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ABSTRACT: Long-range near-field magnetic resonance wireless power transfer (WPT) technology holds broad application prospects in
fields such as medical implants and industrial manufacturing robots. However, it faces challenges of low efficiency and poor robustness
in long-distance transmission. This study proposes an innovative collaborative optimization approach that integrates machine learning
gradient descent optimization algorithm (GDOA) with non-Hermitian topological physics to precisely regulate the coupling strength
distribution, thereby realizing a highly flexible, efficient, and robust WPT system capable of anchoring transmission frequencies and
accommodating an arbitrary number of resonators. Experimental results demonstrate that GDOA-optimized Su-Schrieffer-Heeger (SSH)-
like topological chain achieves a transmission efficiency of 65% at the target frequency and maintains 57.9% efficiency under 30%
structural perturbations, significantly outperforming the SSH chain (45.6%) and uniform chain (24.1%) in control groups. This research
provides theoretical and experimental support for the design of machine learning-based topological long-range WPT systems, offering
substantial practical value, particularly in medical electronic power supply and wireless industrial equipment applications.

1. INTRODUCTION

Magnetic resonancewireless power transfer (WPT) technol-
ogy [1, 2] has shown great potential in various fields such

as smartphones, robotics, medical implants, and electric vehi-
cles, attracting extensive research interest [3–8]. However, in
standard second-order resonant systems, the coupling strength
between the transmitter and receiver decreases sharply as the
transmission distance increases, leading to a significant drop in
long-distance transfer efficiency [9–12]. To extend the transfer
distance without sacrificing efficiency, researchers have pro-
posed adding multiple relay coils between the transmitter and
receiver, forming a uniform chain structure similar to domi-
noes [13–17]. However, this domino chain structure still faces
numerous challenges in achieving stable and efficient long-
distance WPT [18, 19]: (1) When the spacing between relay
coils is too small, strong near-field coupling effects can cause
significant frequency splitting, which is influenced by the spac-
ing and number of coils, making it difficult to achieve stable
WPT at a fixed operating frequency [20, 21]; (2) When the
spacing between relay coils is larger, the frequency splitting
caused by near-field coupling decreases, and the operating fre-
quency can be fixed at the resonant frequency of the coils, but
the transfer efficiency decreases accordingly, making it highly
challenging to balance stability and efficiency in long-distance
WPT; (3) In traditional domino systems [13], the magnetic field
is almost uniformly distributed across all coils, resulting in a
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significant increase in overall energy loss (Ohmic loss); (4) As
the number of relay coils increases, structural errors gradually
accumulate, leading to a sharp decrease in transfer efficiency
and increased fluctuations. Therefore, there is an urgent need
to develop innovative technologies or methods to optimize ex-
isting technologies and achieve stable and efficient long-range
WPT [22–26].
In recent years, the rapid development of artificial intel-

ligence has greatly promoted the widespread application of
machine learning algorithms in the field of physical multi-
parameter optimization, like photonic structure design [27–
29], evaporative cooling experiment optimization [30–32], and
quantum state preparation [33–37]. In these application sce-
narios, the relationship between optimization parameters and
target quantities is often regarded as a “black box”, and neu-
ral network structures driven by reinforcement learning or ac-
tive learning are commonly used to optimize target parameters.
In particular, several recent studies have demonstrated the suc-
cessful integration of machine learning techniques in electro-
magnetic WPT system optimization [38–41]. However, in spe-
cific situations, there is a clear functional relationship between
parameters and target quantities, which provides the possibility
for applying optimization strategies such as gradient descent or
self-feedback [42].
This paper addresses the robustness bottlenecks (Chal-

lenges 3 and 4) inherent to long-distance chain-type WPT
systems by proposing an innovative WPT scheme based on
a gradient descent optimization algorithm (GDOA), designed
to achieve optimal transmission efficiency. We conducted
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FIGURE 1. GDOA for long-range domino-like WPT system. (a) Conceptual diagram of the GDOA model. (b) Changes in efficiency and coupling
distribution at training steps of 20, 2000, and 200000. The initial configuration is set to a uniform distribution, and at step 20, the GDOA extracts
the SSH model. The optimized result is an improved version of the SSH model, with its coupling strengths on both sides exhibiting different
characteristics compared to the traditional SSH structure. (c) Flowchart of machine learning based GDOA.

an in-depth analysis of how the coupling strength between
two nearest neighbor resonant coils affects transfer efficiency
and cleverly introduced GDOA for optimization. Through
GDOA, we can accurately determine the specific position
distribution of the resonator corresponding to the optimal
transfer efficiency. To verify the effectiveness of the GDOA,
we considered a second-order model with known optimal dis-
tribution exact solutions. We found that the solution provided
by the GDOA is highly consistent with the exact solution and
have conducted experimental verification (see Supplementary
Information A [43]). Furthermore, we apply the GDOA to
a high-order chain model consisting of ten oscillators. The
GDOA successfully predicted the optimal model and achieved
perfect impedance matching at the target frequency. Compared
with traditional models such as uniform chain and SSH chain
models, our optimization demonstrates significant advantages
and potential in performance. This result fully demonstrates
the outstanding performance of GDOA in achieving optimal
transfer efficiency.

2. RESULTS
Model for long-range WPT system. Take the classical one-
dimensional domino chain WPT system as an example, the dy-
namics at driven frequency can be described by the coupled
mode theory (CMT) [44]:

i
da⃗

dt
= Ha⃗+ e−iωt

√
2γts⃗

H =
∑
i

[
(ω0 − iΓ− iγi)c

†
i ci + κic

†
i+1ci

]
+H.c.

, (1)

where c†i (ci) is the creation (annihilation) operator of the ith res-
onator located at position ri. For simplification, the resonant
frequencies ω0 and dissipative losses Γ of all coils are identi-
cal, and the radiative loss γi is nonzero only for the transmitter
γ1 = γt and receiver γL = γr. The nearest-neighbor cou-
pling strength between the ith and i + 1th coils is represented
by κi = e−(ri+1−ri)/d0 , with the normalized distance constant
d0 = 0.0181. a⃗ = (a1, a2, ..., aL)

T is the vector representation
for all the complex field al on the lth coil, and s⃗ = (1, 0, ..., 0)T

represents the source driving on the transmitter at strength of
γt. A straightforward calculation shows that the transmission
(τ) can be given by:

τ(ω) =
∣∣∣√2γtaL

∣∣∣ = ∣∣∣∣∣2√γtγr

(
1

H − ωI

)
L,1

∣∣∣∣∣ , (2)

The objective function is to find the optimal {κl} reproducing
the largest τ(ω) by adjusting the position distribution {rl}.
GDOA. To be compact, we directly optimize {κl} which

is equivalent to the optimization of {rl}. As illustrated in
Fig. 1(a), the proposed GDOA framework employs a collab-
orative optimization strategy that integrates gradient descent
principles with non-Hermitian topological physics. This ap-
proach enables precise regulation of coupling strength distribu-
tions across the resonator chain, ensuring robust and efficient
energy transfer. We introduce the Green’s function matrix as

G(ω) = (H − ωI)−1. (3)

According to Eq. (2), the transition rate is related to G as
T =

√
2γtγr |GL,1|. Taking the derivative of both sides of
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the equation G(H − ωI) = I with respect to κl, we obtain

∂G

∂κl
= −G

∂H

∂κl
G, (4)

With Eq. (4), it is easy to show that

∂GL,1

∂κl
= −GL,lGl+1,1 −GL,l+1Gl,1 ≡ δGl, (5)

as long as the real part of δGl/GL,1 is positive, an increase in
the coupling κl can lead to a larger transition rate. Together
with the constraint of ΠL−1

l=1 κl = Tp, we can then introduce a
gradient flow κ → κ+ r∆κ to optimize T with

∆κ = Re
(

δG
GL,1

)
− T(κ)

[
Re

(
δG
GL,1

)
· T(κ)

]
, (6)

where T(κ) ∝ (1κ1, ..., 1/κL−1) is a unit vector. Following
Eq. (6), we can then optimize T by repeating the gradient de-
scent. To ensure physical consistency during optimization, it
is essential to maintain the invariance of the product of cou-
pling strengths. Therefore, we introduce a modified gradient
update rule that removes components that would violate this
constraint. A detailed mathematical derivation and explanation
of this constraint-preserving mechanism are provided in Sup-
plementary Information B [43]).
Figure 1(b) presents three scenarios in the training process:

step sizes of 20, 2000, and 200000, when ω = 1 kHz, γ0 =
0.2 kHz, γt = γr = 2 kHz, and L = 24. Specifically, we in-
vestigate a domino-like system consisting of L = 10 uniformly
arranged resonant units, which is used as the initial step for the
GDOA. Following the flowchart shown in Fig. 1(c), iterative
optimization is performed at a specific optimization operation
frequency. Given the similarity between the gradient optimiza-
tion chain and SSH chain, we have chosen the SSH chain as
one of the comparison models, which is based on the structural
characteristics observed under a very small number (≤ 20) of
iterations. To further demonstrate the advantages of the GDOA
over traditional optimization approaches, we compared it with
commonly used methods such as Bayesian optimization and
Monte Carlo simulations. Results show that GDOA achieves
significantly better convergence speed and scalability. A com-
prehensive comparison including computational efficiency, di-
mensional adaptability, and accuracy is presented in Supple-
mentary Information C [43]).
At the 30th iteration of the optimization process, the system’s

dynamic behavior demonstrates the characteristic features of
the SSH model. This model, recognized for its topological ro-
bustness, ensures the stability of energy transfer by virtue of its
topologically non-trivial phase. To establish a rigorous compar-
ative research framework, the SSH model identified during the
optimization process is employed as the reference benchmark
for subsequent optimization analysis. For the SSH-like WPT
chain, these characteristics arise from the alternating coupling
strengths between adjacent resonators, which create a synthetic
one-dimensional lattice with a bandgap [24]. The topology
of this bandgap determines whether edge states — localized

modes at the chain’s ends — emerge. These states are intrinsi-
cally robust to disorder, as their existence is tied to the global
symmetry of the system rather than specific local parameters.
Figure 2(a) illustrates the real part of the eigenfrequency as a

function of the ratio of the strong coupling area to the weak cou-
pling area with κ1/κ2 (Here we fix κ1 to be constant at 12.78
and then change the strength of κ2). Notably, κ1/κ2 = 1 serves
as the critical point distinguishing between topologically triv-
ial and nontrivial states. When κ1/κ2 < 1, a trivial bandgap
opens near the frequency ω0, whereas when κ1/κ2 > 1, a
topologically nontrivial bandgap opens around ω0, accompa-
nied by the emergence of two topological edge states. Specif-
ically, at the exceptional point κ1/κ2 = 2.05, the eigenfre-
quencies and eigenmodes of these two edge states coalesce. In
the exact phase of parity-time-symmetry (κ1/κ2 < 2.05), the
eigenfrequencies of the two edge states are purely real but de-
viate from ω0. However, once entering the broken phase of
parity-time-symmetry (κ1/κ2 > 2.05), the eigenfrequencies
of these two edge states become complex, with the fixed real
parts ω0 (as indicated by the red solid line). It is worth not-
ing that the remaining eight eigenfrequencies of the bulk states
remain purely real throughout the phase transition (red dashed
line). For details on the imaginary parts of the eigenfrequen-
cies, please refer to the Supplementary Information D [43]. In
the experimental section, we selectedκ1/κ2 = 1.296 (the black
dashed line), with corresponding coupling strengths and dis-
tances of κ1 = 16.58 kHz, d1 = 2.5 cm, and κ2 = 12.79 kHz,
d2 = 3.4 cm. The corresponding eigenvalue distribution is
shown in Fig. 2(b), where the blue dots specifically highlight
the unique topological modes within the bandgap.
Furthermore, we have presented the optimization results un-

der different conditions: Fig. 2(c) vividly illustrates the opti-
mization scenario for the number of resonators, while Fig. 2(d)
clearly demonstrates the optimization results for three different
target frequencies. This fully demonstrates that our proposed
novel WPT scheme can flexibly meet the optimization require-
ments under various objectives. Additionally, Fig. 2(e) com-
pares the coupling coefficient κ relationship between the opti-
mized chain (red) and the SSH chain (blue). It is evident that
there are significant differences in coupling strength between
the optimized chain and SSH chain, and the coupling strength
of the optimized chain exhibits a symmetric distribution around
the structural center (site number is 5). By calculating the wave
function Ψ for both chains, we found (as shown in Fig. 2(f))
that although the intensities of the 10 resonators are similar, the
wave function of the optimized chain is better localized at the
ends of the structure, while the dissipation in the middle is also
reduced. This indicates that, compared to the SSH chain, the
optimized chain may exhibit superior robustness.
We designed three types of chains, with their coupling

strengths adjusted by varying the distances. The specific
parameters are as in supplementary material [43]. With other
parameters kept constant, it is evident from the transmission
rate versus frequency relationship shown in Fig. 3(a) that the
optimized chain (red) exhibits a significantly higher transmis-
sion rate than the SSH chain (blue) and uniform chain (green).
Fig. 3(b) provides a local magnification of Fig. 3(a), focusing
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FIGURE 2. The comparison between GDOA results and SSH chains. (a) Real part of the eigenfrequency, with blue and white areas representing the
topologically nontrivial phase and the trivial phase, respectively. The red solid and dashed lines indicate edge modes and bulk modes, respectively.
The black dashed line marks the experimentally selected κ1/κ2 = 1.296. (b) Eigenvalue spectrum of the topological nontrivial SSH chain, with
topological modes located within the bandgap (green area). (c) Gradient optimization results for different numbers of oscillator units. (d) Gradient
optimization results for different target frequencies. (e) Distribution of coupling strength with respect to the position of resonant coils, with red bars
representing the gradient optimized chain and blue bars representing the SSH chain. (f) Distribution of wave functions Ψ, with the same legend as
in (e).

on the optimized frequencies around approximately 148.4 kHz
(and 142.4 kHz). Due to the symmetry of the system structure,
a high transmission point naturally emerges at 142.4 kHz,
adjacent to the primary point at 148.4 kHz. Notably, we
calculated and compared the frequency values corresponding
to the highest transmission rates for each chain: approximately
142.4 kHz for the optimized chain, approximately 141.3 kHz
for the SSH chain and 143.3 kHz for the uniform chain.
Next, we delve into the impedancematching analysis of these

three types of chains from the perspective of circuit theory. Ini-
tially, we set the resistance on the load side to 50Ω as a bench-
mark. Subsequently, we calculate the mapped impedance Zref
and input impedance Zin. In this process, the closer the input
impedance is to the ideal state (the real part of the resistor is
50Ω, and the imaginary part of the reactive impedance is 0Ω),
the better the impedance matching is, which subsequently leads
to a significant enhancement in the system’s transfer efficiency.

Based on Kirchhoff’s laws:

I10

(
iωL10 +

1

iωC10

)
− iωM9I9 + I10RS = 0;

Zref9 =
−iωM9I10

I9
; M9 =

2L9κ9

ω
;

Zref8 =
−iωM8I9

I8
; M8 =

2L8κ8

ω
;

...

Zref1 =
−iωM1I2

I1
; M1 =

2L1κ1

ω
;

Zin1 = Zref1 +
1

iωC1
+ iωL1;

(7)

where C1 = C2 = ... = C10, L1 = L2 = ... = L10.
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FIGURE 3. Calculated transmission and impedance of three chains. (a) Theoretical calculations have been conducted on the relationship between
transmission and frequency for optimized chains (red), SSH chains (blue), and uniform chains (green). (b) The transmission of the three chains near
the operating frequency. (c) The real part and (d) imaginary part of their impedances. The pentagrams mark the frequency corresponding to the
highest transmission.

The real and imaginary parts of the input impedance for the
three types of chains are presented in Figs. 3(c) and 3(d). The
red solid line, blue dashed line, and green dashed line depict the
impedance characteristics of the optimized chain, SSH chain,
and uniform chain, respectively. The pentagram markers indi-
cate the positions with the highest transmission rates on each
line. It is evident from the figures that the optimized chain ex-
hibits the best impedance matching effect, followed by the SSH
chain, while the uniform chain shows the poorest matching ef-
fect. This clear trend is consistent with the calculation results
based on CMT presented in Figs. 3(a) and 3(b).
We have successfully verified the theoretical transmission re-

sults through experiments. The experimental setup, where two
non-resonant coils (Tx and Rx) are connected to the two ports
of the vector network analyzer (VNA, SIGLENT SNA5084X),
is shown in Fig. 4(a). In this experiment, we employed three
types of one-dimensional dimer chains, each consisting of 10
identical sub-wavelength resonant coils carefully constructed.
These coils were uniformly wound on circular acrylic plates
and equipped with a load capacitance of 5.15 nF. The coils had
a diameter of 12 cm, featuring a double-layer winding design
with a total of 20 turns, and the inductance value was stable
at approximately 222.5µH, with a resonant frequency close to
145.4 kHz. The non-resonant coils serving as transmitters and
receivers were not equipped with load capacitances and had the
same diameter of 12 cm, a single-layer winding of 20 turns,
and inductance value of 110µH. The photos of the enlarged
resonant coil (right) and non-resonant coil (left) are shown in
Fig. 4(b). Notably, we ensured that the total length of the three
chains (the distance from the first resonant coil to the tenth reso-

nant coil) was consistently 27 cm, guaranteeing the same trans-
mission distance across all three chains.
Utilizing Vector Network Analyzer (VNA), we connected

two non-resonant coils to its ports to assess the transmission
of three distinct chains. The experimental outcomes are pre-
sented in Fig. 4(c), showcasing the transmission of the opti-
mized, uniform, and SSH chains, which are in agreement with
our theoretical predictions (detailed experimental spectral data
can be found in the Supplementary Information E [43]). Addi-
tionally, Fig. 4(d) unveils the transmission trends of these three
chains across varying gain g and loss γ. Notably, across the en-
tire test range, the optimized chain (experimental data marked
with green dots) exhibits significantly better transmission per-
formance than the SSH chain and uniform chain. The scalabil-
ity and generality of the GDOA approach are validated through
additional experiments on extended systems with 12 and 14 res-
onators, as detailed in the Supplementary Information F [43].
In all configurations, GDOA consistently achieves high trans-
mittance (> 0.6) at the target frequency of 142.4 kHz, show-
ing minimal sensitivity to chain length variations. These re-
sults confirm the method’s robustness and adaptability across
different system scales, effectively addressing the limitations
of fixed-size assumptions. This scalability underscores the al-
gorithm’s strong potential for practical, flexible, and efficient
long-range WPT applications.
In finite topological systems, zero modes, as topological

edge states, often deviate from the exact zero-energy state in fi-
nite Hermitian lattices due to the coupling between these edge
states. This coupling inevitably weakens topological protection
and reduces the robustness of SSH chains [45, 46]. Neverthe-
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FIGURE 4. Experimental comparison of transmission and robustness of three types of chains. (a) The photo of the experimental setup consists of 10
resonant coils, a left non-resonant source coil, a right non-resonant receiver coil, and a VNA. (b) Photos of the enlarged resonant coil (right) and
non-resonant coil (left). (c) Experimental measured transmission of the three chains, where the pentagram represents the maximum transmission of
the optimized chain at the operating frequency. (d) The relationship diagram between transmission, gain, and loss rate of three types of chains. The
green spheres correspond to the experimental results.

TABLE 1. Comparison of parameters and performance with other literature.

Ref.
Number

of
coils

The
resonance
order of
the system

Coil
radius
(cm)

Distance
to

diameter
ratio

Transmission
range

Transmission
efficiency

(η)

Transmission
capabilitya

Not
limited by
resonant
frequency

Robust
to

structural
fluctuations

Robust
to

transmission
distance

Overall
robustnessb

[2] 2 2 30 8 Mid-far 0.4 B Yes No No B
[20] 2 2 29 2.1 Mid-far 0.9 A Yes No Yes A
[12] 2 3 4.3 4 Mid-far 0.9 A No No Yes B
[17] 3 3 15 2 Mid-far 0.8 A− No No Yes B
[13] 11 11 15.5 11.6 Far 0.5 A− Yes No No B
[24] 10 10 4 10.5 Far 0.6 A No Yes No B
[23] 16 16 2.6 9.6 Far 0.1 B− No Yes No B
[25] 16 16 2.6 9.6 Far 0.1 B− Yes Yes No A
This
work

10 10 6 11.8 Far 0.64 A Yes Yes Yes A+

Note: a Transmission capability grades: A: Far distance and η ≥ 0.6, or Mid-far distance and η ≥ 0.8; A−: Far distance and 0.5 ≪ η < 0.6,
or Mid-far distance and 0.8 ≪ η < 0.9; B: Mid-far distance and 0.4 ≪ η < 0.5; B−: Far distance and 0.1 ≪ η < 0.2.

b Overall robustness grades: A+: All criteria “Yes”; A: Two criteria are “Yes”; B: One criterion is “Yes.”

less, these localizedmodes are more stable than the normal bulk
states [45, 46]. Therefore, we further compared the robustness
of the three chains. The magnitude of disorder perturbations
was determined by the product of the perturbation intensity and
a random number ranging from 0 to 1, with disorder introduced
by adjusting the coupling coefficients. We further experimen-
tally investigated the robustness of these three chains under dif-
ferent perturbation intensities. We display a comparison of the
transmission rates of the three chains under different perturba-
tion intensities. Specifically, Fig. 5 illustrates the comparison
results at a perturbation intensity of 30%. The theoretical calcu-

lations here were based on averages from 10000 random pertur-
bation instances as a reference benchmark. (Detailed data can
be found in the Supplementary Information E [43]). The ex-
perimental results clearly demonstrate that the optimized chain
not only exhibits higher transmission efficiency, but also inher-
its the robustness of the SSH model to structural perturbation
immunity. The robustness of the optimized chain stems from
its topological characteristics. In finite SSH-like systems, edge
states are protected against perturbations that preserve the sys-
tem’s symmetry. Finally, we compared the system parameters
and performance of our work with those reported in other stud-
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FIGURE 5. The transmission of three types of chains varies with the
intensity of disorder disturbance. The calculated and measured results
are marked by the solid lines and dots, respectively.

ies, as summarized in Table 1. To provide a more intuitive rep-
resentation of the performance differences among various sys-
tems, we use letter grades: A+ denotes the best performance,
A the excellent performance, A− the slightly weaker perfor-
mance, and so on. As shown in the table, our system demon-
strates the highest overall robustness.

3. CONCLUSION
In summary, we have optimized a long-range multi-relay coil
WPT system using the GDOA, innovatively proposing a novel
WPT scheme that is both efficient and robust. Through dual
verifications by CMT and circuit theory, we have proven that
the optimized transmission significantly surpasses that of SSH
chains and uniform chains, which has been further confirmed
through experiments. Furthermore, we have conducted a thor-
ough analysis of the stability performance of uniform chains,
SSH chains, and optimized chains at their respective optimal
operating frequencies. The results indicate that the optimized
chain system exhibits the strongest anti-interference capability
against perturbations in position-dependent coupling strength,
implying higher stability when being faced with disturbances
such as transmission distance variations. In industrial and daily
applications, there is an urgent demand for long-distance, high-
stability, and efficient chained WPT technology, particularly in
areas such as the long arms of mobile machinery, high-voltage
power transmission detection, and feedback devices [47, 48].
Machine learning not only helps to accurately identify topolog-
ical phases [49, 50], but also significantly improves the tech-
nical performance of one-dimensional systems. Considering
that most power supplies in real-life scenarios have fixed out-
put frequencies, we have optimized the chained WPT using
the GDOA, enabling it to achieve high transfer efficiency and
demonstrate strong adaptability to changes in power supply out-
put frequency. Meanwhile, in the supplementary materials, we
have detailed the exceptional flexibility of the GDOA in opti-
mizing frequency and the number of oscillators, which is highly
attractive for practical industrial applications.
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