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ABSTRACT: In this research, the optimization of antenna parameters for theVivaldi antenna, Inverted F antenna, and Probe FeedMicrostrip
Patch antenna was carried out using EOLRKC and the Sugeno Fuzzy Inference System (SFIS) machine learning techniques. The research
explores numerical and conventional antenna design methods to understand the necessary concepts comprehensively. After a thorough
analysis, an intelligent model for antenna selection recommends the best antenna based on various performance metrics evaluated with
the Enhanced Logistic Regression Kernel Classifier. Additionally, the geometric properties of the antenna are discussed, and the SFIS is
developed by integrating five primary learners to maximize the potential of each learner type. The EOLRK Classifier classifies antennas
into three groups: Vivaldi, Inverted F, and Probe Feed Microstrip Patch, while SFIS determines the optimal parameters for antenna
size. The accuracy of the EOLRK Classifier is assessed, while the performance of the Sugeno FIS is evaluated using MSE and MAPE.
The proposed methodology achieves an MAPE below 4% and an accuracy exceeding 99%, demonstrating exceptional performance in
parameter prediction and antenna classification. Implementing these methods has the potential to enhance innovative antenna design
practices significantly.

1. INTRODUCTION

Antenna design and analysis are essential elements of wire-
less communication technology. The Vivaldi antenna pro-

vides exceptional impedance matching and wideband perfor-
mance, while the Inverted F antenna offers compact, efficient
performance for mobile and wireless applications. The low-
profile, versatile Probe Feed Microstrip Patch antenna is com-
monly used in communication and GPS systems. The EOLRK
Classifier categorizes antennas into three types: Vivaldi, In-
verted F, and Probe Feed Microstrip Patch, whereas SFIS iden-
tifies the optimal parameters for antenna dimensions. It com-
bines an EnhancedOptimized Logistic Regression Kernel Clas-
sifier (EOLRKC) with a SFIS. This approach predicts antenna
parameters more quickly and accurately while achieving high
classification accuracy. The SFIS correctly predicts crucial pa-
rameters including taper dimensions, patch size, and feed line
modifications. At the same time, the EOLRKC classifier effi-
ciently detects antenna types, outperforming current models in
terms of accuracy and computing economy. This article focuses
on enhancing the beam width, directionality, and impedance
matching of the Microstrip feed line to the slot line through
a parametric study and the design of Vivaldi, Inverted F, and
Probe FeedMicrostrip Patch antennas. The computer-aided de-
sign of the Vivaldi Antenna is utilized to analyze the impact
of factors like the exponential slot opening rate and circular
slot diameter on the antenna’s performance. The study empha-
sizes the key elements influencing side lobes, beam width, di-
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rectionality, and VSWR. The experimental antenna achieved a
gain of around 7 dBi within the frequency range of 1GHz to
13GHz, while the simulated antenna showed a peak gain ex-
ceeding 9 dBi. The prototype antenna tested displayed linear
polarization and a total radiation efficiency of over 90%. Alavi
and Mirzavand introduced the Improved Ensemble-Based Ma-
chine Learning (IEBML) algorithm to improve the precision
of the computed far-field [1]. Jaiswal et al. developed ma-
chine learning algorithms like Classification and Regression
Trees (CART), Random Forest (RF), and Principal Component
Analysis (PCA) to effectively determine the geometrical pa-
rameters of the Vivaldi antenna, reducing computational time
[2]. Patel et al. designed smart antennas for 5G applications
using the Enhanced Tree-Based Machine Learning (ETRBML)
method, which requires less computational time than the cur-
rent method [3]. Ramasamy and Bennet recommended an op-
timizable K-Nearest Neighbors (KNNs) algorithm for antenna
classification. They devised the Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) method for accurate estimation of an-
tenna parameters, offering low Mean Absolute Percentage Er-
ror (MAPE), minimal testing error, and high accuracy with re-
duced computational time [4]. Alnas et al. introduced the Dy-
namic Hybrid Binary Particle Swarm Optimization (DHBPSO)
algorithm to enhance the bandwidth of inverted F antennas, re-
sulting in improved gain, bandwidth, and efficiency suitable for
5G applications [5]. Gao et al. suggested a Gaussian Process
(GP) and Support Vector Machine (SVM) model for estimating
microstrip antenna design parameters, offering high accuracy
and reduced computation time [6]. Verma and Srivastava intro-
duced a particle swarm optimization (PSO) technique to opti-
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mize microstrip patch antennas, achieving an optimal antenna
bandwidth of 48.68% [7]. Zhang et al. demonstrated a compact
ultra-wideband (UWB) dual-polarized Vivaldi antenna that re-
duces radar cross-section (RCS). At the same time, Rajesh et
al. recommended a modified Vivaldi antenna design that de-
creases RCS by 10 dB and operates between 4 and 12GHz. The
proposed approach focuses on reducing the RCS of the Vivaldi
antenna by altering its structure, such as removing a portion
of the metal radiator and adding holes along its edges [8, 9].
This study presents a wideband Vivaldi antenna that is flush-
mounted and dual-polarized. Properly matched Vivaldi ele-
ments with an all-metal cavity can operate without resonance
over a 4 : 1 frequency range, featuring a larger aperture and
identical characteristics. Expanding the operation bandwidth
may lead to the degradation of some patterns [10]. Jia et al.
proposed a Low-RCS Vivaldi antenna that utilizes Character-
istic Mode Analysis to achieve multiband frequency coverage.
The main objective of this antenna is to minimize broadband
RCS [11]. Kumar and and Shaby developed a metaheuris-
tic optimization approach to address microstrip antenna gain
and restricted bandwidth challenges. This approach is specifi-
cally designed for C-band systems [12]. Machine learning al-
gorithms, such as regression, can be employed to optimize Vi-
valdi, inverted F, and probe feed patch antennas. These algo-
rithms establish the relationship between input parameters and
antenna performance measures by defining dimensions, ma-
terial characteristics, and operating frequencies and collecting
performance data through simulations or testing. Linear regres-
sion, support vector regression, decision trees, and neural net-
works can be utilized to forecast and enhance antenna parame-
ters such as frequency response, impedance matching, and ra-
diation pattern. Through iterative model training, evaluation,
and optimization, antenna performance and functionality can
be improved by meeting design goals and constraints. How-
ever, it should be noted that existing algorithms can be com-
putationally expensive when dealing with large-scale antenna
systems. The detailed literature survey reveals that while many
researchers have proposed machine learning models for effi-
cient and accurate classification of antenna types, only a few
have attempted to estimate antenna parameters following clas-
sification. Additionally, there is scope for improvement in both
the computational time and parameter estimation accuracy. The
proposed (EOLRKC+SFIS) method efficiently classifies three
types of antennas — Vivaldi, Inverted F, and Probe Feed Mi-
crostrip Patch antennas — using the EOLRK classifier while
also predicting antenna parameters through SFIS with high ac-
curacy and reduced computational time.

2. SYSTEM DESCRIPTION
Figure 1 illustrates a robust framework for antenna design. The
system comprises the SFIS model and intricate EOLRK clas-
sification module. The system determines the suitable antenna
type in the initial classification phase by inputting electromag-
netic signals like gain, S11, bandwidth, and resonant frequency
into a trained EOLRK classification model. The datasets were
created using HFSS and Matlab tools to train and test our pro-
posed approach, ensuring data specificity for the problem do-

FIGURE 1. Overview of the proposed intelligent antenna synthesis sys-
tem.

main. An 80% training and 20% testing split were chosen as it
is a widely accepted practice in machine learning. It provides a
balanced trade-off between having sufficient data for practical
model training and retaining enough data for unbiased perfor-
mance evaluation. A simulation technique was used to build the
dataset for the antenna research study. Initially, HFSS was used
to model and simulate various antenna designs, such as probe-
fed patch antennas, Vivaldi, and Inverted-F antennas. Various
frequencies were used to test essential performance metrics,
including radiation patterns, gain, bandwidth, and return loss
(S11).
The gathered data was organized, cleansed, and examined

to yield valuable performance assessment and optimization in-
sights. The robustness and reproducibility of the dataset are
guaranteed by thorough process documentation. The knowl-
edge acquired by EOLRKC is represented either as a set of pre-
determined rules or as a modified ordinal logistic regression
model. The modified ordinal logistic regression is employed
when the dependent variable is ordered. The dependent vari-
able categorizes and organizes two or more levels or categories.
When the SFIS accurately predicts the various parameters of the
antennas, the output for that particular class is assigned a value
of one. In contrast, the output for the other courses is assigned
a value of zero. The production of EOLRKC is then directed
to an AND gate, which activates the SFIS only when the two
inputs are identical. The Sugeno fuzzy inference systems store
datasets that contain the optimal parameters for antenna size as-
sociated with the input design parameters, such as S11, resonant
frequency, bandwidth, and gain. The optimal antenna size pa-
rameters can be determined by evaluating the SFIS with a spe-
cific design parameter and comparing it to the stored datasets.
The primary advantages of the EOLRK classifier include its
adaptability to a wide range of feature subsets, simplicity, in-
teroperability, ease of use, and the presence of decision rules
at different stages of the classification process. The SFIS can
be utilized to construct a model that predicts the occurrence of
Vivaldi antennas, inverted F antennas, and probe feed patch an-
tennas. Numerous models have been developed by researchers
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FIGURE 2. (a) Vivaldi antenna. (b) Inverted F antenna. (c) Patch antenna.

using SFIS as a foundation. These models can accurately an-
ticipate the linear polarization and cross-polarization radiation
patterns and the return-loss characteristics of Vivaldi antennas.

3. METHODS DESCRIPTION
This section examines inverted-F antennas, Vivaldi antennas
and probe-fed patch antennas. Wide bandwidth, high gain,
and excellent impedance matchingmake the Vivaldi antenna—
known for its tapered slot design— ideal for satellite communi-
cations, wireless networks, and radar systems. The inverted-F
and probe-fed patch antennas are commonly employed in wire-
less communication systems because of their compact size, ease
of integration, and applicability for various applications, in-
cluding biomedical systems and Internet of Things (IoT) de-
vices.

3.1. Vivaldi Antenna
Figure 2(a) illustrates the planned structure of the Vivaldi an-
tenna. This antenna, named after the esteemed composer Anto-
nio Vivaldi, is a wideband and directional antenna extensively
employed in radio frequency and microwave applications. The
length of the taper directly impacts the antenna’s bandwidth
and radiation parameters. In our proposed methodology for
building Vivaldi antennas, the estimated parameters include the
length andwidth of the taper. To calculate the taper width at any
point along the antenna, the following formula can be utilized:

W (x) = W max−x tan(θ) (1)

In Equation (1),W max is the taper’s maximum width, usually
selected to meet the intended impedance, and x is the distance
from the feed point along the taper. The taper angle is θ.

3.2. Inverted F Antenna
The illustration in Figure 2(b) showcases the structure of the
proposed Planar Inverted-F Antenna (PIFA). PIFA is a popular
design choice for wireless communication devices such as mo-
bile phones, and it is known for its compact design. Positioned
above a ground plane, typically the main circuit board of the
device, this planar antenna features a flat metal element that is

often shaped like an inverted “F” or a rectangular patch with a
shorting pin. A resonant structure is created when a shorting
pin connects the patch element and ground plane. PIFAs are
valued for their small size and versatility, allowing them to be
integrated into devices with limited space and operate across
multiple bands or broadband frequencies.

3.3. Probe Feed Patch Antenna
The structure of the proposed Probe Feed Patch antenna is illus-
trated in Figure 2(c). Microstrip patch antennas are widely used
in wireless communication systems and are known for their pla-
nar design. These antennas consist of a dielectric substrate with
a ground plane on one side and a radiating patch on the other.
The patch, typically made of a conductive material like copper,
can be designed in various shapes, such as rectangle, circle, or
ellipse, depending on the specific application and desired char-
acteristics.

4. DISCUSSION OF RESULTS
The Vivaldi tapered slot antenna is characterized by its wide
gain range and directed emission pattern. It is widely employed
inwireless devices due to its small size and decent performance.
In contrast, probe feed patch antennas, which are small and rect-
angular, are highly recommended for integration into small de-
vices and systems because of their superior design. The ex-
pected performance indicators for the antennas are outlined in
Table 1.

4.1. Principle of Enhanced Ordinal Logistic Regression Kernel
Classifier
EOLRKC is one of the most commonly used techniques for
modeling classifiers, allowing users to infer information from
data even without specialized knowledge. This method in-
volves a straightforward modified ordinal logistic regression
categorization model. The development of modified ordinal
logistic regression classification models was an early and well-
known approach to constructing discriminatory models. The
fields of machine learning and statistics independently devel-
oped this method.
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TABLE 1. Antenna performance parameters.

Parameters Vivaldi Antenna Probe Feed Patch Antenna Inverted F Antenna
S11 (dB) −12.7 dB to −24.17 dB −10.13 dB to −10.48 dB −10.24 dB to −27.06 dB
Fr (GHz) 8GHz to 13GHz 5GHz to 15GHz 1GHz to 5GHz
Gain (dB) 5.1 dB to 10.9 dB 0.2 dB to 7.16 dB 0.11 dB to 4 dB
BW (GHz) 3.5GHz to 7GHz 0.12GHz to 0.426GHz 0.1GHz to 0.31GHz

FIGURE 3. Flowchart for enhanced optimized logistic regression kernel
classifier.

The susceptibility map of the Vivaldi antenna within the re-
search area, as illustrated in Figure 3, is developed through
a systematic five-step process. First, data is collected using
HFSS software to create parameter maps specific to the Vivaldi
antenna design. These parameter maps are sampled with an-
tenna inventories to extract the data required for further analy-
sis. Second, the dataset is prepared by randomly splitting the
data into two groups: 80% for training and 20% for validation.
The training data is used to build models and maps, while the
validation data ensures the accuracy and reliability of the devel-
oped models. Four different models — Fine Tree, Optimizable
KNN, Optimizable SVM, and Direct Torque Control (DTC)—
are developed in the third step. Using these models, the EOL-
RKC is designed based on training data and several parameters,
including gain, resonance frequency, patch size, taper width,
taper length, antenna length, antenna trace width, patch length,
and patch width. The fourth step involves validating the ac-
curacy of the antenna susceptibility models using techniques
such as the confusion matrix, ROC analysis, AUC values, and
classification error metrics. Finally, the fifth step generates an-
tenna susceptibility maps using multiple susceptibility indices
derived during model-building. These maps were utilized to
evaluate the vulnerability of antennas. Antennas can be classi-
fied into three distinct categories: Vivaldi antenna, inverted F
antenna, and probe feed patch antenna.

This classification will demonstrate ordinal logistic regres-
sion, which aims to analyze the relationship between antenna
characteristics (represented by predictor variables X) and per-
formance metrics (represented by ordinal outcome variable Y).
The three categories are labelled as 1, 2, and 3. We employ
enhanced ordinal logistic regression and kernel methods to op-
timize the Vivaldi, inverted F, and probe feed patch antennas.
The mathematical representation of this regression model in-
volves the utilization of cumulative logits for outcome cate-
gories. In mathematical terms, this representation can be ex-
pressed as:

Logit = logit (P (Y≤k|X)) = αk + βTX (2)

In Equation (2), where (P (Y ≤ k | X) is the cumulative prob-
ability of the outcome less than or equal to category k; αk are
intercepted parameters specific to each category; β is the vector
of coefficients; and X represents the predictor variables. Ker-
nel approaches use a kernel function K to translate input data
into a higher-dimensional space for nonlinear modeling. Trans-
lating input propertiesX into a higher-dimensional space Ϋ(X)
may facilitate linear separation for antenna design. The kernel
approach lets computations in this higher-dimensional space be
done implicitly without constructing modified feature vectors.
To optimize antenna design using enhanced ordinal kernel ap-
proaches, apply the kernel trick to predictor variablesX in ordi-
nal logistic regression. Replace the linear termX in the logistic
regression equation with the kernel function applied to the pre-
dictor variables to create a nonlinear decision boundary in the
feature space. Mathematically, this can be represented as:

logit (P (Y ≤ k|X)) = αk + βTϕ (X) (3)

In Equation (3), kernel approaches improve antenna design.
The kernel trick is implemented on predictor variables X in
ordinal logistic regression. By substituting the linear term X
in the logistic regression equation with the kernel function ap-
plied to the predictor variables, a nonlinear decision boundary
is created within the feature space.
The kernel that can be optimized for Naive Bayes techniques

is a collection of supervised learning algorithms that utilize
Bayes’ theorem while assuming that every pair of features is
conditionally independent, given the value of the class vari-
able [13]. The Bayes theorem provides the following relation-
ship: When evaluating the class variable b and independent fea-
ture vectors a1 through an,

P(b|a1, . . . . . . . . . , an) =
P (b)P (a1, . . . . . . . . . , an|b)

P (a1, . . . . . . . . . , an)

(4)
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FIGURE 4. (a) Comparative analysis of the anticipated and observed values of the Vivaldi antenna’s taper width(cm). (b) Comparison of the expected
and actual values of the taper length(cm) for the Vivaldi antenna.

TABLE 2. Result analysis of Sugeno fuzzy inference System.

Vivaldi Antenna Probe Feed Patch Antenna Inverted F Antenna
Taper

Length (cm)
Taper

Width (cm)
Patch Dimension

X (cm)
Patch Dimension

Y (cm)
Antenna

Length 1 (cm)
Antenna

Length 2 (cm)
MAPE 5.42% 1.43% 3.04% 3.94% 1.34% 5.41%
RMSE 14.06% 11.89% 8.74% 11.36% 7.23% 10.58%
MAPE

(Average)
3.425% 3.49% 3.375%

Equation (4) uses the optimal naive conditional independence
assumption, in which

P(ai|b, a1 . . . . . . , ai−1, ai+1, . . . , an) = P (ai|y), (5)

For every i, Equation (5) relationship is simplified to

P (b|a1, . . . . . . . . . , an) =
P (b)

∏n
i=1 P (ai|b)

P (a1, . . . . . . . . . , an)
(6)

In Equation (6) (a1, . . . , an) is constant with the input, and we
may apply the following categorization rule:

P (b|a1, . . . . . . . . . , an) ∝ P (b)
∏n

i=1
P (ai|b) (7)

ŷ = argmax
b

P (b)
∏n

i=1
P (ai|b) (8)

Equations (7) and (8) utilize conditional probability approxi-
mations for P (b) and (P (ai|b)) through Maximum A Posteri-
ori (MAP) estimation. The frequency of class b in the training
set is illustrated in the preceding Figure 3. The assumptions
concerning the distribution of (ai|b) differ significantly among
naive Bayes classifiers. Despite their apparent simplicity, these
classifiers have demonstrated their effectiveness in numerous
practical scenarios, such as spam detection and document cat-
egorization. They require only a small amount of training data
to predict the essential parameters.
The Root Mean Square Error (RMSE) and Mean Absolute

Percentage Error, which are the precise expressions of Equa-

tions (9) and (10), respectively, are used to assess the effective-
ness of the tested model [14].

MAPE =
100

n

∑n

i=1

∣∣∣∣Xi − Yi

Yi

∣∣∣∣ (9)

MSE =
1

n

∑n

i=1
(Xi − Yi)

2 (10)

Yi is the value predicted by the suggested model, andXi is the
value discovered. Equations (9) and (10) are used to compute
the performance parameters, such as MAPE and RMSE, of the
inverted F, Vivaldi, and probe feed patch antennas. Table 2
shows that the MAPE of the inverted F antenna is 3.375%; the
probe feed patch antenna is 3.49%; and the Vivaldi antenna is
3.425%. These incredibly low values suggest that the forecast
made by the proposed model is more accurate.
Figures 4(a) and 4(b) display, respectively, the projected and

actual values of the Vivaldi antenna taper width (cm) and length
(cm) using the SFIS technology. The taper length (cm) projec-
tions have a 0.01046 cm mean and a 0 cm median. These val-
ues’ variances, shown as error ∈, span a range of −0.53 cm
to 0.42 cm. The error values are the differences in antenna
taper width between −0.64 cm and 0.39 cm, with a mean of
−0.00139 cm and a median of 0 cm. Similarly, the probe-fed
patch antenna and inverted F antenna’s actual and expected val-
ues are evaluated.
Moreover, the trained model is used to evaluate the effec-

tiveness of the proposed model following the procedure illus-
trated in Figure 1. It is imperative to formulate the Vivaldi an-
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(a) (b) (c)

FIGURE 5. (a) Actual and predicted S11 for Vivaldi antenna. (b) Actual and predicted S11 for inverted F antenna. (c) Actual and predicted S11 for
probe feed patch antenna.

TABLE 3. Expected performance compared with predicted result.

Antenna Actual Predicted Error
Circular Disc BW (GHz) 1.02 1.034 0.014
Monopole Gain (dB) 8.03 7.14 0.89
Antenna S11 (dB) −34.92 −35.92 1.00
Vertical

Trapezoidal
Monopole Antenna

BW (GHz) 0.816 0.817 0.01
Gain (dB) 2.34 2.28 0.06
S11 (dB) −21.39 −21.58 0.19

Wire
Monopole
Antenna

BW (GHz) 0.99 0.87 0.12
Gain (dB) 1.79 1.81 0.02
S11 (dB) −16.21 −15.01 1.20

tenna with specific performance criteria: S11 (−24.2 dB), gain
(10.52 dB), bandwidth (22.08GHz), and resonant frequency
(9.9GHz). The taper should be 3.02 cm in length and 1.51 cm
in width. The proposed model offers the necessary geometric
parameters: a taper length of 3.12 cm and a width of 1.52 cm.
Subsequently, simulations are conducted using the target and
synthetic geometric parameters to observe the characteristic pa-
rameters of each of the three antennas. Figure 5(a) exhibits the
comparison of the S11 curves. Similarly, the system acquires
inputs for the actual performance of the probe feed patch an-
tenna, which include S11 (−10.537 dB), gain (3.09 dB), band-
width (18.77GHz), and resonant frequency (9.59GHz). The
geometric parameters for the patch should be 1.24 cm for di-
mension X and 0.95 cm for dimension Y . The anticipated ge-
ometric parameters for the patch are 0.94 cm for dimension Y
and 1.26 cm for dimensionX . The S11 curves generated by the
simulation are shown in Figure 5(b). The desired performance
characteristics for the inverted F antenna are S11 (−26.23 dB),
gain (3.82 dB), bandwidth (0.78GHz), and resonant frequency
(2.43GHz). The geometric parameters for antenna lengths 1
and 2 are 2.42 cm and 0.78 cm, respectively. However, for an
inverted F antenna, it is recommended to use antenna lengths
of 2.41 cm for the first and 0.787 cm for the second. Fig-
ure 5(c) illustrates the comparison of probe feed patch antenna
S11 curves.
The findings demonstrate that the estimated S11 curves us-

ing the suggested geometric parameters closely resemble the

TABLE 4. Comparison with existing and proposed method.

Algorithms
Accuracy

(Percentage)
MAPE RMSE

Gaussian Process
Regression [14]

93.77 % - 6.98 %

Linear
Regression [14]

79.57 % - 11.36 %

Random Forest
Regression [14]

84.53 % - 10.28 %

Optimizable-KNN
+ANFIS [6]

99.16 % 1.4514 % -

DT+FIS [15] 99 % 3.28 % 17.771 %
Random
Forest [16]

82 % 9.4 % -

WKNN WOA [17] 98.93 % - -
FMN-GA [18] 94.74 % - -

Proposed Method
(EOLRKC+SFIS)

99.3 % 3.375 % 7.23 %

real S11 curves. Table 3 compares the remaining distinctive pa-
rameters.
Table 4 contrasts the accuracy of different machine learn-

ing techniques, MAPE, and RMSE. The proposed approach
(EOLRKC+SFIS) achieves a superior balance between low
MAPE and moderate RMSE while delivering high accuracy.

5. CONCLUSION
In this study, an intelligent machine-learning model has been
developed to predict geometric parameters and categorize an-
tennas. The proposed model utilizes SFIS for antenna clas-
sification and achieves an accuracy of over 99%. In con-
trast, the geometric parameter estimation model using SFIS
provides accuracy within 4%. The suggested method’s training
time and prediction speed are 4.5031 seconds and 3300 sec-
onds, respectively, faster than existing approaches. The per-
formance analysis of the antenna demonstrates its high gain
and enhanced bandwidth, making it suitable for satellite com-
munication. Satellite systems typically require a minimum
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gain of 7–10 dBi. Furthermore, alternative machine learning
methods will examine the identical antenna design and ac-
count for additional characteristics. Implementing the proposed
(EOLRKC+SFIS) model in real-time is recommended for pre-
cise antenna classification and geometric parameter prediction.
Implementing the proposed (EOLRKC+SFIS) model in real-
time is recommended for precise antenna classification and ge-
ometric parameter prediction. The suggested antennas can be
enhanced using machine learning technology to optimize de-
sign parameters, making them suitable for satellite communi-
cation, IoT devices, and biomedical applications.
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