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ABSTRACT: This paper proposes a method to calculate temperature distribution by analyzing periodic units, enabling the efficient sim-
ulation of electromagnetic-thermal problems in periodic structures. Compared with traditional methods that require high memory and
long computation times to process the entire large-scale model, this approach significantly reduces computational complexity by focusing
on a single periodic unit and incorporating periodic thermal boundary conditions. In the study, electromagnetic losses are considered as
the heat source, and the formula for periodic thermal boundary conditions is derived in conjunction with the heat conduction equation,
achieving the integration of periodic electromagnetic-thermal boundary conditions. Numerical validation and comparison with global
model results demonstrate that the proposed method maintains accuracy while achieving high efficiency. Furthermore, the method is ap-
plied to an artificial magnetic conductor (AMC) model, with calculation results closely matching those of large-scale unit arrays, further
verifying the correctness and applicability of the algorithm.

1. INTRODUCTION

The periodic electromagnetic boundary is well established,
whereas the periodic thermal boundary is seldom discussed.

For structures with periodic distributions, determining the tem-
perature distribution of the entire structure demands consider-
able memory and extensive computational time. This paper
presents a method to derive the temperature distribution of the
entire structure by directly analyzing a single periodic element.
ElMahgoub et al. introduced the concepts of arbitrary skewed

grids [1] and multilayered periodic structures [2], followed
by the development of dispersive periodic boundary condi-
tions [3], marking the foundation of periodic electromagnetic
boundary research. Subsequently, researchers proposed stag-
gered grid periodic boundaries [4], while Tekbas et al. provided
the analytical solution for infinite medium plates [5].
Currently, the finite element method [6] and spectral element

time-domain method [7] are widely employed for heat calcula-
tion. To enhance computational efficiency, domain decomposi-
tionmethods [8] and parallel computing techniques [9, 10] have
been adopted. However, existing research on electromagnetic-
thermal coupling [11, 12] does not address periodic thermal
boundaries.
Unresolved issues with periodic boundary conditions include

the following: 1) Periodic electromagnetic boundary conditions
are well established, but periodic thermal boundary conditions
have been scarcely explored. 2) Periodic boundary conditions
can be used to simulate an infinitely large object, where a sin-
gle unit cell with periodic boundaries can represent the perfor-
mance trends of the entire structure. However, in thermal anal-
ysis, the existing boundary conditions often conflict with peri-
odic thermal conditions. 3) Heat sources generate temperature
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gradients, which limit the straightforward application of peri-
odic boundary conditions. Therefore, for models composed of
arrays of identical unit cells, such as metamaterials and phased
array antennas, solving coupled electromagnetic-thermal mul-
tiphysics problems for the entire structure requires considerable
computational memory and time.
The main contributions of this paper are as follows: 1) The

periodic thermal boundary condition is derived from the peri-
odic electromagnetic boundary condition, achieving the inte-
gration of periodic electromagnetic-thermal boundary condi-
tions. 2) The existing thermal boundary conditions are im-
proved by integrating periodic thermal boundary conditions
with traditional thermal boundary conditions. 3) Electromag-
netic losses are used as heat sources, deriving the formula for
periodic thermal boundaries through the heat conduction equa-
tion. This method allows for calculating the temperature distri-
bution of the entire structure by solving only the periodic unit
cell.
In this study, a plane wave is used as the excitation source,

and the simulated model requires a periodic structure. When
a plane wave propagates through the periodic structure, the
electric field distribution within each unit cell becomes iden-
tical. As a result, the heat generated in each unit cell leads to
a periodic thermal distribution. Electromagnetic-thermal mul-
tiphysics coupling [13–16] involves using the electric field in
the electromagnetic domain as the heat source in the heat con-
duction equation. Since the electric field is uniform across the
unit cells of the periodic structure, the heat sources within each
unit cell remain consistent. Consequently, the thermal distri-
bution of the entire structure can be determined by calculating
the heat within a single unit cell and applying periodic thermal
boundary conditions.

219doi:10.2528/PIERC24121503 Published by THE ELECTROMAGNETIC ACADEMY

https://doi.org/10.2528/PIERC24121503


Li et al.

2. FORMULATION
The basic finite-difference time-domain (FDTD) iteration (1).
The remaining components Ey , Ez , Hx, Hy , Hz , and (1) can
be derived using the same approach. Equations (2) and (3)
serve as the fundamental formulas for periodic electromagnetic
boundary iterations. The remaining components Ey(1, j, k),
Ey(nx+1, j, k), Ez(1, j, k), Ez(nx+1, j, k), Ez(i, 1, k), and
Ez(i, ny + 1, k) can be determined straightforwardly. How-
ever, Ez(i, j, k) requires special handling at the four corners
defined by (4), (5), (6), and (7).

En+1
x (i, j, k) = Cexe(i, j, k)× En

x (i, j, k)

+Cexhz(i, j, k)
[
Hn+1/2

z (i, j, k)−Hn+1/2
z (i, j−1, k)

]
+Cexhy(i, j, k)

[
Hn+1/2

y (i, j, k)−Hn+1/2
y (i, j, k−1)

]
,(1)

Cexe(i, j, k) =
2εx(i, j, k)−∆tσe

x(i, j, k)

2εx(i, j, k) + ∆tσe
x(i, j, k)

,

Cexhz(i, j, k) =
2∆t

(2εx(i, j, k) + ∆tσe
x(i, j, k))∆y

,

Cexhy(i, j, k) =
2∆t

(2εx(i, j, k) + ∆tσe
x(i, j, k))∆z

.

En+1
x (i, 1, k) = Cexe(i, 1, k)× En

x (i, 1, k)

+Cexhz(i, 1, k)
[
Hn+1/2

z (i, 1, k)−Hn+1/2
z (i, ny, k)

×ejkyPy
]
+ Cexhy(i, 1, k)

[
Hn+1/2

y (i, 1, k)

−Hn+1/2
y (i, 1, k − 1)

]
, (2)

En+1
x (i, ny + 1, k) = En+1

x (i, 1, k)× e−jkyPy , (3)

where ky is the propagation constant in the y-direction, and Py

is the length of the simulation model in the y-direction.

En+1
z (1, 1, k) = Ceze(1, 1, k)× En

z (1, 1, k) + Cezhy(1, 1, k)

×
[
Hn+1/2

y (1, 1, k)−Hn+1/2
y (nx, 1, k)× ejkxPx

]
+Cezhx(1, 1, k)×

[
Hn+1/2

x (1, 1, k)−Hn+1/2
x (1 + S, ny, k)

×ejkyPy
]
, (4)

En+1
z (nx + 1, 1, k) = En+1

z (1, 1, k)× e−jkxPx , (5)
En+1

z (1, ny + 1, k) = En+1
z (1 + nx − S, 1, k)× e−jkyPy , (6)

En+1
z (nx + 1, ny + 1, k) = En+1

z (1, 1, k)× e−jkxPx

×e−jkyPy . (7)

Electromagnetic loss [17] serves as the source of heat gener-
ation, and the electromagnetic field is coupled with the thermal
field through the heat conduction Equation (8) [18]. The dis-
cretization of the heat conduction equation is expressed in (9).

ρcm
∂T

∂t
= ∇ · (K∇T ) +

1

2
σE2, (8)

where ρ is the medium density, cm the specific heat of the
medium,K the thermal conductivity of themedium,E the elec-
tric field intensity, and σ the electric conductivity.

Tn+1(i, j, k) = Tn(i, j, k) + ∆tT ∗ K(i, j, k)
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∆y2

+
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∆z2

)

+
∆tT

ρ(i, j, k)cm(i, j, k)
∗ Pn(i, j, k), (9)

P =
1

2
σE2, (10)

∆tT ≤ ρcm
2K

(
1

∆x2
+

1

∆y2
+

1

∆z2
)−1, (11)

where n is the current time step, n + 1 the next time step, and
∆tT the propagation time for each step of the calculated tem-
perature.
Periodic thermal boundaries cannot be updated due to the

lack of external grids. For example, updating T (1, 1 :nx, 1 :nz
requiresT (0, 1 :nx, 1 :nz), butT (0, 1 :nx, 1 :nz) does not ex-
ist. In such cases, the boundary is usually left not updated, but
this approach often leads to errors in the results. Here, “1 :nx”
represents all integers from 1 to nx.
Before this paper, the calculation of thermal effects in large

structural models with periodic structures typically involved
first performing electromagnetic modeling and simulation on
a single unit cell. Then, the electric field obtained from that
unit cell would be distributed to the corresponding positions of
each unit in the entire large model to calculate the thermal ef-
fects of the wholemodel. However, this method requires a large
amount of time and memory. For the reasons mentioned above,
this paper proposes thermal periodic boundaries.
As long as the electric field maintains a periodic arrange-

ment, the thermal calculation of the model can be carried out
using the following periodic thermal boundary method. This
method only requires the calculation of the smallest periodic
unit alongwith the periodic thermal boundaries to determine the
thermal response of the entire model. In this paper, the thermal
equivalent is represented at the center of the Yee grid. Here, nx,
ny, and nz denote the numbers of grids along the X , Y , and Z
axes, respectively.
Explanation of Fig. 1:

1) Assign all heat values at X = nx to the grid at X = 0.
All heat at X = 1 is assigned to the grid at X = nx+ 1.

2) Assign all heat values at Y = ny to the grid at Y = 0. All
heat at Y = 1 is assigned to the grid at Y = ny + 1.
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FIGURE 1. Diagram of the thermal periodic boundary update method.

At the beginning of each iteration, the heat assignment op-
eration is performed using the method shown in Fig. 1. Subse-
quently, the program employs the conventional thermal itera-
tion method for the overall update of the periodic unit, simpli-
fying the programming complexity.
The following describes, in detail, the algorithm combining

periodic electromagnetic and thermal boundary conditions: 1)
A subunit of the model with a periodic structure is selected,
and the electromagnetic field simulation is performed using pe-
riodic electromagnetic boundary conditions. 2) Heat genera-
tion is assigned according to the method illustrated in Fig. 1.
Equations (12) and (13) formalize this method, and as shown
in Fig. 1, a similar approach can be applied in the y-direction.
3) The temperature field is updated using the heat conduction
Equation (9). 4) Steps 1), 2), and 3) are repeated until the tem-
perature difference between two successive iterations is less
than 1%. Fig. 2 presents the flowchart of the algorithm.
In this study, the periodic distribution in the XY planes is ex-

plained as an example, and the method can be extended to other
planes accordingly.

T (0, 2 : ny − 1, k) = T (nx, 2 : ny − 1, k). (12)
T (0, 1, k) = T (nx, 1, k). T (1, 0, k) = T (1, ny, k). (13)

This study focuses on a periodic distribution on a single
plane, simulating an infinitely large plane. Periodic thermal
boundary conditions are applied around the four edges of the
periodic structural subunit, while standard thermal boundary
conditions are applied to the upper and lower surfaces (14).

∂T

∂n
=

h

K
(Tobject − Tsu) . n = z, (14)

where Tobject is the surface temperature of the measured object,
Tsu the ambient temperature surrounding the measured object,
and h the coefficient of heat convection.

3. NUMERICAL EXAMPLE
3.1. Method for Verifying the Correctness of the Algorithm
To validate the correctness of the proposed periodic thermal
boundary conditions, we conducted comparative tests using

FIGURE 2. Algorithm flowchart combining periodic electromagnetic
boundary conditions and periodic thermal boundary conditions.

three different methods. The simulations were performed on
two cuboid dielectric materials with specific dimensions and
properties.
Case 1: A cuboid with dimensions 102mm × 102mm ×

9.2mm, dielectric constant ε = 2.56, and conductivity σ =
0.004 (referred to as Cuboid 1). Case 2: A smaller cuboid
with dimensions 1.6mm×1.6mm×9.2mm, dielectric constant
ε = 2.56, and conductivity σ = 0.004 (referred to as Cuboid 2),
which can be considered as a periodic unit of Cuboid 1.
1) First Test (Global Model): The electromagnetic field of

Cuboid 1 was computed, and the temperature distribution was
subsequently calculated using the heat conduction equation.
The temperature was sampled at the central region, as shown
in Fig. 3. 2) Second Test (Proposed Periodic Thermal Bound-
ary): The electromagnetic field of Cuboid 2 was simulated with
periodic electromagnetic boundary conditions. The proposed
periodic thermal boundary conditions were applied to the four

FIGURE 3. Temperature distribution of Cuboid 1 at the top at 21 ns
(unit: ◦C).
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lateral surfaces, while thermal boundary conditions were ap-
plied to the top and bottom surfaces. The temperature distri-
bution was then calculated using the heat conduction equation.
3) Third Test (Full Thermal Boundaries): Similar to the second
test, the electromagnetic field of Cuboid 2 was simulated with
periodic electromagnetic boundary conditions. However, ther-
mal boundary conditions were applied to all six surfaces, and
the temperature distribution was calculated.
From Fig. 4, the temperature distributions from the first and

second tests match perfectly, confirming the validity of the pro-
posed periodic thermal boundary conditions. In contrast, a no-
ticeable discrepancy exists between the results of the first and
third tests. These comparative simulations demonstrate that the
proposed periodic thermal boundary conditions provide accu-
rate results consistent with the global model.

FIGURE 4. The temperature variation with time for three simulation
methods.

As shown in Table 1, the computational time and mem-
ory required for Cuboid 1 are significantly larger than those
for Cuboid 2. The computational time and memory usages
for Cuboid 2 with and without the proposed periodic thermal
boundary conditions are nearly identical. The results obtained
for Cuboid 2 with periodic thermal boundary conditions are
consistent with those of Cuboid 1.

TABLE 1. Three simulations use time and memory.

Type Execution time Memory
Cuboid 1 74.702minutes 62923MB
Cuboid 2 0.08229minutes 3748MB

Cuboid 2 plus periodic
thermal boundary

0.09479minutes 3784MB

COMSOL 97.532minutes 142687MB

In this study, a plane wave excitation (TEM mode) was em-
ployed, with a sinusoidal waveform of amplitude 5 × 106 V
and frequency 8GHz. The heat transfer coefficient was set to
h = 1.5W/m2 · K−1. The electromagnetic and thermal calcu-
lations were performed with the same time step, with electro-
magnetic and thermal fields updated alternately.

3.2. The Combined Simulation of Periodic Electromagnetic
Boundary Conditions and Periodic Thermal Boundary Condi-
tions in the Initial AMC Model
In this study, AMC is chosen as the numerical example be-
cause most AMCs are periodic structures. Furthermore, AMCs
have attracted considerable attention from researchers in recent
years. When AMC first emerged, its structure was relatively
simple, as shown in Fig. 5. The structure consisted of two parts:
a dielectric layer at the bottom and a metal layer on top, with the
dimensions clearly marked in Fig. 5. This study utilizes a pe-
riodic unit structure combined with periodic thermal boundary
conditions to compute the thermal distribution. The thermal re-
sults obtained from directly calculating a 64×64 units cell array
is used for validation. It was found that the thermal distribution
calculated from the 64×64 units cell array closely matches the
results obtained from a single unit cell with periodic thermal
boundary conditions, as shown in Fig. 6.

FIGURE 5. The first artificial magnetic conductor model.

FIGURE 6. The first AMC unit uses periodic thermal boundary condi-
tions and an array of 64×64 units to model temperature variation over
time.

3.3. The Latest Thermal Calculations for AMC
In this study, a complex model is used to validate the correct-
ness of the algorithm. The latest AMCmodel structure still fea-
tures a dielectric layer at the bottom, but the metal layer now
incorporates a complex pattern. As shown in Fig. 7, the metal
pattern is symmetrically distributed both vertically and horizon-
tally. The dimensions are also detailed in Fig. 7. In this case,

222 www.jpier.org



Progress In Electromagnetics Research C, Vol. 153, 219–224, 2025

FIGURE 7. The latest artificial magnetic conductor model. DLa = 1,
DLb = 3.85, L1 = 3, L2 = 5.2, L3 = 6.7 (unit: mm).

the thermal calculation results of the array composed of 64×64
units are compared with those of the unit structure combined
with periodic thermal boundary conditions. The results are in
excellent agreement, as shown in Fig. 8.

FIGURE 8. The latest AMC unit uses periodic thermal boundary con-
ditions and a 64× 64 unit array to model the variation of temperature
over time.

3.4. Metasurface Modeling and Simulation
Figure 9 depicts a broadband metasurface, primarily composed
of a dielectric substrate with a thickness of 1mm and a rela-
tive permittivity of 4.3, on which metallic patterns are etched
to form a basic unit. The design parameters are: α = 6mm,
w = 0.1mm, e = 0.15mm, r1 = 0.75mm, r2 = 1.65mm.
In this calculation, we first apply periodic thermal boundary
conditions to the basic unit shown in Fig. 1 to compute the tem-
perature variation. Next, we calculate the temperature varia-
tion of the overall 64× 64 array structure. Finally, simulations
of the 64 × 64 array are performed using COMSOL software.
The results from all three methods, as shown in Fig. 10, are
in excellent agreement, further validating the effectiveness and
accuracy of our algorithm.

4. CONCLUSION
This paper presents a novel periodic thermal boundary condi-
tion method to address electromagnetic-thermal problems in
structures with periodic configurations. By considering elec-
tromagnetic losses as the heat source and incorporating the heat
conduction equation, a thermal distribution calculation formula
applicable to periodic units is successfully derived. The study

FIGURE 9. Metasurface structure model.

FIGURE 10. The comparison of the temperature-time variation curve
of the basic unit of the metasurface combined with periodic thermal
boundary conditions and the overall model with a 64× 64 array.

demonstrates that this method can accurately predict the tem-
perature distribution of the entire structure through computa-
tions performed on a single periodic unit, significantly reduc-
ing memory usage and computational time. Numerical exper-
iments validate the accuracy of the proposed method. This
research not only enriches the theoretical framework of peri-
odic boundary conditions but also provides an efficient and re-
liable new approach for solving multiphysics electromagnetic-
thermal problems.
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