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ABSTRACT:This paper introduces a deep neural network (DNN) training framework to tackle the general power pattern synthesis problem.
Compared to the iterative solving method, the DNN-based approach offers a shorter response time, which is significant in adaptive
scenarios. In contrast to the widely adopted supervised learning framework, the encoder-decoder network structure utilized in this paper
does not necessitate the pre-synthesized results as the training label. The issue of difficult convergence in training caused by the non-
uniqueness of the solution is well solved in our method.

1. INTRODUCTION

For general power pattern synthesis problems, such as ar-
ray factor synthesis in array antennas and scattering pat-

tern synthesis in metasurface design, the process can be divided
into two steps. The first step involves determining a set of
equivalent electromagnetic current sources to meet the speci-
fied power pattern requirements. The second step entails con-
trolling the excitation and adjusting the radiation or scattering
structure to ensure that the equivalent radiation source of the
structure aligns with the source distribution obtained in the first
step [1].
The synthesis of equivalent sources for a given radiation

power pattern is typically approached using iterative meth-
ods. Stochastic optimization algorithms like Genetic Algo-
rithm (GA) and Particle Swarm Optimization (PSO) can grad-
ually converge to the global optimal solution [2–4]. Alterna-
tively, the iterative projection technique (IPT) based on inverse
sources method can be utilized to find an equivalent source
solution, ensuring convergence of the radiation power pattern
within the prescribed upper and lower bound functions [1, 5, 6].
To reduce the computational complexity, compressive sensing
(CS) [7], and other methods based on sub-arrays and clustered
arrays have also been proposed [8, 9]. Although these methods
offer high accuracy, their iterative nature makes the synthesis
process non-real-time. To fulfill the real-time requirements of
array and reconfigurable metasurface control in adaptive sce-
narios, a possible solution is to employ data-driven deep neu-
ral networks. Once the training of the DNN is completed, the
equivalent source distribution can be directly computed based
on different input power pattern specifications.
In the field of electromagnetics, the utilization of deep learn-

ing methods based on DNN has been extensively investi-
gated [10–15]. However, the further advancement of deep
learning is impeded by two significant challenges. Firstly, the
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acquisition of datasets in the field of electromagnetics is a costly
endeavor compared to domains like image and text. This limi-
tation restricts the creation of large-scale datasets, thereby hin-
dering the effectiveness of commonly used supervised learn-
ing frameworks. Secondly, when employing neural networks
to solve electromagnetic inverse problems, the non-uniqueness
of the inverse solution presents a major difficulty [16]. For in-
stance, a given radiation pattern can correspond to several en-
tirely different source distributions. This non-uniqueness of so-
lutions inhibits the convergence of supervised learning meth-
ods [17–20]. One approach to addressing the problem of mul-
tiple solutions in training is to use generative models [21], such
as Generative Adversarial Networks (GANs). However, gen-
erative models have drawbacks such as training instability and
difficulties in hyperparameter optimization.
In this paper, we present an unsupervised DNN model with

an encoder-decoder structure [22] for synthesizing equivalent
source distributions. The proposed model utilizes a set of pa-
rameter vectors describing the desired power pattern as input
to the DNN and generates the corresponding equivalent source
distribution as output. The main innovations of this paper can
be summarized in the following two aspects. Firstly, unlike
the commonly used supervised learning approach, an unsuper-
vised deep learning training framework is constructed. This
eliminates the need for specific source distribution labels in the
training dataset. Consequently, the high cost associated with
obtaining source distributions for different radiation power pat-
tern specifications through other algorithms is overcome. Sec-
ondly, inspired by [19], a cascade network structure, consisting
of an encoder and decoder, is adopted to overcome the training
non-convergence issue caused by multiple solutions in electro-
magnetic inverse problems. A deep neural network, function-
ing as the encoder, converts the input power pattern specifi-
cation into output source distribution. The decoder maps the
encoder’s output source distribution to its corresponding radia-
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FIGURE 1. Illustration of dipole line array.

tion power pattern. The training of DNN utilizes a loss function
which can quantify the difference between the decoder’s output
pattern and the desired far-field power pattern. This loss func-
tion design effectively resolves the issue of multi-value output
in electromagnetic inverse problem.
The following sections will introduce the structure of the pro-

posed networkmodel in detail and demonstrate its effectiveness
through a 1-dimensional source synthesis case.

2. PROBLEM STATEMENT
Consider the scenario in Fig. 1, whereM electric dipole sources
are arranged linearly along the y-axis with a spacing of d be-
tween adjacent dipoles. For simplicity, we assume that the
dipole sources have only a z polarization component. Con-
sequently, the far-field electric fields have only θ polarization
component and can be expressed as (1),

[E]N = [G]N×M [J ]M (1)

where the M -dimensional vector [J ]M represents M dipoles;
[E]N is an N -dimensional vector denoting far-field electric
fields radiated by [J ]M withN sampling points; and [G]N×M is
the mapping matrix from [J ]M to [E]N , whose specific expres-
sion can be deduced from [23]. For the 1-dimensional problem,
suppose that we only care about the 1-dimensional power pat-
tern at θ = 90 deg, and the far-field space sampling range is
ϕ = [−90, 90].
In general, the desired radiation power pattern is character-

ized by a set of far-field pattern parameters, such as the main
beam direction, half power beamwidth (HPBW), sidelobe level
(SLL), nulls, and others [24]. The objective in this paper is to
identify a combination of sources [J ]M , whose radiation power
pattern satisfies the given far-field pattern specification. This
is often formulated as a mask-constrained problem, where up-
per and lower bound mask functions are defined based on the
far-field pattern specification [1, 25, 26]. The original prob-
lem is then transformed into finding a set of sources that mini-
mizes the discrepancy between the radiation power pattern and
the interval defined by the upper and lower bound mask func-
tions. However, the mask-constrained problem introduces non-
uniqueness in the solution, making it challenging for supervised
learning methods to converge. In addition, through the trun-
cated singular value decomposition (TSVD) of [G]N×M [27],
Equation (1) can be rewritten as,

[E]N = [UR]N×τ [ΣR]τ×τ [γR]τ×1 (2)

[J ]M = [V ]M×M

[
[γR]τ×1

[γNR](M−τ)×1

]
(3)

where unitary matrix [V ]M×M is theM -dimensional right sin-
gular value vector of matrix [G]N×M ; [UR]N×τ is the truncated
left singular vector matrix with truncation order τ ; and diago-
nal matrix [ΣR]τ×τ is the truncated singular value matrix of
[G]N×M . In addition, [γR] and [γNR] constitute the coordinate
of [J ]M in [V ]M×M coordinate system [27].
According to Equation (2), the radiation field [E]N is exclu-

sively determined by [γR]. This implies that while the value of
[γNR] may impact the value of the source [J ]M , it does not al-
ter the radiation field [E]N . The current associated with [γR] is
referred to as the radiative current JR, while the current asso-
ciated with [γNR] is known as non-radiative current JNR [28].
The total current [J ]M can be expressed as (4) [28],

[J ]M = JR + JNR. (4)

The presence of the non-radiative current JNR contributes to
the non-uniqueness of the solution in inverse source synthesis.
In order to alleviate the issue of multiple solutions, our DNN
focuses solely on the output goal of [γR] (i.e., [γNR] = 0).

3. PROPOSED NETWORK STRUCTURE
The training framework of our proposed DNN is illustrated in
Fig. 2(b). It comprises two main modules enclosed in dashed
frames: the DNN encoder to be trained, represented by the blue
dotted frame, and the decoder, denoted by the yellow dotted
frame. The role of the DNN encoder is to map the input far-
field power pattern specification from the dataset to the radia-
tive source coefficient [γR]. Conversely, the decoder takes the
radiative source coefficient [γR] as input and computes the cor-
responding radiation power pattern as output. During training,
the loss function is computed by comparing the output power
pattern generated by the decoder with the upper and lower
bound mask functions provided in the dataset. More detailed
information regarding each block and the specific training pro-
cess will be discussed in subsequent sections.

3.1. Dataset Format
Similar to the approach described in [26], we adopt a 4-channel
vector representation for the input power pattern specification
to facilitate feature extraction by the DNN. This representa-
tion is illustrated in Fig. 3. In the case of synthesizing a 1-
dimensional far-field pattern in a half-space, we begin by dis-
cretizing the far-field region into a spatial angle distribution.
The sampling interval used is 1 degree, and this angle distribu-
tion is denoted by Phi. The four characteristics that we fo-
cus on for the far-field pattern are Beam Direction, HPBW,
SLL, and the pointing of nulls. Each characteristic parameter
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(a) (b)

FIGURE 2. Illustration of the DNN training framework. (a) Supervised learning training framework. (b) Proposed training framework.

FIGURE 3. Illustration of the far-field power pattern dataset format.

is represented by a vector of the same length as the spatial sam-
pling vector Phi. For the parameters of Beam Direction and
Nulls, a value of 1 is assigned to the corresponding pointing
angle, while the remaining angular areas are filled with 0. In
the case of the HPBW parameter, the region within the maxi-
mum pointing half-power beamwidth is assigned a value of 1,
while the other areas are assigned 0. For SLL vector, all spa-
tial sampling points are assigned the desired SLL values. As
shown in the example in Fig. 3, the main beam of the pattern
points to Phi = −84 degrees, with an HPBW of 4 deg from
Phi = −86 deg to Phi = −82 deg. The null is located at
Phi = 88 deg, and the SLL is −15 dB.
The upper and lower bound mask functions are generated ac-

cording to the power pattern specification data. The mask func-
tions corresponding to Fig. 3 are shown in Fig. 4, and the upper
bound function is set to −30 dB in the nulls region (3 degrees
wide, centered around the Nulls parameter). The upper bound
function is fixed at 0 dB in the main beam region (4 degrees
wider than the HPBW) and takes the value specified by the SLL

FIGURE 4. Illustration of the mask function dataset.

parameter elsewhere. The lower bound function is set to 0 dB
at the main beam pointing angle and −3 dB within the HPBW
region. The remaining angle range of the lower bound function
is fixed at −100 dB. By adhering to our mask functions gen-
eration rules, the resulting far-field pattern constrained by the
mask functions can satisfy the desired pattern specification.

3.2. Deep Neural Network Model

The proposed DNN model structure is illustrated in Fig. 5.
It consists of five 1-dimensional convolution blocks and one
fully connected layer. Each convolution block comprises a 1-
dimensional convolution layer (Conv1d), a LeakyReLU activa-
tion layer, and a 1-dimensional maximum pooling layer (Max-
pool1d). The Conv1d layer has a kernel size parameter of 3, and
both the stride and padding parameters are set to 1. The Max-
pool1d layer has a kernel size and stride of 2. The 4-channel in-
put far-field power pattern specification doubles the number of
channels and halves the data length with each passing through
a convolution block. After five convolution blocks, the number
of channels reaches 128, and the data length is downsampled to
5. Subsequently, the data from all channels are flattened into
a vector of length 640, which is then mapped to a vector of
length 46 through a fully connected layer. The activation func-
tion used after the fully connected layer is the Tanh function,
which maps the output data to the interval of −1 to 1. It is
necessary to note that, in the given example, the truncation or-
der τ is set to 23, while the output vector length of the DNN is
46. This is because the coefficient [γR] is complex, with two
dimensions: the real part and imaginary part. The first 23 ele-
ments of the output vector represent the real part of [γR], while
the rest represents its imaginary part.

79 www.jpier.org



Zhuang and Ouyang

FIGURE 5. Illustration of the proposed deep neural network structure.

3.3. Far-Field Pattern Calculation
In contrast to the general supervised learning framework, the
training of the DNN in this paper involves an additional pat-
tern calculation module, known as the decoder. The predicted
[γR] from the DNN is processed by the decoder to obtain the
corresponding radiation pattern. The training objective is to
minimize the disparity between this radiation pattern and the
desired pattern constrained by the given bound mask function.
The far-field power pattern calculation process is as follows.
The complex number representation of [γR] is synthesized

by combining the real and imaginary parts output by the DNN.
Using Equation (2), the radiation fields [E]N corresponding to
the predicted source [γR] can be computed. The power pattern
is then defined as the square of the absolute value of the electric
fieldsE. To facilitate comparison, the power pattern is normal-
ized. This is achieved by scaling the power pattern so that the

normalized power pattern |̃E|
2
ranges from 0 to 1.

3.4. DNN Loss Computation
The loss function is defined to quantify the deviation between

|̃E|
2
and the boundary mask constraint function. The total loss

consists of two terms, as expressed by Equation (5),

Ltotal = Lupper + Llower (5)

where Ltotal represents the total loss; Lupper denotes the loss

incurred when |̃E|
2
exceeds the upper bound mask function;

and Llower represents the loss incurred when |̃E|
2
falls below

the lower bound mask function.
To calculate the loss, the logarithmic form of the mask func-

tion in the dataset is converted to its absolute value form to
match the range of the normalized |̃E|

2
. The following defi-

nitions are used:

|E|clamp
upper =


|̃E|

2
, if |̃E|

2
< Mupper

Mupper, if |̃E|
2
>= Mupper

(6)

|E|clamp
lower =


|̃E|

2
, if |̃E|

2
> Mlower

Mlower, if |̃E|
2
<= Mlower

(7)

where Mupper and Mlower are the upper and lower bound
mask functions in dataset. Then, Lupper and Llower are de-
fined as (8) and (9). The mean square error (MSE) function is
utilized as the loss function [29], which has been found to yield
favorable results in our experiments.

Lupper = MSE

 |̃E|
2
− |E|clamp

upper

Mupper
, 0

 (8)

Llower = MSE

 |E|clamp
lower − |̃E|

2

Mlower
, 0

 (9)

4. NETWORK MODEL ASSESSMENT
To prove the effectiveness of the DNN framework, a case with
32 dipoles (i.e.,M = 32) to be synthesized is demonstrated in
this paper. The spacing d equals 0.3λ0, where λ0 is the free
space wavelength at 4.5GHz. The singular value of the matrix
[G] in formula (1) is shown in Fig. 6(a), and the TSVD trun-
cation index τ is set to τ = 23. The DNN model structure
to be trained is shown in Fig. 5, and the PyTorch deep learn-
ing framework is used to train the model. In our dataset, there
are a total of 51200 data, 80% of which are used as training
datasets and 20% as testing datasets. All datasets are randomly
generated, with Beam Direction and Nulls ranging from −50
to 50 deg, HPBW ranging from 6 to 10 deg, and SLL ranging
from −20 to −10 dB. The upper and lower bound masks are
generated based on the correspond pattern specifications using
a mask generation function, and the total time consumption for
dataset generation is only 0.87 seconds. The Adam optimizer
is used to update DNN weight parameters.
The training loss and testing loss exhibit a decreasing trend

as the number of training epochs increases, as depicted in
Fig. 6(b). To facilitate visualization, the loss values in Fig. 6(b)
are normalized and presented in logarithmic form. As the num-
ber of training epochs increases, the loss function gradually
converges, and the testing loss becomes nearly identical to the
training loss. This indicates that the DNN training process does
not suffer from over-fitting issues. After 500 epochs of training,
the testing loss finally converges to 0.00024.
Figure 7 shows the far-field pattern synthesized by the

trained DNN. The input pattern specification of Fig. 7(a) has
the Beam Direction = 0 deg, HPBW=8deg, SLL = −20 dB,
Nulls = −15 deg. Meanwhile, the input specification of
Fig. 7(b) is with the Beam Direction = 50 deg, HPBW = 10 deg,
SLL=-18 dB, Nulls=-10 deg. It can be seen that both of the
patterns in Fig. 7(a) and Fig. 7(b) can be well limited to
the bound mask function and satisfy the desired far-field
specification. The reasoning losses of Fig. 7(a) and Fig. 7(b)
are 0.00010 and 0.00085, respectively. In addition, it should
be noted that the output [γR] of DNN is the source distribution
in [V ]M×M coordinate system, and the source distribution in
spatial Cartesian coordinate system needs to be transformed
according to formula (3). The value of [γNR] can be set
arbitrarily and will not affect the result of far-field radiation
pattern. If [γNR] is set to zero vector, the resulting source

80 www.jpier.org



Progress In Electromagnetics Research C, Vol. 154, 77–83, 2025

(a) (b)

FIGURE 6. (a) Plot of the singular value. (b) Normalized training and testing loss of DNN versus the training epochs.

(a) (b)

FIGURE 7. Synthesized far-field power pattern based on trained DNN. (a) Beam Direction: 0 deg, HPBW: 8 deg, SLL:−20 dB, Nulls: −15 deg. (b)
Beam Direction: 50 deg, HPBW: 10 deg, SLL: −18 dB, Nulls: −10 deg.

(a) (b)

FIGURE 8. Synthesized minimum norm source. (a) Amplitude. (b) Phase.

distribution is called the minimum norm solution [28]. The
minimum norm source corresponding to Fig. 7 is shown in
Fig. 8.
To compare and demonstrate the reasoning capability of the

trained DNN, we conducted an experimental comparison with
the synthesis performance of the traditional PSO algorithm.
We randomly selected 512 pattern specifications from the test
dataset and applied the PSO algorithm iteratively to deter-
mine the radiation source distribution. To improve the global
search ability of the PSO algorithm, we set a relatively large
populationsize parameter, specifically, populationsize =
400. The PSO algorithm iterations were halted when the PSO
loss reached the average reasoning loss of the trained DNN,
specifically 0.00024. Fig. 9 illustrates the number of PSO iter-
ations corresponding to the 512 source synthesis cases, show-
ing an average iteration count of 176. This indicates that the
reasoning performance of the DNN network trained using the
proposed framework is comparable to the effectiveness of the

PSO algorithm with a population size of 400 after 176 itera-
tions. Under the same computational hardware conditions, the
time taken for 176 iterations of PSO is 7.5 seconds, while the
reasoning time for the DNN is only 0.001 seconds.
To illustrate the inability of traditional supervised learning

training framework to converge due to the non-uniqueness of
solutions, we provide the training results under a supervised
learning framework as a reference. As shown in Fig. 2(a), the
real and imaginary parts of the sources, which satisfy the in-
put pattern specification, are used as training labels, and this
is obtained through pre-solving using the PSO algorithm. The
goal of training is to make the output values of the DNN as
consistent as possible with the label values, and the MSE loss
function is used to evaluate the difference. The input pattern
specifications of training and testing datasets are completely
consistent with those used in the proposed unsupervised train-
ing framework. The convergence of training and testing loss
in the training of supervised learning framework is shown in
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FIGURE 9. The number of iterations of the PSO algorithm under the
same loss condition.

FIGURE 10. Supervised learning framework training and testing loss.

Fig. 10. After training for 100 epochs, the testing loss has es-
sentially converged, but the decrease in comparison to the ini-
tial loss value is very limited. We also compared the training
differences between using the minimum norm source labels ob-
tained through TSVD and using source labels without TSVD.
It is evident from the figure that using the minimum norm cur-
rent sources as labels leads to a smaller convergence loss, as
the absence of non-radiative sources in the labels alleviates the
non-uniqueness of solutions.
To better compare the reasoning capabilities of the DNN

trained under the two frameworks, we use the loss from Equa-
tions 8 and 9 to evaluate the trained supervised learning net-
works. The average testing loss for supervised learning with
TSVD is 1839.7 and without TSVD is 1891.7. This shows a
significant difference compared to the loss of 0.00024 achieved
by the proposedDNN training framework. This is because even
though the non-uniqueness issue of sources caused by the sin-
gular values of the radiation matrix [G] can be alleviated by
truncating the singular values, the power pattern constrained
by the mask function are inherently non-unique. In fact, for
the same power pattern, the corresponding phase pattern of the
radiation field can also be non-unique. These non-uniqueness
aspects make the convergence of supervised learning training
very poor.

5. CONCLUSION
This paper presents a deep neural network-based source synthe-
sis framework for far-field power pattern shaping. Unlike tradi-
tional supervised learning approaches, the proposed framework
operates in an unsupervised manner, eliminating the need for
providing source results corresponding to different power pat-
terns during training. Moreover, the proposed training frame-
work overcomes the convergence challenges caused by the non-
uniqueness of solutions in inverse problems. Since the trained
DNN has no iterative process of forward computation, it is very
suitable for some real-time scenarios.
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