallel C_p, L_p, R_p circuit, where C_p, L_p, and R_p are the equivalent capacitance, inductance, and resistance, respectively. This model takes into account the physical parameters of the shape. The equivalent lumped element of the transformers has been evolved using the cavity model. The values of C_p, L_p, and R_p are determined as follows [28].

$$C_p = \frac{\varepsilon_{eff}\varepsilon_0 LW}{2h}\cos^{-2}\left(\frac{\pi y_0}{L}\right) (F) \quad (13)$$

$$L_p = \frac{1}{C_p h^2} (H) \quad (14)$$

$$R_p = \frac{Q_r}{C_p \mu_r} (\Omega) \quad (15)$$

$$Q_r = \frac{v (\varepsilon_{eff})^{1/2}}{4f_r h} \quad (16)$$

where ε_{eff} is the effective relative permittivity; ε_0 is the relative permittivity of free-space ($\varepsilon_0 = 1/\varepsilon_0 \mu_0$), $\varepsilon_0 = 8.85 \times 10^{-12} \text{F} \cdot \text{m}^{-1}$; v is the speed of electromagnetic waves in free space; W and L denote the width and length of the transformer, respectively; y_0 is the inset-fed point location for patch antenna,
Ahmad et al.

FIGURE 7. Comparison among simulated and measured (a) magnitudes and (b) phase differences.

FIGURE 8. (a) Equivalent circuit of the compact SSFN $C_1 = 0.0573 \, \text{pF}$, $R_1 = 3133 \, \Omega$, $L_1 = 8.020 \, \text{nH}$, $C_2 = 0.4363 \, \text{pF}$, $R_2 = 425.4 \, \Omega$, $L_2 = 1.054 \, \text{nH}$, $C_3 = 0.0416 \, \text{pF}$, $R_3 = 3691 \, \text{Ω}$, $L_3 = 9.455 \, \text{nH}$, $C_4 = -0.324 \, \text{pF}$, $R_4 = 568.6 \, \Omega$, $L_4 = 1.4202 \, \text{nH}$, $C_5 = 0.0962 \, \text{pF}$, $R_5 = 1898 \, \Omega$, $L_5 = 4.779 \, \text{nH}$, $C_6 = 0.1219 \, \text{pF}$, $R_6 = 1481 \, \Omega$, $L_6 = 3.772 \, \text{nH}$, $C_7 = 0.0669 \, \text{pF}$, $R_7 = 2729 \, \Omega$, $L_7 = 6.872 \, \text{nH}$, $R_o = 12.8 \, \Omega$. (b) The reflection loss for network, simulated with both software packages.

whereas in this research, y_0 equals zero; h is the thickness of the board; ω_r and Q_r are the angular frequency at resonance [28] and the radiation quality factor, respectively [29]. The resonant frequency is taken to be 7.419 GHz, the frequency of the maximum reflection loss of the compact SSFN.

The ECM for each transformer is connected in series with ECM for the other transformers. Fig. 8(a) illustrates the equivalent circuit for the proposed SSFN. Furthermore, there are a few losses symbolized by series $R_o = 12.8 \, \Omega$. It symbolizes further losses in the ECM. It has been introduced as a parameter to supply a closer agreement among the suggested ECM and simulation results. It is worth mentioning here how to calculate the equivalent circuit of the convex transformers T_2, T_4, and T_6 and the bending transformers T_1, T_3, and T_5. The method is based on the calculation of the length of the spiral arc or bend transformers, then dealing with these transformers as straight forms. Fig. 8(b) displays the comparison among reflection losses of the compact SSFN simulated in CST MWS and the SSFN model circuit simulated by the AWR-Microwave Office. The maximum reflection loss of the CST MWS curve was observed at 7.419 GHz, while the AWR curve was 7.42 GHz. The two curves are in good agreement. The difference in bandwidth (BW) between the two curves, owing to numerical analysis in AWR, does not take in account the bending feed lines as well as curving in T_2, T_4, and T_6.

3. THE SAA DESIGN

A set of 2×2 spiral-based patch elements has been connected to the compact SSFN through ports 2, 3, 4, and 5. The spiral shape of the proposed SSFN will impose a new form of array
configuration, which is the arrangement of the spiral elements. Further, the new spiral feed network or SSFN can be used for feeding a circular array. Owing to the Archimedean spiral antenna arrangement, the remaining distance between patches and ports is not equal like with a circular array, which is why this paper proposed different feed line bending for each element, while in the circular antenna array, all feed lines have similar bending shape [7, 8, 12, 13, 18–20, 27].

The element radius and feed line width were adopted as 6.86 mm and 0.66 mm, respectively. Fig. 9(a) shows the circular patch with SFL before the bending process, which resonates at 7.482 GHz. Figs. 9(b), (c), (d), and (e) show the antenna feed lines shape which will connect to ports 2, 3, 4, and 5, respectively. The resonance frequency of the patches was adjusted to match the resonance frequency of the maximum reflection loss of the compact SSFN at 7.419 GHz, by choosing the proper bend shape. It was observed from simulated results that changing the shape of bending leads to shifting the resonance of element upward or downward, in addition to changing the value of reflection loss.

The characteristics impedance of the antenna with very low reflection loss will definitely be close to 50 Ω with a reduction in side lobe level as observed through simulation results. Fig. 10 displays the comparison between the reflection loss of circular patch with SFL vs. the reflection loss for the other elements in the array and the reflection loss for compact SSFN.

Figure 11 shows the geometry of the SAA, the array arranged in a 75 mm × 75 mm square (1.85λ₀ at 7.419 GHz). The board size is 170 mm × 150 mm. All circular patches have an equal radius of 6.86 mm. The separation distances between elements from edge to edge (rₑₑ) are kept at 29.7 mm (0.73λ₀ at 7.419 GHz). The spiral arc length used for arranging patches is 43.42 mm (1.07λ₀), where the length of the arc was calculated on the basis of the space between two neighbouring antennas from centre to centre (Rₑₑ). 𝑅₁(𝑡₁), 𝑅₂(𝑡₂), and 𝑅₃(𝑡₃) represent the radii of the spiral path. The reason for adopting Rogers board 5880, loss tangent 0.009, thickness 1.575 mm with a low dielectric constant 2.2 is because a small dielectric constant is preferred to obtain a good axial ratio for CP application [30] in the case of using the same circular patch with a concentric elliptical cut to generate CP [13].

\[R₁ (t₁) = 0.95t₁ \]

(17)
where \(t_1, 20\pi/2 \leq t_1 \leq 20.9054\pi/2 \)

\[R_3 (t_2) = 0.98t_2 \] (18)

where \(t_2, 20.9435\pi/2 \leq t_2 \leq 21.7837\pi/2 \)

\[R_3 (t_3) = 1.01t_3 \] (19)

where \(t_3, 21.8123\pi/2 \leq t_3 \leq 22.5967\pi/2 \).

The values of the spiral path radii depend on the available space around SSFN. As seen from Fig. 11, the SAA is based on a compact SSFN applied to set \(2 \times 2 \) compact antenna elements, where the antenna feed lines based on space-filling ability are arranged to fit the area between the antennas.

The coaxial probe of 50 \(\Omega \) is employed in a simulation. Simulation works have been done employing frequency domain solver in CST MWS with open (add space) boundary conditions.

3.1. ECM for the SAA

The ECM for a circular patch can be described as a parallel set of \(R, L, \) and \(C \) similar to a rectangular patch. However, the approach used in [31] is complicated. Aiming to simplify this approach, this article proposes a new, simpler method based on the techniques previously employed in [29, 31–33]. Fig. 12(b) displays the comparison between reflection loss curves for the circular patch vs. the proposed approach used in this work and the approach used in [32, 33], where they resonate at 7.482 GHz, 7.276 GHz, and 7.964 GHz, respectively. The simulation comparison has been done for the same length and width of feed lines 9.75 mm and 0.66 mm, respectively. The \(-10\) dB of the circular patch is 318 MHz while for the approach in this work and in [32, 33] they are 274 MHz and 404 MHz, respectively. The difference between resonant frequency for the circular patch and the approach in this work is 2.75\%, while for the approach in [32, 33] it is 6.44\%.

To prove the validity of the new equating approach, Table 3 shows the difference between the resonant frequencies for the circular and square patches (after equating approach) at different frequencies 7 GHz, 8.5 GHz, 10 GHz, and 12 GHz, where the difference between the two resonant frequencies remains

FIGURE 12. (a) Graphical diagram for equating the area of circular patch with square patch. (b) Comparison among the circular patch vs. the equating in this paper and in [32, 33].

The following formulas have been used for extracting the dimensions of the square patch.

\[A = \pi r^2 \] (20)

\[W = L = \sqrt{A} \] (21)

In [32, 33], another approach has been used for equating circular patch area, where \(W \) and \(L \) are represented as \(2r \) and \(\pi r/2 \), respectively. As illustrated earlier in Fig. 10, the resonant frequency of circular element in the array is adopted to be around 7.419 GHz for the element with a bending feed line for a patch radius of 6.86 mm because it should be similar to the frequency of the maximum reflection loss of the compact SSFN. In this section, the calculation has been done with SFL, thus the circular patch with the same mentioned radius resonates at resonant frequency 7.482 GHz with a shift 63 MHz upwards. The Equivalent Circuit Model (ECM) for a circular patch can be described as a parallel set of \(R, L, \) and \(C \), similar to a rectangular patch. However, the approach used in [31] is complicated. To simplify this approach, this article proposes a new, simpler method based on the techniques previously employed in [29, 31–33]. Fig. 12(b) displays the comparison between reflection loss curves for the circular patch vs. the proposed approach used in this work and the approach used in [32, 33], where they resonate at 7.482 GHz, 7.276 GHz, and 7.964 GHz, respectively. The simulation comparison has been done for the same length and width of feed lines 9.75 mm and 0.66 mm, respectively. The \(-10\) dB of the circular patch is 318 MHz while for the approach in this work and in [32, 33] they are 274 MHz and 404 MHz, respectively. The difference between resonant frequency for the circular patch and the approach in this work is 2.75\%, while for the approach in [32, 33] it is 6.44\%.

To prove the validity of the new equating approach, Table 3 shows the difference between the resonant frequencies for the circular and square patches (after equating approach) at different frequencies 7 GHz, 8.5 GHz, 10 GHz, and 12 GHz, where the difference between the two resonant frequencies remains
TABLE 3. The comparison between circular and square patch.

<table>
<thead>
<tr>
<th>Circular patch frequency (GHz)</th>
<th>Square patch frequency (GHz)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6.828</td>
<td>2.45</td>
</tr>
<tr>
<td>8.5</td>
<td>8.32</td>
<td>2.11</td>
</tr>
<tr>
<td>10</td>
<td>9.788</td>
<td>2.12</td>
</tr>
<tr>
<td>12</td>
<td>11.688</td>
<td>2.6</td>
</tr>
</tbody>
</table>

almost constant between 2.1% and 2.6% in reasonable proportions.

The circuit model for a square patch without a feed line is represented as parallel \(C_p, L_p, R_p \) [28], as seen in Fig. 13(b). The amounts of \(C_p, L_p, \) and \(R_p \) can be computed from (17) to (20), where \(W \) and \(L \) symbolize the width and length of a square patch, respectively. There is a sharp variation in line width at the intersection of the patch and feed line, which is called a discontinuity. The discontinuity is seen in Fig. 13(a), and it is caused by an unexpected variation in the geometry of the strip conductor, where \(W \) is the width of the wide microstrip portion, and \(W_g \) is the width of the narrow line portion. It should be noted that the discontinuity causes reflections of the signal with a few radiations. The charges will become greater on the conductor due to electric charges that head to collect at the boundaries of a discontinuity. As a result, the electric field rises, and electric energy is stocked. The resulting impact can be symbolized as a capacitive \(C_f \) in the circuit model [34], as seen in Fig. 13(c). \(C_f \) symbolizes the fringing field capacitance at the intersection [34,35]. The discontinuity regulates the allocation of the current and grows the magnetic field. Magnetic energy is stocked in higher-order modes that make an inductive effect, which can be symbolized as \(L_{f1} \) and \(L_{f2} \) in ECM [34], as seen in Fig. 13(c). Thus, \(C_f, L_{f1}, \) and \(L_{f2} \) are the equivalent capacitance and inductance of the feed transmission line (TL) and discontinuity. \(C_f \) is presented as [29].

\[
C_f = 0.00137h \left(\frac{\varepsilon_{eff}}{Z_{c1}} \right)^{1/2} \left(1 - \frac{W_g}{W} \right)
\]

\[
\frac{\varepsilon_{eff} + 0.3}{\varepsilon_{eff} - 0.258} \left(\frac{W_g}{W} + 0.264 \right)
\]

\[
\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \frac{1}{1 + \frac{12}{W} \frac{h}{W}}^{1/2}
\]

\[
Z_{c1} = 120\pi \left(\varepsilon_{eff} \right)^{-1/2} \left(\frac{W}{h} + 1.393 + 0.667 \ln \left(\frac{W}{h} + 1.444 \right) \right)
\]

where \(\varepsilon_{eff} \) and \(Z_{c1} \) are the effective relative permittivity and characteristic impedance of square patch, respectively. \(\varepsilon_{eff} \) depends on the board thickness, \(h \), and conductor width \(W \). \(L_{f1} \) and \(L_{f2} \) can be calculated from the following equations [34–36].

\[
L_{f1} = \frac{L_{w1}}{L_{w1} + L_{w2}} L_d, \quad \text{(nH)}
\]

\[
L_{f2} = \frac{L_{w2}}{L_{w1} + L_{w2}} L_d, \quad \text{(nH)}
\]

\[
L_{w1} \quad \text{and} \quad L_{w2} \quad \text{are inductive per unit length of the square patch and feed line, having widths of} \quad W \quad \text{and} \quad W_g, \quad \text{respectively, while} \quad L_d \quad \text{is the overall discontinuity inductance and presented by [34–36].}
\]

\[
L_{w1} = Z_{c1} \left(\varepsilon_{eff} \right)^{1/2}, \quad \text{(H/unit length)}
\]

\[
L_{w2} = Z_{c2} \left(\varepsilon_{eff} \right)^{1/2}, \quad \text{(H/unit length)}
\]

where \(\varepsilon_{eff} \) and \(Z_{c2} \) are the effective relative permittivity and characteristic impedance of the feed line, respectively. The resonant frequency is taken to be 7.419 GHz. The units of length employed in equations are metres

\[
\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \frac{1}{1 + \frac{12 h}{W} \frac{1}{W}}^{1/2}
\]

\[
Z_{c2} = 120\pi \left(\varepsilon_{eff} \right)^{-1/2} \left(\frac{W}{h} + 1.393 + 0.667 \ln \left(\frac{W}{h} + 1.444 \right) \right)
\]

\[
L_d = 0.000987h \left(1 - \frac{Z_{c1}}{Z_{c2}} \right) \left(\varepsilon_{eff} \right)^{1/2}
\]

Figure 14(a) symbolizes the ECM for the suggested SAA, four patches connected with SSFN. Fig. 14(b) displays the comparison between reflection losses of the array simulated in CST MWS and the array circuit model simulated by AWR-Microwave Office. The minimum reflection loss of the CST MWS curve was observed at 7.437 GHz, and their −10 dB
impedance BW is 1.08 GHz (6.91–7.99) GHz with a BW percentage of 14.49%. The CST MWS curve has another two −10 dB impedance BWs, which are 0.66 GHz (6.15–6.81) GHz with BW 10.18%, and (8.24–8.63) GHz with BW 4.62%. The AWR curve simulation resonates at 7.42 GHz with −10 dB impedance BW 0.82 GHz (7.02–7.74) GHz with BW 11.03%.

Generally, it can be seen from Fig. 14(b) that the two curves basically tally with one another at the main BW. The difference between the two curves is due to the numerical analysis in AWR Microwave Office, as some of the parameters have not been catered to, such as the effect of bending TL and the separation distance between two patches, which has a close relationship with mutual coupling and BW. The simulated results showed that the BW changed by changing the separation distance between elements. As mentioned earlier, in this design the separation distances are kept with \(R_{\text{ee}} = 43.42 \text{ mm} \) or \(r_{\text{ee}} = 29.7 \text{ mm} \) (0.73\(\lambda_o \) at 7.419 GHz).

As aforementioned, there is a discontinuity between a patch and the feeding line, which is also observed with a sequential feeding network. This paper takes into consideration the discontinuity between adjacent transformers at the point where two branches meet. As shown in Fig. 15(a), there are two types of discontinuities; the first is along the spiral arches between transformers (T₂–T₄) and (T₄–T₆) which are represented by (2–4) and (4–6), while the second type is between transformers or feed lines (T₁, T₃, T₅, and T₇) with transformers (T₂, T₄, and T₈). These discontinuities between branches are represented by (1–2), (2–3), (3–4), (4–5), (5–6), and (6–7). It is observed from simulated results shown in Fig. 14(b) that discontinuities (2–3), (3–4), (4–5), (5–6), and (6–7) have no effect on improving the reflection loss of array, therefore can be neglected. The likely reason is owing to the thin width of transformers T₃, T₅, and T₆, and as evidence, the values of discontinuity (\(C_f \), \(L_{f1} \), and \(L_{f2} \)), which are calculated from (23), (26), and (27), do not depend on the frequency but depend on the width of TL. Further, the discontinuity (1–2) has a significant negative effect on the reflection loss of the array, although the width of T₁ is thin, and this is probably due to T₁ and T₂ being close to the input port. This increases the reflection loss if taken into account and, therefore, must be neglected. As a result, only two discontinuities will be considered: (2–4) and (4–6).

Figure 15(b) shows the same circuit model of the suggested array displayed before in Fig. 8(a) with the addition of the effect of the discontinuity between T₂–T₄ and T₄–T₆, represented by \(C_{f(2-4)} \), \(L_{f1(2-4)} \), \(L_{f2(2-4)} \) and \(C_{f(4-6)} \), \(L_{f1(4-6)} \), \(L_{f2(4-6)} \). Fig. 15(c) shows a comparison between AWR reflection losses for an array without and with calculating the effect of discontinuity between (T₂–T₄) and (T₄–T₆). However, calculating the effect of discontinuity will enhance the AWR curve by about 1.54 dB. The result of discontinuity shows that its effect is very low, and this is another proof of the work reported by Pozar and Schaubert in [37]. As mentioned earlier in the introduction, the series feed network is the best choice to reduce discontinuity [7].

4. MEASURED RESULTS

For validation purposes, the SAA prototype has been fabricated based on the geometrical dimensions displayed in Table 1 by chemical method, while cutting the edge of the prototype and drilling the main port (port 1) have been done using milling CNC machine. The substrate employed is Rogers RT/Duroid 5880, \((\varepsilon_r = 2.2, \text{ loss tangent} = 0.009, \text{substrate thickness} = 1.575 \text{ mm}, \text{copper thickness} = 0.035 \mu\text{m}). \) The pro-
prototype was experimentally tested at the Universiti Technical
Malaysia Melaka employing a vector network analyser, Agilent
N5242A, for measuring reflection loss. Fig. 16 shows a photo-
graph of the SAA fabricated prototype. The measurement was
implemented using a high-precision test cable with 3.5 mm pre-
cision connectors. The analyzer was calibrated employing the
Agilent N4433A calibration kit.

The reflection loss, AR, and gain simulated and measured
results are demonstrated in Figs. 17(a), (b), and (c), respec-
tively. The −10 dB reflection loss realizes the simulated BW
from (6.14–8) GHz, and measured BW from (6.15–8.23) GHz,
as seen in Fig. 17(a). Fig. 17(b) illustrates the measured and
simulated AR results. The measured −3 dB AR BW (6.2–
7.8) GHz is approximately 22.85%, within the −10 dB coeffi-
cient reflection BW. The variation between measurement and
simulation is the reason for manufacturing and measurement
inaccuracy, as well as due to the uncertain relative permittiv-
ity of the board. Fig. 17(c) presents the simulated and mea-
sured gains. It is observed that the measured gain of the SAA is
around (7.6–10.2) dBi within the 3 dB AR BW. The gain vari-
ation within AR BW is smaller than 2.8 dBi, where the mea-
sured maximum gain is around 10.2 dBi at 7.4 GHz. Fig. 18
displays the measured normalized and simulated radiation pat-
terns in the Φ = 0 and Φ = 90 plane at frequencies 6.08 GHz
and 7.43 GHz. During the measurement process, the impacts of
the foam rack and tapes behind the antenna array may cause a
few ripples in the recorded patterns.

Finally, to highlight the benefits of this study, Table 4 com-
pares various antenna arrays utilizing the sequential feed net-
work. The table compares the proposed work with previous
research on impedance bandwidth, AR BW, gain, size, and
substrate type (ε_r). Based on the table, the proposed antenna
occupies 90.73, 58.13, 88.56, and 98.68 percent less space
than [3, 21, 22, 24], respectively. In comparison to other works,
FIGURE 16. An image depicting the SAA being tested within the measurement setup.

FIGURE 17. Simulated and measured (a) reflection loss BW, (b) AR BW, (c) gain.
the impedance bandwidths and AR are superior to [20, 22, 24]. Also, it is clear that the suggested antenna’s peak gain is adequate and greater than [21, 22], as shown in the table, despite their size being more significant than the proposed antenna; perhaps the difference is due to the spiral antenna array design. Moreover, the difference in gain is slight compared to [3], while the array size in [3] is 90.73% greater than the suggested antenna.

![Figure 18](image.png)

FIGURE 18. Measured normalized and Simulated radiation patterns of SAA. (a) 6.8 GHz. (b) 7.43 GHz.

TABLE 4. Comparison of the proposed structure with the similar designs in literature.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>IBW (GHz)</th>
<th>ARBW (GHz)</th>
<th>Peak gain (dBi)</th>
<th>Size (mm³)</th>
<th>Substrate ε_r</th>
<th>Substrate type</th>
<th>Feed network type</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>1.20 (5.10–6.30)</td>
<td>0.9 (5.32–6.22)</td>
<td>8.2</td>
<td>45 × 45 × 1.6 = 3.240</td>
<td>3.65</td>
<td>FR408</td>
<td>Sequential rotation</td>
</tr>
<tr>
<td>[21]</td>
<td>2.2 (4.8–7)</td>
<td>1.27 (5–6.27)</td>
<td>4.95–5.94</td>
<td>92 × 92 × 2.5 = 21160</td>
<td>3.5</td>
<td>NG</td>
<td>Sequential rotation</td>
</tr>
<tr>
<td>[22]</td>
<td>0.8 (1.15–1.95)</td>
<td>0.8 (1.15–1.90)</td>
<td>~ 8</td>
<td>220 × 220 × 1.6 = 77440</td>
<td>4.4</td>
<td>FR4</td>
<td>Sequential rotation</td>
</tr>
<tr>
<td>[23]</td>
<td>2.8 (4.0–6.8)</td>
<td>1.9 (5.1–7.0)</td>
<td>7.5</td>
<td>92 × 92 × 0.8 = 6771.2</td>
<td>4.4</td>
<td>FR4</td>
<td>Sequential rotation</td>
</tr>
<tr>
<td>[24]</td>
<td>0.7 (2.12–2.82)</td>
<td>0.6 (2.24–2.84)</td>
<td>~ 13.5</td>
<td>205 × 205 × 16 = 672400</td>
<td>4.4</td>
<td>FR4</td>
<td>Sequential rotation</td>
</tr>
<tr>
<td>This work</td>
<td>2.08 (6.15–8.23)</td>
<td>1.6 (6.2–7.8)</td>
<td>10.2</td>
<td>75 × 75 × 1.575 = 8850</td>
<td>2.2</td>
<td>Rogers</td>
<td>Sequential rotation</td>
</tr>
</tbody>
</table>
5. CONCLUSION

In this article, a spiral array antenna (SAA) with 2×2 circularly polarized (CP) spiral sequential feed network (SSFN) is presented for C-band applications. The ECM of the SAA with SSFN was proposed, and their performance was verified using CST and AWR software. The suggested SAA with 2×2 CP SSFN is designed and experimented with close correspondence between the simulated and measured outcomes, validated through a high-gain antenna and -3 dB of axial ratio. The tested results indicated that the net bandwidth of 2.08 GHz was covered (6.15–8.23 GHz). Also, the proposed antenna’s axial ratio (AR) covered a bandwidth of 1.6 GHz (6.2–7.8 GHz), approximately 22.85% of the whole bandwidth. The proposed array antenna achieved a peak gain of 10.2 dBi at 7.43 GHz.

ACKNOWLEDGEMENT

The authors wish to express their profound gratitude to Universiti Teknikal Malaysia Melaka (UTeM) for their generous support. This work was made possible through the grant PJP/2024/FTKEK/PERINTIS/S01388. Their assistance and support. This work was made possible through the grant PJP/2024/FTKEK/PERINTIS/S01388. Their assistance and support.

REFERENCES

