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ABSTRACT: A 2D flat, 2D curved, and 3D finite element method (FEM) implementation of a spatially-variant lattice (SVL) algorithm
is presented. This powerful algorithm is used in electromagnetics to preserve the electromagnetic properties and geometry of periodic
structures that are bent, twisted, conformed, or otherwise spatially varied. Applications of the SVL algorithm include photonic crystals,
metamaterials, conformal frequency selective surfaces, cloaking devices, and volumetric circuits over complex geometries. The present
work shows examples of SVLs over a planar surface lattice, a doubly-curved surface lattice, and a volumetric lattice.

1. INTRODUCTION

The finite element method (FEM) is a numerical method
that has been widely used in electromagnetics, structural

analysis, and other areas to solve partial differential equations
(PDEs) [1]. Since its inception in 1941 by Alexander Hren-
nikoff [2], FEM gained rapid popularity because it was able to
handle complex geometries and boundary conditions easily, un-
like other numerical methods. In previous work, this allowed
FEM to expand from structural analysis into broader fields such
as heat transfer, fluid mechanics [3], and electromagnetics to
now the spatially-variant lattice algorithm (SVLA).
This numerical method discretizes a domain into a mesh

composed of many small finite elements such as triangles and
quadrilaterals in 2D or tetrahedrons and hexahedrons in 3D. In-
side each element, the PDE solution is approximated by a set
of basis functions that ensure continuity across elements. A
mesh can be tailored using multiple different elements which
can be crucial for geometries, like cones, where tetrahedral ele-
ments are more appropriate, or cylindrical structures (extruded
geometries) where hexahedron can effectively reduce the over-
all mesh size. In addition, FEM is very attractive for its accu-
racy and elegant use of meshes that model complex geometries
and boundaries while being relatively easy to implement [1, 4–
6].
In electromagnetics, a lattice is a collection of repeated unit

cells that form a specific pattern. Lattices can provide extraor-
dinary electromagnetic properties that are not achievable with
homogenous materials. This is the case in frequency selec-
tive surfaces (FSSs) [7], photonic crystals [8], diffraction grat-
ings [9], and metamaterials [10], to name a few. To main-
tain the electromagnetic properties of a lattice over a curved,
bent, or twisted lattice, the uniformity of the unit cells must
be preserved. In this regard, a uniform lattice can be modi-
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fied using the spatially-variant lattice algorithm (SVLA) [11]
to produce a new uniform lattice that curves, bends, twists,
functionally grades, and even slowly transitions from one pe-
riodic symmetry to another. This is achieved by Fourier trans-
forming the original uniform lattice to obtain a set of planar
gratings. These are then spatially-varied individually using the
SVLA and summed to create a lattice that has been spatially
varied. The result is called a preservational spatially-variant
lattice (PSVL). The SVLA enables the manipulation of lattice
gratings by adjusting their orientation, density (fill factor), and
inter-element spacing.
The SVLA was first introduced using the finite-difference

method (FDM) for a self-collimating photonic crystal that had
a 90◦ bend [11] that was later 3D printed [12] and micro-
fabricated with multi-photon lithography [13]. The same au-
thors have applied this algorithm to transmission line electro-
magnetic isolation via metamaterials [14] and multi-mode di-
electric waveguides [15]. Others followed with applications
in transformation optics devices [16], control of phase and
power in photonic crystals [17], self-collimating photonic crys-
tals with two 90◦ bends [18], conformal frequency selective
surfaces (CFSSs) [19], and 3D volumetric circuits [20]. This
algorithm has also been adapted to generate large SVLs itera-
tively via FDM [21].
The beauty in the SVLA is that it can easily be applied to

virtually any periodic structure in electromagnetics. These pe-
riodic structures include photonic crystals, FSSs, metasurfaces,
gratings, and even artistic patterns. In the area of FSSs, the
SVLA has been used for a doubly-curved surface to enforce the
size, shape, symmetry, and spacing of a Jerusalem Cross CFSS.
The authors further improved the SVLA by incorporating de-
formation control (DC) [19]. Deformation control fine-tuned
the placement of periodic elements along a doubly-curved sur-
face to match the performance of the flat FSS. Compared to CF-
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SSs created through projection techniques, the CFSS developed
with deformation control exhibited superior performance [22–
24]. The authors identified the lattice center points on the
doubly-curved surface and used them as the placement points
of the CFSS elements. Conforming a SVL to a doubly-curved
surface is one of the aims of this paper due to the potential appli-
cations. For this reason, this paper aims at developing a general
SVLA foundation in FEM that can develop PSVLs for complex
geometries and volumes.
All of the work done in the SVLA space has been performed

over rectangular structured grids due to the simplicity of ap-
plying the FDM to structured-orthogonal grids. These types
of grids pose a problem for meshes with closed forms such
as spheres where continuity becomes difficult to impose while
keeping a healthy mesh. A solution is to use non-orthogonal
unstructured rectangular grids [25] or even better, Delaunay tri-
angulation [26]. Although finite-difference schemes have been
developed for these types of grids, implementing them is not
trivial [27, 28].
This work formulates the SVLA in the FEM framework for

general geometries where its FDM counterpart can be difficult
to implement (non-rectangular meshes) and be more restrictive.
Results with the formulation presented here are showcased us-
ing a flat surface, a curved surface, and a volume that were
meshed using different types of elements. As a bonus, a simple
study on preconditioners and solvers is included that compares
the FDMand FEMSVLAs solver times using the graphical pro-
cessing unit (GPU) and central processing unit (CPU) within
MATLAB.

2. FORMULATION
The core innovation of the SVLA lies in the construction of lat-
tices by accumulating planar gratings with spatially modulated
phases and orientations, rather than deforming the lattice itself.
This approach ensures continuity and avoids defects, which is
critical in applications such as optics and curved-surface con-
formations. This is done by decomposing a periodic structure
into a complex Fourier series withM spatial harmonics in a co-
ordinate system r⃗ = xâx + yây + zâz . Each spatial harmonic
m is a 1D sinusoidal grating with a complex amplitude am and
its period and direction dictated by the grating vector K⃗m.

ε (r⃗) =

M∑
m=1

am exp
(
jK⃗m · r⃗

)
(1)

These complex amplitudes are obtained using the fast Fourier
transform (FFT). The grating vectors of the expansion are inte-
ger multiples of primitive lattice vectors. The primitive lattice
vectors are 2π/Λxâx, 2π/Λyây , and 2π/Λz âz for some sym-
metries. Variables p, q, and r are integers and Λx, Λy , and Λz

are the physical dimensions of the lattice unit cell in x, y, and z.
In theory, an infinite sum of spatial harmonics rebuilds the orig-
inal periodic structure. In practice, however, this is not possible
andM is truncated to include only the lowest-order harmonics
which produces an analog version of the lattice ε(r⃗).
The goal of the algorithm is to spatially vary the period and/or

orientation of each grating, thus turning K⃗ into a function of

position, K⃗(r⃗). When this happens, Eq. (1) fails to construct the
gratings correctly. The solution is to relate K⃗(r⃗) to the grating
phase,Φ(r⃗), using Eq. (2), and solve for the grating phase. This
is further explained in the seminal paper [9] that presented the
SVLA.

∇Φ (r⃗) = K⃗ (r⃗) (2)
This process works for any unit cell, but in this work, complex
Fourier series are not used because the lattices presented in the
Results section can be easily created using just two or three grat-
ing vectors through the reciprocal lattice vectors. Therefore, the
complex amplitudes are assumed to be unity andM is a maxi-
mum of three. This FEM implementation however, also works
with the complex Fourier series approach. These assumptions
modify Eq. (1) to

εanalog (r⃗) =

M∑
m=1

cos (Φm (r⃗)). (3)

For 2D flat surfaces r⃗ = xâx + yây or r⃗ = xâx + yây + zâz
for 2D curved surfaces and volumes. The results of each
cos (Φm(r⃗)) in Eq. (3) produce an analog grating. The sum
of these analog gratings produces an analog lattice. Very often,
the analog gratings are converted into binary gratings by apply-
ing a threshold function, γ(r⃗), given a specific fill factor, f(r⃗).
The threshold function is computed using γ(r⃗) ≃ cos (πf(r⃗)).
Finally, using εbinary(r⃗) = εanalog(r⃗) > γ(r⃗), the binary grating
is computed from the analog grating. The binary grating can
now be used to differentiate between two sets of permittivities,
as shown by the 3D example in Fig. 10.
Near the end of Ref. [11], Eq. (2) is transformed into the

Laplacian version of the grating equation due to a least-squares
solution. This happens due to Eq. (2) forming a system of lin-
ear equations, Ax = b, that has more equations than unknowns
(degrees of freedom). In Eq. (2), matrix A is the gradient oper-
ator∇, b is the grating vector K⃗(r⃗), and x is the grating phase
Φ(r⃗) (unknown). A “best fit” solution is obtained via the least-
squares method, ATAx = ATb. This means that Eq. (2) in
principle is also equivalent to

∇2Φ (r⃗) = ∇ · K⃗ (r⃗) . (4)

The presented FEM SVLA formulation starts with the Lapla-
cian version of the grating equation, Eq. (4).
In this work, the FEM is implemented using the method

of weighted residuals [29, 30] in conjunction with Galerkin’s
method [31]. Starting with the method of weighted residu-
als, Eq. (4) is tested with scalar basis function, T (r⃗) (see Ap-
pendix A), and integrated over the entire domain Ω (surface
or volume). Doing this produces what is known as the strong
form, Eq. (5), which simply means that it is the original PDE.
This is done for each element that forms part of the finite ele-
ment mesh in the volume.∫

V

T (r⃗) ·
[
∇2Φ (r⃗)

]
dV =

∫
V

T (r⃗) ·
[
∇ · K⃗ (r⃗)

]
dV (5)

Similar to the canonical Poisson’s equation in FEM [1],
scalar/nodal basis functions are used as the test functions (see
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AppendixA). Next, the unknown function,Φe(r⃗), of element e,
is approximated as a linear combination of nodal basis functions
Ne

j (r⃗), Eq. (6). This means that the grating phase anywhere in-
side element e can be interpolated by sampling the grating phase
over a few points. These sampling points inside element e are
defined by index j, n is the total number of sampling points,
and Ne

j (r⃗) is the basis function associated with point j inside
element e.

Φe (r⃗) =

n∑
j=1

φe
jN

e
j (r⃗) (6)

Substituting Eq. (6) into Eq. (5) shows that Ne
j (r⃗) must be

doubly differentiable due to the Laplacian in Eq. (5). This is not
possible when using linear basis functions (seeAppendixA) be-
cause their second order partial derivatives are zero. Of course,
using higher order basis functions such as quadratic or cubic
basis functions is also an option but the complexity of the FEM
implementation increases. To take advantage of the simplicity
of linear basis functions, a weak form of Eq. (5) can be con-
structed. This weak form is mathematically equivalent to the
strong form; however, it allows for the use of linear basis func-
tions by having only first order partial derivatives in the PDE.
In order to formulate the weak form of Eq. (5) and obtain a

system of equations, Ax = b, Green’s first theorem,∫
V

∇ϕ · ∇ψdV +

∫
V

ϕ
[
∇2ψ

]
dV =

∮
∂V

ϕ [∇ψ · n̂] dS, (7)

is used to reformulate the left-hand side (LHS) and right-hand
side (RHS) of Eq. (5). First, the LHS of Eq. (5) is expanded
using Eq. (7) by setting ψ = Φ and ϕ = T ,∫

V

T ·
[
∇2Φ

]
dV = −

∫
V

[∇T ] · [∇Φ] dV

+

∮
∂V

T [∇Φ · n̂] dS. (8)

Similarly, the RHS of Eq. (5) is expanded using Eq. (7) by set-
ting∇ψ = K⃗ and ϕ = T ,∫

V

T ·
[
∇ · K⃗

]
dV = −

∫
V

K⃗ · [∇T ] dV

+

∮
∂V

T
[
K⃗ · n̂

]
· dS. (9)

This produces the weak form of Eq. (5),

−
∫
V

[∇T ] · [∇Φ] dV +

∮
∂V

T [∇Φ · n̂] dS

= −
∫
V

K⃗ · [∇T ] dV +

∮
∂V

T
[
K⃗ · n̂

]
· dS. (10)

The two surface integrals in Eq. (10) cancel with the use of
Eq. (2), and therefore, the equation becomes∫

V

∇T · ∇ΦdV =

∫
V

∇T · K⃗dV . (11)

Finally, to create the system of linear equations Ax = b,
substitute Eq. (6) into Eq. (11) and use the same basis func-
tions, Ne

j (r⃗), for the testing function, T (r⃗). This is known as
Galerkin’s method

T = Ne
i (r⃗) (i = 1, 2, . . . , n) . (12)

Everything combined produces a system of linear equations for
each element e,

n∑
j=1

Ke
ijφ

e
j = bei (i = 1, 2, . . . , n) , (13)

where

Ke
ij =

∫
V

∇Ne
i (r⃗) · ∇Ne

j (r⃗) dV (14)

bei =

∫
V

∇Ne
i (r⃗) · K⃗ (r⃗) dV . (15)

There are two routes that Eqs. (14) and (15) can be solved,
analytically or numerically using Gaussian quadrature [32–34].
The latter offers a more general solution because using higher
order basis functions require minimal modification of a FEM
implementation and is very accurate [32]. To conduct Gaussian
quadrature, the integrands of an integral are evaluated at a set
of points and multiplied by their weights (see Appendix A) and
combined, ∫

V

f (r⃗) dV ≈
m∑

k=1

wkf (r⃗k). (16)

An exact integration can be obtained if the total number of in-
tegration points,m, ism ≥ (p+1)/2, where p is the polynomial
degree of f(r⃗) [1]. The basis functionswill need to be evaluated
at the quadrature points k. However, this numerical integration
is meant to be used over a perfect right triangle, right tetrahe-
dron, square, or cube depending on the type of finite elements.
Very likely the mesh used will be composed of elements that are
none of these perfect geometric shapes. Therefore, the opera-
tions in f(r⃗) in Eq. (16) for all elements must be transformed
onto a new coordinate system where Gaussian quadrature can
be applied. This new coordinate system is s⃗ = ξâξ + ηâη for
flat and curved surfaces and s⃗ = ξâξ + ηâη + ζâζ for volumes.
The transform to the operations is done through the Jacobian,
J.
For 3D volumes, the Jacobian of element e is defined as

Jv =


∂x(s⃗)
∂ξ

∂y(s⃗)
∂ξ

∂z(s⃗)
∂ξ

∂x(s⃗)
∂η

∂y(s⃗)
∂η

∂z(s⃗)
∂η

∂x(s⃗)
∂ζ

∂y(s⃗)
∂ζ

∂z(s⃗)
∂ζ

 (17)
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Jcs =


∂x(s⃗)
∂ξ

∂y(s⃗)
∂ξ

∂z(s⃗)
∂ξ

∂x(s⃗)
∂η

∂y(s⃗)
∂η

∂z(s⃗)
∂η

p q r

 (18)

where p, q, and r in the last row of Eq. (18) are extracted from
Eq. (21) after taking the cross product of Eqs. (19) and (20).

A⃗ =
∂x (s⃗)

∂ξ
âi +

∂y (s⃗)

∂ξ
âj +

∂z (s⃗)

∂ξ
âk (19)

B⃗ =
∂x (s⃗)

∂η
âi +

∂y (s⃗)

∂η
âj +

∂z (s⃗)

∂η
âk (20)

A⃗× B⃗ = pâi + qâj + râk. (21)
Finally, for 2D flat surfaces the Jacobian of element e is

Js =

∂x(s⃗)
∂ξ

∂y(s⃗)
∂ξ

∂x(s⃗)
∂η

∂y(s⃗)
∂η

 . (22)

Changing the coordinate system of the linear operations using
the Jacobian also means that the differential volumes and sur-
faces must be changed. These are the changes to the differen-
tials in 3D volumes, 2D flat surfaces, and 2D curved surfaces
respectively,

dV = |Jv| dξdηdζ (23)
dS = |Js| dξdη (24)
dS = |Jcs| dξdη (25)

|Jv| and |Js| are the determinants of their respective Jacobians,
and for 2D curved surfaces the Jacobian determinant is themag-
nitude of Eq. (21), |Jcs| = |A⃗× B⃗|.
Computing the Jacobian requires the evaluation of x(s⃗),

y(s⃗), and z(s⃗) by converting coordinate values from r⃗ to s⃗. Us-
ing Eq. (6), these terms are obtained by replacing Φe(r⃗) with
xe(s⃗), ye(s⃗), and ze(s⃗) and φe

j with xei , yei , and zei .

xe (s⃗) =

n∑
i=1

xeiN
e
i (s⃗) (26)

ye (s⃗) =

n∑
i=1

yeiN
e
i (s⃗) (27)

ze (s⃗) =

n∑
i=1

zeiN
e
i (s⃗) (28)

With the use of Eqs. (26)–(28), the Jacobian from Eq. (17) can
be expanded to

Jv =



n∑
i=1

xi (r⃗)
∂Ni(s⃗)

∂ξ

n∑
i=1

yi (r⃗)
∂Ni(s⃗)

∂ξ

n∑
i=1

zi (r⃗)
∂Ni(s⃗)

∂ξ

n∑
i=1

xi (r⃗)
∂Ni(s⃗)

∂η

n∑
i=1

yi (r⃗)
∂Ni(s⃗)

∂η

n∑
i=1

zi (r⃗)
∂Ni(s⃗)

∂η

n∑
i=1

xi (r⃗)
∂Ni(s⃗)

∂ζ

n∑
i=1

yi (r⃗)
∂Ni(s⃗)

∂ζ

n∑
i=1

zi (r⃗)
∂Ni(s⃗)

∂ζ


(29)

This can be simplified to a matrix multiplication as shown in
Eq. (30) where the partial derivatives of the basis functions are
computed analytically. Similarly, Js and Jcs can be expanded.

Jv =


∂N1(s⃗)

∂ξ · · · ∂Nn(s⃗)
∂ξ

∂N1(s⃗)
∂η · · · ∂Nn(s⃗)

∂η

∂N1(s⃗)
∂ζ · · · ∂Nn(s⃗)

∂ζ


x1 (r⃗) y1 (r⃗) z1 (r⃗)

...
...

...
xn (r⃗) yn (r⃗) zn (r⃗)

 (30)

The gradients of the basis functions in Eqs. (14) and (15) are
transformed using Eq. (31) which leads to Eq. (32) for Jv, but
Js or Jcs can also be used in Eq. (31) for flat surfaces or curved
surfaces. This process essentially takes a linear operation from
the r⃗ coordinates and applies it in s⃗ coordinates.

∇Ni (r⃗) = J−1∇Ni (s⃗) (31)
∂Nj(r⃗)

∂x

∂Nj(r⃗)
∂y

∂Nj(r⃗)
∂z

 = J−1
v


∂Nj(s⃗)

∂ξ

∂Nj(s⃗)
∂η

∂Nj(s⃗)
∂ζ

 (32)

The changes to Eqs. (14) and (15) after addingGaussian quadra-
ture to them are as follows

Ke
ij =

m∑
k=1

wk |Jk|∇Ne
i (s⃗k) · ∇Ne

i (s⃗k) (33)

bei =

m∑
k=1

wk |Jk|∇Ne
i (s⃗k) · K⃗ (s⃗k). (34)

Note that the Jacobians used to compute the basis function gra-
dients and Jacobian determinants are different for each integra-
tion point k, and they are computed from either Jv, Js, or Jcs.
Finally, the grating vector in Eq. (34) must be evaluated at the
quadrature points using Eqs. (26)–(28).
The matrix equations in Eqs. (33) and (34) are assembled ac-

cording to Eq. (13) which operates on the individual elements
in a mesh. These matrices can be easily assembled using MAT-
LAB’s “page” functions which operate on multidimensional ar-
rays. Each “page” would contain the local elemental matrices
as seen in Fig. 1.
The sum of the local interactions is assembled into a sparse

and symmetric global matrix A along with the global forcing
vector b as shown in Fig. 2. The indices for the elements of
A and b are obtained from an elements-to-nodes connectivity
array as shown in the top right of Fig. 2. This connectivity ar-
ray defines how the elements are connected in a mesh through
the global nodes or unique nodes in the mesh. These global
nodes are shared by multiple elements and the grating phase
(unknowns) is solved for at the global nodes.
Finally, with the Ax = b system of linear equations as-

sembled, the grating phase, Φ(r⃗), is solved for as x. This
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(a) (b)

FIGURE 1. (a) Local elements numbered with their global nodes.
(b) Local elemental matrices assembled as multidimensional arrays.

FIGURE 2. Example of the matrix of mesh element #2 and its global
matrix assembly.

can be done with a direct or iterative solver [35]. Next, us-
ing Eq. (3), the analog version of the spatially varied grating
is calculated and summed with the rest of the spatially varied
gratings. This sum of analog spatially varied gratings produces
an analog SVL.

3. RESULTS
In the following examples, the FEMmeshes were replicated us-
ing different meshing schemes to verify and validate the results.
The 2D FEM surfaces were solved using triangular meshes and
quadrilateral meshes. The results of the 2D FEM surfaces em-
ploy a quadrilateral mesh with four nodes per element and a
four-point Gaussian quadrature rule (see Appendix A). The 2D
FDM surfaces used a structured orthogonal grid of quadrilater-
als. In addition, all 2D surfaces used 1,000 grid points in the
x and y directions. This was purposely done to compare the
SVLs produced by the FDM and FEM using the exact same
number of grid points. For the 3D FEM example, a tetrahe-
dral mesh and a hexahedral mesh with the same number of grid
points were used to solve and verify the results. The hexahe-
dral mesh used eight-noded hexahedral elements and an eight-
point Gaussian quadrature rule (see Appendix A). All varia-

tions of the SVL algorithm presented in the following exam-
ples used MATLAB’s (R2024a) version of the preconditioned
conjugate gradient (PCG) method to solve the system of linear
equations [35].

3.1. 2D Flat Surface
For the first example, a lattice with square symmetry over a flat
surface was produced. This symmetry is described by two re-
ciprocal lattice vectors, T⃗1 = (2π/Λ)âx and T⃗2 = (2π/Λ)ây
which were defined uniformly across the entire grid, with a pe-
riod of Λ = 0.1m. The size of the lattice was set to ten periods
for both length andwidth. Feeding T⃗1 and T⃗2 as grating vectors,
K⃗, one at a time into the SVLA without applying any modifi-
cations to the grating vectors such as orientation, fill factor, or
spacing produces the grating phase of each grating vector. The
cosine of the grating phase forms the analog grating and the sum
of the analog gratings produces the analog lattice as shown in
Fig. 3.
A binary lattice can be easily created by applying a scalar

threshold to the analog lattice. A “less than or equal to” thresh-
old of 0.519 over the analog lattice in Fig. 3 produced a binary
lattice, Fig. 4, with a fill factor of 70% (white region) of the
total surface.
The example presented in Fig. 3 will now be presented with

a 90◦ bend using the FDM and FEM SVLAs. This design was
achieved by first computing the orientation map using

θmap = tan−1
(y
x

)
(35)

where x and y are defined in r⃗. Note that in FEM, the ori-
entation map must be computed at the quadrature points using
Eq. (26) to use it in Eq. (34). The grating vectors T⃗1 and T⃗2 are
then transformed from their original cartesian coordinate sys-
tem to a cylindrical coordinate system t⃗ = râr + θâθ + zâz . In
the cylindrical coordinate system, the orientation map is added
to the theta component as follows θnew = θold+θmap. Then, the
grating vectors are transformed back to their original Cartesian
coordinate system. These new grating vectors are then used to
create the RHS of Eq. (34) and solve for the grating phase.
Following these steps, the FDM and FEM SVLAs produced

very similar results as shown visually in Figs. 5(a) and (b). Ta-
ble 2 shows the numerical error between the FDM and FEM
SVLA results bymeans of the relative error of the grating phase.
This numerical error comes from difference in the location be-
tween of the finite-difference points and the quadrature points.
The location of the FEM quadrature points is dictated by the
quadrature rule which differs from the location of the FDM
points. In order to compare numerically the FDM and FEM
SLVs, the FEM results had to be interpolated to the same loca-
tion where the FDM points exist, and this is the source of the
slight numerical differences in both solutions. For the second
set of results in Figs. 5(c) and (d), ten iterations of DC that en-
forced the orientation defined by Eq. (35) were applied to the
results of Figs. 5(a) and (b). The two numerical methods also
produced very similar results whenDCwas applied; Table 1 has
the relative error computed between these two sets of results.
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FIGURE 3. Two analog gratings produced using T⃗1 = (2π/Λ)âx and T⃗2 = (2π/Λ)ây over a flat surface, creating an analog lattice with square
symmetry when combined.

FIGURE 4. Flat surface binary lattice produced by applying a 70% fill
factor to the analog lattice.

3.2. 2D Doubly-Curved Surface
In the case of a 2D doubly-curved surface, the SVLA modifi-
cations presented in Ref. [19] were implemented for the FDM
SVLA to compare results against the FEM SVLA. These mod-
ifications projected a doubly-curved surface onto a flat surface
where the 2D FDM SVLA could be easily applied. However,
the FEM version of the SVLA results presented in this section
do not project the doubly-curved surface onto a flat surface. In-
stead, the full curvature of the surface is taken into account by
the FEM SVLA.
Similar to the 2D flat surface example, this symme-

try used two reciprocal lattice vectors that started as
T⃗1 = (2π/Λ)âx and T⃗2 = (2π/Λ)ây over the surface
z = 0.2 [cos(2πx) + sin(2πy)]. The grating vectors were
defined uniformly across the entire grid, with a lattice period
of Λ = 0.1m. However, due to the curvature of the surface,
the reciprocal lattice vectors were rotated to conform to the
mesh and point along the same direction as the surface. This
modified them to T⃗1 = (2π/Λ)âi and T⃗2 = (2π/Λ)âj where
âi and âj are the directions pointing along the principle axes
of the lattice over the doubly-curved surface. The lattice was
produced using ten periods along âi and âj . This produced
grating vectors that were conformed to the doubly-curved
surface as shown in Fig. 6.
The same modifications presented in Ref. [19] were also im-

plemented in the FEM SVLA initially where the curvature of
the surface was projected onto a flat surface. This was done
for verification purposes but those results were not included

here since this FEM SVLA formulation does not require such
modifications. This makes the FEM SVLA a more general and
useful implementation. The FEMSVLA results presented from
this point forward include the full 3D coordinates of the doubly-
curved surfaces without any simplifications.
Results of the doubly-curved surface SVL using the grating

vectors from Fig. 6 are presented in Fig. 7 which show that they
are in good agreement. A side and top view of the doubly-
curved surface with their respective analog grating vectors and
SVLs can be compared visually. In addition, a frequency selec-
tive surface composed of rings, Fig. 8, was designed using the
analog SVL from Fig. 7. The coordinate placement points for
the FSS elements were obtained from the positions of the max-
ima of the analog SVL. This demonstrates the elegant periodic
designs that can be achieved using the SVLA in electromag-
netic structures. This has been shown by previous authors who
devised the SVLA using the FDM [19].
The FDM and FEM SVLAs were solved in MATLAB using

the preconditioned conjugate gradient (PCG) iterative solver
using a CPU and GPU with the same mesh (quadrilaterals) and
grating vectors, equal total number of degrees of freedom, and
a minimal relative residual tolerance of 1e−5. The total number
of iterations in the solvers and computation time were recorded
and are shown in Table 1. Different preconditioners were ap-
plied to lower the total number of iterations. These were the in-
complete LU [36] and incomplete Cholesky factorizations [37]
which were applied to the FDM and FEM SVLAs. It is clear
from the results in Table 1 that the GPU PCG solver is by far
the fastest, even with a high number of iterations. However,
if a CPU is only available for computation, then the CPU ILU
PCG is the next best solver. This is true for the FDM and FEM
SVLAs.
The analog PSVL results presented for the surfaces using

FDM and FEM SVLAs were conducted using the exactly same
meshes for a direct numerical comparison. The FDM flat and
curved SVLs were compared against their FEM counterpart re-
sults. The relative residual was computed with the FDM results
being the target of the FEM results. The analog SVL relative
error was found to be low as Table 2 shows.

3.3. 3D Lattice
The 3D FDM SVLA has been used in the past to design self-
collimating photonic crystals in grids discretized with rectangu-
lar bricks. For the 3D example, a cylindrical photonic crystal
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(a)

(b)

(c)

(d)

FIGURE 5. (a) Flat surface analog gratings and analog SVL with a 90◦ bend generated using the FDM SVLA. (b) Flat surface analog gratings and
analog SVL with a 90◦ bend generated using the FEM SVLA. (c) Flat surface analog gratings and analog SVL with a 90◦ bend generated using the
FDM SVLA with ten orientation DC iterations. (d) Flat surface analog gratings and analog SVL with a 90◦ bend generated using the FEM SVLA
with ten orientation DC iterations.

(a) (b)

FIGURE 6. Grating vectors of the 2D doubly-curved surface. (a) First grating vector. (b) Second grating vector.

was designed to show the capabilities of the FEM SVLA. The
reciprocal lattice vectors describing this 3D PSVL were as fol-
lows, T⃗1 = (2π/Λ)âx, T⃗2 = (2π/Λ)ây , and T⃗3 = (2π/Λ)âz ,
where the lattice period was Λ = 0.1m. The x and y coordi-
nates were constrained by radius R = 0.25m with the z co-
ordinate by a height of h = 0.5m. The grating vectors were
rotated along the z axis as a function of height without any DC

iterations. This was done using a rotation matrix

Rz =

cos (φ) − sin (φ) 0
sin (φ) cos (φ) 0

0 0 1

 . (36)

The rotation was applied from 0 to 90◦ as a function of height
to the grating vectors where at z = 0 there was no rotation, and
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(a)

(b)

(c)

(d)

FIGURE 7. (a) Doubly-curved surface analog gratings and analog SVL using the FDM SVLA. (b) Doubly-curved surface analog gratings and analog
SVL using the FEM SVLA. (c) Top view of the doubly-curved surface analog gratings and analog SVL using the FDM SVLA. (d) Top view of the
doubly-curved surface analog gratings and analog SVL using the FEM SVLA.

TABLE 1. FDM and FEM SVLA iterative solver comparison.

Solver
Computation
Time (s)

Total
Iterations

Relative
Residual

FDM CPU PCG 21.31 1730 9.8e−6

FDM GPU PCG 1.46 1728 9.8e−6

FDM CPU ILU PCG 14.41 425 9.9e−6

FDM CPU ICHOL PCG 14.6 425 9.9e−6

FEM CPU PCG 31.62 1942 1.0e−5

FEM GPU PCG 1.81 1942 1.0e−5

FEM CPU ILU PCG 29.48 646 9.8e−6

FEM CPU ICHOL PCG 29.66 646 9.8e−6

at z = 0.5m the rotation matrix was z = 90◦. This results
in the binary PSVL shown in Fig. 9 where the analog PSVL
was applied with a “greater than or equal to” threshold of 0.5 to
produce a fill factor of 33.65%.

There are cases where the direction of the grating vectors pro-
duces a configuration that does not have a solution. For exam-
ple, any time the grating vector function forms a closed loop,
there is not direct way to obtain a solution for grating phase.
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FIGURE 8. Frequency selective surface example created using the re-
sults from the doubly-curved surface SVL.

TABLE 2. 2D FDM and FEM SVL surfaces relative error.

Surface Type ∥ΦFDM−ΦFEM∥
∥ΦFDM∥

Flat Surface SVL 3.0e−3

Flat Surface SVL
with ten DC Iterations

4.5e−4

Curved Surface SVL 1.5e−4

Curved Surface SVL
with ten DC Iterations

1.4e−4

FIGURE 9. 3D SVL twisted over its height.

This happens because the RHS of Eq. (4) is divergence-free
(zero) under grating vectors that form loops. To remedy this, a
seam is introduced into the mesh to breaks the loops.
In the example shown in Fig. 10, a negative uniaxial metama-

terial (NUM) [38] is spatially varied to create what is known as
a spatially-variant anisotropic metamaterial (SVAM) [39]. This
metamaterial is formed by alternating two layers with different
permittivity values, effectively stretching space electromagnet-
ically along the direction of the layers. These alternating layers
result in an effective medium that exhibits uniaxial anisotropy
as a function of position. This concept was previously used to
achieve electromagnetic near-field sculpting to isolate a metal
ball from a microstrip transmission line [40]. In Ref. [20], the
Voronoi algorithm was used to generate two alternating layers
that surround the electronic components of a volumetric circuit
to reduce its electromagnetic coupling and interference between
adjacent components. This concept is another application for
the FEM SVLA to aid in volumetric circuit design.

FIGURE 10. 3D example of a spatially-variant anisotropic metamaterial
(SVAM).

4. CONCLUSIONS
The SVLA that was previously formulated in the FDM frame-
work is now presented in the context of FEM. Examples show-
ing comparisons between FDM and FEM producing SVLs over
a flat surface and a doubly-curved surface were shown to be in
good agreement. In addition, an example of how the SVLA
can be used to design FSSs was provided. The presented vol-
umetric PSVL example shows that this formulation also works
well in 3D. Furthermore, a 3D example was provided where
the SVLA produced a negative uniaxial metamaterial that was
spatially varied. A simple study on different preconditioners
for PCG was conducted in MATLAB and compared in over-
all computation time and total number of iterations. Out of all
solvers used in Table 1, the GPU PCG solver was the best op-
tion to use for the FEM SVLA but if a GPU is not available,
then the CPU ILU PCG is the next best solver.
The main strengths in using a FEM based SVLA is in the

ability to easily refine or coarsen a mesh based on location and
in using different types of meshing elements such as triangles,
quadrilaterals, tetrahedrons, and hexahedrons to name a few.
Complex geometries pose a challenge for the FDM because
it performs best with structured orthogonal grids composed of
quadrilaterals or hexahedra. Implementing such grids for intri-
cate shapes can be problematic. In FEM, however, this is not a
limitation due to the many meshing discretization options. For
example, an intricate geometry can be partitioned into different
regions, each meshed with different element shapes that may
be more appropriate for those specific sections. This meshing
freedom facilitates generatingmeshes with complex geometries
that would otherwise be difficult to mesh with quadrilaterals or
hexahedra for the FDM.
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APPENDIX A. ELEMENT QUADRATURE RULES AND
BASIS FUNCTIONS
The basis functions and Gaussian quadrature rules used in this
work for triangles, quadrilaterals, tetrahedrons, and hexahe-
drons are shown in this section. The basis functions Nj(s⃗) are
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TABLE A1. Triangle Gaussian quadrature rule.

Quadrature
Points (i) ξi ηi

Weights
(wi)

1 1/2 1/2 1/6

2 1/2 0 1/6

3 0 1/2 1/6

TABLE A2. Tetrahedron Gaussian quadrature rule.

Quadrature
Points (i) ξi ηi ζi

Weights
(wi)

1 (5−
√
5)

20

(5−
√
5)

20

(5−
√

5)
20

1/24

2 (5+3
√
5)

20

(5−
√
5)

20

(5−
√

5)
20

1/24

3 (5−
√
5)

20

(5+3
√

5)
20

(5−
√

5)
20

1/24

4 (5−
√
5)

20

(5−
√
5)

20

(5+3
√
5)

20
1/24

defined at the quadrature points (i) to approximate the grating
phase inside each finite element. The partial derivatives of the
basis functions are obtained analytically for the Jacobian matri-
ces as shown in the triangle element section. The rest of the an-
alytical basis function partial derivatives belonging to the other
element shapes can be easily calculated. Tables A1–A4 provide
the Gaussian quadrature rules for each element. These include
the quadrature points and their respective weights.

A.1. Triangle Element
Linear basis functions and their partial derivatives:

N1 (s⃗) = 1− ξ − η (A1)
N2 (s⃗) = ξ (A2)
N3 (s⃗) = η (A3)∂N1(s⃗)

∂ξ
∂N2(s⃗)

∂ξ
∂N3(s⃗)

∂ξ

∂N1(s⃗)
∂η

∂N2(s⃗)
∂η

∂N3(s⃗)
∂η

 =

[
−1 1 0
−1 0 1

]
(A4)

A.2. Tetrahedron Element
Linear basis functions:

N1 (s⃗) = 1− ξ − η − ζ (A5)
N2 (s⃗) = ξ (A6)
N3 (s⃗) = η (A7)
N4 (s⃗) = ζ (A8)

A.3. Quadrilateral Element
Linear basis functions:

N1 (s⃗) =
1

4
(1− ξ) (1− η) (A9)

N2 (s⃗) =
1

4
(1 + ξ) (1− η) (A10)

N3 (s⃗) =
1

4
(1 + ξ) (1 + η) (A11)

TABLE A3. Quadrilateral Gaussian quadrature rule.

Quadrature
Points (i) ξi ηi

Weights
(wi)

1 −1/
√
3 −1/

√
3 1

2 1/
√
3 −1/

√
3 1

3 1/
√
3 1/

√
3 1

4 −1/
√
3 1/

√
3 1

TABLE A4. Hexahedron Gaussian quadrature rule.

Quadrature
Points (i) ξi ηi ζi

Weights
(wi)

1 −1/
√
3 −1/

√
3 −1/

√
3 1

2 1/
√
3 −1/

√
3 −1/

√
3 1

3 1/
√
3 1/

√
3 −1/

√
3 1

4 −1/
√
3 1/

√
3 −1/

√
3 1

5 −1/
√
3 −1/

√
3 1/

√
3 1

6 1/
√
3 −1/

√
3 1/

√
3 1

7 1/
√
3 1/

√
3 1/

√
3 1

8 −1/
√
3 1/

√
3 1/

√
3 1

N4 (s⃗) =
1

4
(1− ξ) (1 + η) (A12)

A.4. Hexahedron Element
Linear basis functions:

N1 (s⃗) =
1

4
(1− ξ) (1− η) (1− ζ) (A13)

N2 (s⃗) =
1

4
(1 + ξ) (1− η) (1− ζ) (A14)

N3 (s⃗) =
1

4
(1 + ξ) (1 + η) (1− ζ) (A15)

N4 (s⃗) =
1

4
(1− ξ) (1 + η) (1− ζ) (A16)

N5 (s⃗) =
1

4
(1− ξ) (1− η) (1 + ζ) (A17)

N6 (s⃗) =
1

4
(1 + ξ) (1− η) (1 + ζ) (A18)

N7 (s⃗) =
1

4
(1 + ξ) (1 + η) (1 + ζ) (A19)

N8 (s⃗) =
1

4
(1− ξ) (1 + η) (1 + ζ) (A20)
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