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ABSTRACT: This paper introduces a novel finite element boundary integral approach for magnetic resonance electrical properties tomog-
raphy (MR-EPT) with an inhomogeneous background which improves imaging quality by utilizing inhomogeneous background inversion
and allows for a flexible selection of areas for fine reconstruction, thereby saving resources and quickly obtaining the most important
information. In the proposed approach, a fictitious inhomogeneous background is initialized, followed by a preliminary reconstruction
conducted across the entire field of view (FOV) through a few iterations. This fictitious inhomogeneous background aims to enhance
the quality of reconstruction, surpassing that achieved through inversion in a homogeneous background. The proposed method is signif-
icantly suitable to the prevailing refinement mechanism, where the refinement area identified from the preliminary reconstruction image
is embedded in an inhomogeneous background. This method combines the advantages of the computational efficiency of local meth-
ods and the noise robustness of global methods. Numerical examples have validated that the inversion with a fictitious inhomogeneous
background yields a superior reconstruction quality. The subsequent narrowing of the inversion area results in a more focused inversion

process, significantly reducing reconstruction time.

1. INTRODUCTION

agnetic Resonance Electrical Properties Tomography

(MR-EPT) stands as an innovative tomography technique
with the capability to quantitatively reconstruct the permit-
tivity and conductivity of biological tissues from Magnetic
Resonance Imaging (MRI) signals [1-6].

The retrieval of Electrical Properties (EPs) from the MRI sig-
nal is possible due to the information embedded in the signal
regarding the interaction between radio frequency (RF) pulses
and biological tissues. EPs play a crucial role in estimating bi-
ological tissue lesions and determining the local Specific Ab-
sorption Rate (SAR).

The knowledge of EPs has the potential to ease the interpre-
tive burden borne by radiologists, aid in formulating hyperther-
mia therapy treatment plans, and evaluate the safety of the MRI
machine.

With the increasing interest of researchers, many methods
have been proposed in recent years. These methods can be
roughly categorized into differential and integral methods. Dif-
ferential methods rely on the differential forms of Maxwell’s
equations [7—14], while integral methods are grounded on their
integral counterparts [15-24]. Furthermore, these methods can
be classified as either local or global based on the imaging do-
main they address. The local methods only consider the infor-
mation of the direct neighborhood to reconstruct the EPs at a
specific location [7-10]. In comparison, global methods con-
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sider the entire imaging domain to reconstruct the entire EPs
map [11-23].

After the initial proposition by Haacke et al. [7] that EPs
can be extracted through B;" maps, several methods were in-
troduced, initially leaning towards local differential approaches
for their simplicity, such as Helmholtz-based EPT (H-EPT) [8]
and simplified H-EPT (SH-EPT) [9]. These methods are un-
der the assumption of local homogeneity in EPs. Subsequently,
global differential methods emerged with fewer assumptions,
such as gradient-based EPT (G-EPT) [11, 12] and convection-
reaction EPT (cr-EPT) [13, 14]. It is acknowledged that dif-
ferential methods are constrained by their inherent property
of noise amplification [2,3]. To address this limitation, re-
searchers introduced integral methods, widely used in solv-
ing inverse scattering problems, into MR-EPT. For example,
Balidemaj et al. [15] incorporated the contrast source inver-
sion (CSI) [25,26] into MR-EPT. Then, Arduino et al. [18]
and Leijsen et al. [16] expanded the application of CSI-EPT
to phaseless and 3-dimensional cases, respectively. Addition-
ally, Leijsen et al. [19] discussed the performances of CSI-
EPT under various circumstances, such as different regular-
ization techniques, initial guesses and noise levels. Mean-
while, Hong et al. [22] introduced the variational Born itera-
tion method [27] into MR-EPT. In addition, as machine learn-
ing techniques have advanced, physics-informed neural net-
works (PINNs) have been incorporated into MR-EPT frame-
works [28-31]. For example, Inda et al. [28] implemented
a neural network to optimize two key coefficients of cr-EPT,
in order to reduce artifacts. More broadly, neural network-
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based approaches have also shown promise in solving inverse
scattering problems, including those with phaseless or limited
data [32,33]. Among these methods, CSI-EPT presents no-
table advantages due to its ability to circumvent locally homo-
geneous assumptions and eliminate the need for repeated for-
ward simulations. However, it is likely to be trapped in local
minima, particularly when the nonlinearity of the problems be-
comes strong [19, 25, 26]. An appropriate initial guess can sig-
nificantly reduce the likelihood of being trapped in local min-
ima. Furthermore, achieving a a finer reconstruction requires a
finer discretization and more iterations, significantly increasing
the reconstruction time.

To provide an effective initial guess and reduce the recon-
struction time, this paper proposes a novel approach utilizing
a fictitious inhomogeneous background. The motivation be-
hind this approach stems from two perspectives. Firstly, the
incorporation of a fictitious inhomogeneous background is em-
ployed to enhance the overall quality of reconstruction. The
concept of the fictitious inhomogeneous background implies
that the background being utilized is not authentic, but instead
as a mathematical concept, it is artificially designed to facili-
tate the reconstruction process. Secondly, the inhomogeneous
background inversion allows us to flexibly choose the refine-
ment area, which treats the exterior of the refinement area as
a fixed inhomogeneous background, serves to narrow the in-
version domain from the entire field of view (FOV) to the re-
finement area, thereby improving the efficiency of the inversion
process. While the concept of using a fictitious inhomogeneous
background has been studied in other inverse problems, its inte-
gration into the MR-EPT framework using a numerically com-
puted Green’s function and IE-based CSI formulation is, to the
best of our knowledge, novel.

The proposed finite element boundary integral (FE-BI) ap-
proach can deal with any inhomogeneous background. The pro-
cess of this approach can be divided into two stages: the pre-
liminary stage and the refinement stage. The preliminary stage
aims to obtain a preliminary result for the refinement stage.
The inversion in the preliminary stage is conducted across the
entire FOV. The refinement stage, on the other hand, focuses
on improving the reconstruction within the refinement area.
In the preliminary stage, we first estimate the spatial distribu-
tion of EP based on our prior information and treat it as the
fictitious inhomogeneous background. Then the values of EP
will be gradually tuned so that eventually the calculated data
match the measured data. Given the fact that the correspond-
ing Green’s function with an inhomogeneous background does
not have an analytic expression, the Green’s function is numeri-
cally computed by the FE-BI formulation. This computation of
the numerical Green’s function is performed only once and then
stored for use in subsequent iterations. Subsequently, an objec-
tive function is formulated and iteratively minimized to obtain a
preliminary reconstruction. Once a preliminary reconstruction
is obtained, the process advances to the refinement stage. A re-
finement area that requires further refinement is identified by
analyzing the preliminary reconstruction image together with
other conventional MRI images. Then, the objects outside the
refinement area are designated as the fictitious inhomogeneous
background in this stage, which is fixed when the interior is
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further refined. Utilizing Huygens’ principle, which states that
the field outside the refinement area can be effectively repre-
sented by a boundary integral (BI) [34-36], the inversion do-
main can be narrowed from the entire FOV to the refinement
area. Subsequent steps involve recalculating the new inhomo-
geneous background Green’s function and formulating a new
objective equation within this refinement area. The reduction
in the inversion area leads to a significant reduction in recon-
struction time, thereby facilitating a more efficient and adapt-
able reconstruction process.

The contributions of this paper can be briefly summarized as
follows:

1) Establishing a forward MR-EPT model based on the FE-
BI method, this paper provides a model that is more con-
venient for accommodating inhomogeneous backgrounds
and scenarios with a narrowed refinement area. The pro-
posed forward MR-EPT model has the advantage of fully
incorporating a priori knowledge of imaging domain that
is often medically available. The a priori knowledge of
image domain, which is heterogeneous, provides us with
a start point, which is treated as an inhomogeneous back-
ground. In addition, our proposed model allows a great
flexibility in choosing an inhomogeneous background. It
should be highlighted that the difference from previous
FEM-CSI [37-40] works lies in our use of a numerically
computed inhomogeneous background Green’s function,
integrated into the CSI cost function instead of directly
solving the differential equation, and apply the prior in-
formation to the domain of MR-EPT, where such method-
ology has not yet been explored in the same depth.

The proposed forward MR-EPT model achieves computa-
tional efficiency through a strategic reduction of the com-
putational domain, focusing updates only within regions
where property changes are necessary. By applying Huy-
gens’ principle, the reconstruction region is effectively
isolated from its surroundings, allowing the external en-
vironment to be treated as fixed. This approach eliminates
the need to repeatedly compute the influence of distant,
unchanging areas, thereby significantly reducing compu-
tational load. As a result, resources are concentrated on
the critical regions of interest, enhancing efficiency with-
out compromising accuracy, in contrast to traditional full-
domain methods that require continuous evaluation of the
entire area.

2) When building up the objective function of the optimiza-
tion problem, the paper rewrites the data equation and state
equation of the MR-EPT problem to leverage the advan-
tageous properties of the FE-BI formulation handling the
inhomogeneous background.

3) The proposed method is significantly suitable for the re-
finement mechanism, where the refinement area identified
from the preliminary reconstruction image is embedded in
an inhomogeneous background. By employing Huygens’
principle, the proposed approach can narrow the recon-
struction domain, leading to a reduction in reconstruction
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time. This reduction in the image domain and reconstruc-
tion time enhances the flexibility of MR-EPT applications.
It should be noted that the proposed refinement mecha-
nism with inhomogeneous background is significantly dif-
ferent from prevailing refinement mechanism.

4) This method combines the advantages of local methods
and global methods. Specifically, it only requires the com-
putation of the local meshes during the inversion process
to enhance computational efficiency, while also utilizing
integral equations to account for the influence of the global
meshes on the measured data to improve the robustness
against noise.

The structure of this paper is organized as follows. In Sec-
tion 2 the forward model based on FE-BI is introduced. Sec-
tion 3 introduces the detailed procedure of the inversion pro-
cess. In Section 4, numerical examples are conducted and com-
pared. The conclusion is drawn in Section 5.

2. FORWARD MODEL

This section introduces the forward model for both the prelim-
inary stage and the refinement stage. It is important to note
that the forward model is similar for both stages, with differ-
ences in the computation area and boundaries. Let’s consider
a two-dimensional (2-D) transverse magnetic (TM) MRI con-
figuration in this paper, as shown in Fig. 1. The RF coils are
located in a circular pattern to transmit the RF pulse. Objects
within the FOV are activated by the RF pulses, subsequently
generating the MR signals captured by the RF coils. The FOV
is delineated by the red dashed lines, while the refinement area
is marked by the white dashed lines. The positive rotating mag-
netic field B can be mapped through MRI signals by B; map-
ping techniques [41,42], which is defined as

B = 2D e p (1)

e .

gt

FIGURE 1. In the preliminary stage, the calculation domain encom-
passes the entire Field Of View (FOV), indicated by the red dashed
line. In the refinement stage, the computational domain is restricted to
the refinement area, which is marked by the white dashed line.
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where B, and B, are the x and y components of the magnetic
field, respectively, and D denotes the FOV in the preliminary
stage and as the refinement area in the refinement stage, respec-
tively. Notably, the measured data, B}, is related to the EPs of
objects and is governed by Maxwell’s equations. More specifi-
cally, given the negligible variations in relative permeability of
objects investigated in this paper, By is directly related to the
permittivity £ and conductivity o. Therefore, By is considered
as the measured data in the MR-EPT problem.

In the 2-D TM cases, the electric field only contains z compo-
nent F, while the magnetic field contains = and y components
B, and B,,. The objects within FOV are biological tissues with
a permittivity £oe,(7), conductivity o(7), and permeability
u(7) = pg. These tissues are immersed in a background with
the permittivity eqep (), conductivity o, (7), and permeability
wo- The EPs of objects and background can be expressed using
complex relative permittivities £, (7) = &,.(F) + io(7)/(weg)
and &,(7) = &(7) + iop(7)/(wep) with the time convention
e~ omitted in the following. It is noteworthy that, in reality,
the background is air with a relative permittivity of €. How-
ever, for the sake of reconstruction facilitation, a fictitious in-
homogeneous background with a complex relative permittivity
€ (7) can be reasonably estimated using prior information, such
as the MRI image obtained through conventional methods. It is
worth highlighting that the value of £, (7) is not required to be
accurate, since the formula &, (7) = &,(7) + [£,(F) — &(7)] is
always correct, i.e., we treat £,.(7) — &,(7) as the perturbation
in the background medium & (7).

In the interior domain of D, the electrical field is governed
by the Helmholtz equation, which can be written as

VZEz(f)+k(2)gr(7:>Ez(7?) =0 (2)
V2EL(F) + kgén (M EL(7) = 0 3)

where k represents the wave number of the free space, and E,
and E¢ denote the electrical field with and without the presence
of objects, respectively.

Subtracting Equation (2) with Equation (3) yields

VEEL(7) + k§éo (M EZ(7) = —k§[E:(7) — E(M]E=(7) (4)
where E5 = E, — E' denotes the scattered electrical field.

Let’s define the right hand of Equation (4) to be the contrast
source w(7), there is

w(7) = x(7)Ex(7) = —k§[E,(F) — & (M) E(7)  (5)
where x(7) = —kZ[&,(7) — &,(7)] represents the contrast. It is
obvious that the value of contrast is related to the predefined
background, which can be either a fictitious inhomogeneous
background or a homogeneous background. Once the contrast
is obtained, the permittivity of objects can be determined by
E-(T) = &(F) + [6-(F) — &p(7)]. The above equation applies
to both stages.

In the exterior of the boundary, employing Huygens’ princi-
ple, the field can be written as [34,43]

El) = ﬁD—aan(gf;)G(z,z/)

aG(I")
on(l")

+ Es()dll 1,1 € 0D (6)
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where G represents the Green’s function mapping the source on
the boundary to the corresponding fields on the boundary, and
7. denotes the normal vector pointing outward from the bound-
ary of OD. In the preliminary stage, the boundary of 9D is
the red dashed line in the Fig. 1. Outside the boundary is air,
so (G is the free space Green’s function, since (6) is considered
as approaching the boundary from the external region. That is
to say, the Green’s function G in (6) accounts for the external
electromagnetic response. In the refinement stage, the bound-
ary marked by the white dashed line is located inside the object,
so G is the inhomogeneous background Green’s function that
needs to be calculated numerically.

As mentioned above, the measured data in the MR-EPT
problem is B;", and the scattered part of B is defined as

By () = Bf (7) — By (F) (7

where B and Bf ot represent the positive rotating magnetic
field with and without the presence of objects, respectively.

After discretizing the domain D into a total of N, ., meshes
with a total of N,,,4. nodes and expanding the variables with
the bilinear basis function, we obtain the discrete form of Bfr s
derived from (3)—(7) in FE method,

B{*=P.-Gp-w ®)
where P is an N,,csn X Npode matrix that maps the scattered
electrical field at the nodes of meshes to the B?’ ** located at
the center of the meshes; G p is an N,,pge X Npode matrix that
represents the inhomogeneous Green’s function that maps the
contrast source at the nodes to the electrical field at the nodes;
and w is an N,,,4. dimensional vector that denotes the value of
the contrast source of each node.

The crucial step of the forward process involves determin-
ing the inhomogeneous Green’s function Gp. The approach
involves treating the inhomogeneous background as scatterers
within a homogeneous background and computing G'p using
the forward solver. The detailed derivation and the expressions
of matrices P and G/ can be referred to Appendix A. It should
be highlighted that for a given inhomogeneous background, the
G'p needs to be computed only once, which does not signifi-
cantly increase the computational burden.

3. INVERSION PROCESS

As highlighted in the introduction, the motivation for this ap-
proach originates from two perspectives. Firstly, the formu-
lation of inhomogeneous background inversion is introduced.
Secondly, the workflow of the refinement-based inversion is
presented.

3.1. Inhomogeneous Background Inversion

In this paper, the inversion problem is recast as an optimization
problem [15-17,25] and is addressed through iterative mini-
mization of an objective function. The objective function in
this approach is organized by two equations: the data equation
and the state equation.
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The data equation illustrates the relation between the mea-
sured data and the contrast source, as illustrated in (8). In com-
parison, the state equation illustrates the physics governing the
interaction between the incident waves and the objects, which
can be formulated as

C-w=x-C-(E+Gp ) )
where C is a matrix with dimensions N,,csn, X Npode that as-
signs the value of the center of a mesh by averaging the values
at their four respective nodes;  is a diagonal matrix of dimen-
sion Nypesh X Nopesh, Where its diagonal elements represent the
contrast associated with each mesh; and E‘; is an N,,,4e dimen-
sional vector that denotes the value of incident electrical field at
each node. The meaning of (9) can be interpreted as enforcing
(5) at the center of each mesh.

Thus, the relative residual for the data Equation (8) and the
state Equation (9) are defined as

| B ~P-Gp-w |

Agar = = 10
o B o
S —%-C (B +Gr-w) |2
X - EL
respectively. Then, the objective function is organized as
]:(U}, X) = Adat + Asta (12)

It is evident that the unknowns within the objective function
are w and Y, both of which can be iteratively updated by min-
imizing the objective function. Additionally, the inhomoge-
neous background Green’s function G’ remains fixed and can
be computed and stored at the beginning. The conjugate gradi-
ent method (CGM) is utilized to minimize the objective func-
tion in this paper. It is noteworthy that in MR-EPT, the mea-
sured data is available throughout the entire object domain. As
a result, the positions of objects can be determined based on the
measured data before we run iterations when solving the mini-
mization problem.

3.2. Refinement-Based Inversion

To achieve better reconstructions, it is necessary to employ
a fine discretization and run sufficient iterations, which, un-
fortunately, leads to time-consuming computations. However,
in practical situations, not every part of the domain requires
equal attention. Focusing specifically on the refinement area,
where sufficient iterations are crucial, can significantly reduce
the nonlinearity of the inverse problem and the computational
time. Therefore, a novel approach is developed to flexibly de-
termine the inversion domain, resulting in a substantial reduc-
tion in computational time.

The workflow of the refinement-based inversion is illustrated
in Fig. 2. It can be seen that the process can be divided into two
stages. In the preliminary stage, the reconstruction is carried
out in the entire FOV. The initial contrast x and the electrical
parameters of the inhomogeneous background are firstly ini-
tialized. These initial parameters can be derived from anatom-
ical information and conventional MRI images. For instance,
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FIGURE 2. Flowchart of the refinement-based inversion.

in head imaging, the locations of the skin and skull of the head
can be easily identified from conventional MRI images, and
approximated EPs values can be assigned accordingly. The re-
maining portion is chosen as a homogeneous guess with the av-
erage expected values of EPs. This initial information serves as
the initial fictitious inhomogeneous background. Subsequently,
the incident field E! in this inhomogeneous background is com-
puted. Then the inhomogeneous Green’s function G'p mapping
the contrast source to the electric field in Equation (8) can be
calculated. The unknowns w and x are then updated through in-
homogeneous background inversion, as previously introduced.
Given that the inversion domain spans the entire FOV, the di-
mensions of the matrices of unknowns are considerably large.
Consequently, it will be time-consuming if we aim to obtain
precise results with an adequate number of iterations. There-
fore, to mitigate computational costs, a reduced number of iter-
ations are performed in this inversion process, yielding rough
reconstruction results.

Once a preliminary result is obtained, the reconstruction
moves to the refinement stage, where the inversion domain is
narrowed to the refinement area. The refinement area can be de-
termined based on preliminary results. The preliminary recon-
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struction result outside the refinement area is fixed and serves
as a new inhomogeneous background. The boundary in Equa-
tion (6) is correspondingly narrowed from the boundary of the
FOV to the boundary of the refinement area, which is enclosed
by the white dashed lines in Fig. 1. The influence stemming
from scatterers outside this boundary can be represented by
electrical and magnetic sources located on the boundary, in ac-
cordance with Huygens’ principle, which enables a reduction in
the inversion domain. It should be noted that Green’s function
on the boundary in Equation (6) becomes the inhomogeneous
background Green’s function; therefore, we must calculate the
new background Green’s function in the refinement stage. Fur-
ther step involves recalculating £ under the new background.
Finally, by minimizing the objective function (12) for the new
background medium and new computational domain, the un-
knowns w and x within the refinement area are then iteratively
updated.

Since the inversion domain is significantly reduced, the re-
construction time is also greatly decreased. It is worth high-
lighting that the refinement area can be arbitrarily determined
within the FOV, enhancing the flexibility of MR-EPT applica-
tions. This method can reduce the global inversion domain to a
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FIGURE 3. The actual values and prior information of permittivity and conductivity of a brain slice. (a) Actual permittivity; (b) Actual conductivity;
(c) Prior information of permittivity; (d) Prior information of conductivity.

local inversion domain, thus having the advantage of the high
computational efficiency of local methods. At the same time,
it is based on integral equations, which consider the influence
of all scattering objects, ensuring robustness to noise, similar to
global methods.

4. NUMERICAL RESULTS

In this section, numerical simulations are conducted to demon-
strate the performance of the proposed approach. Illustrated in
Fig. 1, 16 RF line sources are placed in a circle with a radius of
0.35m. These RF sources are driven at 127.74 MHz, aligning
with the operating frequency of a 3T MRI system. The object
to be reconstructed is a cross-sectional slice of a brain model
obtained from the Zubal Phantom data [44]. The model has a
pixel size of 2.2 mm, with dimensions of 98 x 98 pixels, re-
sulting in a square FOV with a length of 21.56cm. Permit-
tivity and conductivity values are assigned based on data from
the IT’IS Foundation [45] at the specified operating frequency.
The background outside the brain is considered as air. The ac-
tual distribution of permittivity and conductivity are shown in
Figs. 3(a) and (b), respectively.

The first simulation compares the performance of homoge-
neous background inversion and inhomogeneous background
inversion. The prior information of permittivity and conduc-
tivity is depicted in Figs. 3(c) and (d), respectively. For homo-
geneous background inversion, the prior information is used as
the initial guess, while for inhomogeneous background inver-
sion, it is considered as the background. When utilized as the
background, the prior information reduces the contrast in object
pixels, resulting in a reduction in the nonlinearity of the inverse
problem and an improvement in reconstruction quality.

The reconstructed permittivity and conductivity after 600 it-
erations are shown in Fig. 4, specifically in (a) and (b), where
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the prior information serves as an initial guess, and in (c) and
(d), where the prior information acts as an inhomogeneous
background.

It can be seen that (¢) and (d) are more aligned with the actual
values of the electrical properties of the brain slice. Not only
are the values closer to the actual ones, but the structure of the
brain slice is also more clearly represented, resulting in a higher
resolution.

It should be noted that inhomogeneous background inver-
sion does not increase computational complexity since the only
difference lies in G p in Equation (8). This inhomogeneous
Green’s function can be calculated only once and then stored
for later use in minimizing (12).

To quantitatively evaluate the reconstructed image quality,
the relative error R, is adopted, which is defined as
L& — & |

| & |

R. = (13)

where £2¢* and £7¢° represent the actual and reconstructed rel-
ative permittivities, respectively. A reduction in R, indicates
a closer alignment of the reconstructed image with the actual
profile. The trajectory of R, as a function of the iterations is
shown in Fig. 5. It is obvious that at 600 iterations, the R, of
the inhomogeneous background inversion is gradually smaller
than the R, of the homogeneous background inversion with
an initial guess. This trend signifies that the inhomogeneous
background inversion can enhance the fidelity of reconstruc-
tion. As mentioned earlier, despite the improvement in quality,
inhomogeneous background inversion does not require a longer
inversion time than homogeneous background inversion. Ta-
ble 1 presents a comparison of R, and computation time for
both methods. It can be seen that after 600 iterations, the R, of
inhomogeneous background inversion is slightly smaller than
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FIGURE 4. The reconstructions with prior information as an initial guess and an inhomogeneous background. (a) and (b) show reconstructions with
prior information as an initial guess, while (c) and (d) show reconstructions with prior information as an inhomogeneous background.
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FIGURE 5. The trajectory of R, as a function of iterations in both ho-
mogeneous and inhomogeneous background inversions.

that of homogeneous background inversion, while the computa-
tion time remains nearly the same. Both methods took approx-
imately 2.1 hours to complete 600 iterations. We notice that
since the measurement domain and the expansion basis function
practiced in MR-EPT are different from those practiced in CSI,
the computational time for MR-EPT will be naturally longer
than a CSI solver for an inverse scattering problem of the same
dimension. These computations were undertaken on a desktop
featuring an AMD 5600X CPU operating at 3.70 GHz, coupled
with 32 GB of RAM.

TABLE 1. Comparison of the R. and the Computation Time for the
Homogeneous and Inhomogeneous Background Inversion after 600
Iterations.

Methods R, Time (min)
Homogeneous inversion | 0.27 130
Inhomogeneous inversion | 0.24 126
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While the inhomogeneous background inversion can im-
prove image quality, it still takes a considerable long time if we
aim to obtain high-quality reconstruction results. Fortunately,
there might not always be a need for high-quality reconstruction
of the entire domain. Instead, high-quality reconstruction may
be only required for a specific refinement area. The inhomoge-
neous background inversion offers the flexibility of achieving
a fast refinement area inversion.

Figures 6(a) and (b) depict the reconstructed permittivity
and conductivity obtained after 200 iterations of inhomoge-
neous background inversion. Compared with Fig. 4, specifi-
cally Fig. 4(a) and Fig. 4(b), it is obvious that Figs. 6(a) and (b)
are rougher, due to insufficient iteration steps. However, this
reconstruction result can be utilized to localize the refinement
area and serve as a new background for subsequent refinement
area inversion. Assuming the refinement area is enclosed by a
white dashed line, the new inhomogeneous background is de-
termined based on this refinement area, as depicted in Fig. 6(c)
and (d). The new inhomogeneous Green’s function is computed
by the forward solver. Subsequently, the proposed approach
inversion is conducted within the refinement area. The recon-
structed permittivity and conductivity are shown in Figs. 6(e)
and (f). It can be seen that the resolution of the image in the
refinement area can still be significantly improved, indicating
the efficacy and feasibility of the refinement-based inversion.

The trajectory of R, as a function of iterations in both in-
homogeneous background inversion and the refinement-based
inversion is illustrated in Fig. 7. During the initial 200 it-
erations, both methods follow a same inversion procedure, re-
sulting in the same R, values. However, after this initial pe-
riod, a notable divergence in their convergence trajectories be-
comes evident. While the inhomogeneous background inver-
sion continues its convergence process, the refinement-based
inversion relocates its focus to a specific refinement area. It
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FIGURE 6. The reconstructions by the refinement-based inversion. (a) and (b) are coarse reconstructed permittivity and conductivity in the entire
domain; (c) and (d) are the permittivity and conductivity of the new inhomogeneous background for the refinement area inversion; (e) and (f) fine

reconstructed permittivity and conductivity in the refinement area.
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FIGURE 7. The trajectory of R, as a function of iterations in both inho-
mogeneous background inversion and the refinement-based inversion.

can be seen that the refinement-based inversion converges more
rapidly than the inhomogeneous background inversion. Table 2
presents a comparison of the R, and computation time of these
two methods. At the end of 600 iterations, both methods yield
a same R, value, yet the refinement-based inversion requires
only 35% of the computation time compared to the inhomoge-
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TABLE 2. Comparison of R. and computation time for inhomogeneous
background inversion and refinement-based inversion after 600 itera-
tions.

Time (min)
Method R
ethods ¢ | First 200 Last 400
Iterations Iterations
Inhomogf?neous 022 4 %4
Inversion
Reﬁnemen.t-Based 022 4 )5
Inversion

neous background inversion approach. It should be noted that
the R, calculation in this example only considers the meshes
within the refinement area. Furthermore, it is worth mentioning
that the refinement-based inversion spends substantial compu-
tational resources during the initial 200 iterations encompassing
the entire FOV. In comparison, the subsequent 400 iterations,
focusing on the refinement area, demand only 2.5 minutes. This
duration accounts for only 3% of the computational time con-
sumed in inhomogeneous background inversion. This means
that a significant reduction of the inversion domain can bring
higher efficiency and flexibility to MR-EPT applications.
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FIGURE 8. The reconstructions by the refinement-based inversion with 10% noise. (a) and (b) are coarse reconstructed permittivity and conductivity
in the entire domain; (c) and (d) are the permittivity and conductivity of the new inhomogeneous background for refinement area inversion; (e) and
(f) fine reconstructed permittivity and conductivity in the refinement area.

In order to test the robustness against noise, 10% additive
white Gaussian noise (AWGN) is added to the B} data in (7).
Other parameters remain unchanged compared with the noise-
free case. The reconstruction by the refinement-based inversion
under noise scenario is shown in Fig. 8. Same with the noise-
free example, the inhomogeneous background inversion with
200 iterations is conducted to provide a rough permittivity and
conductivity, as shown in Figs. 8(a) and (b) which show the
coarse reconstructed permittivity and conductivity in the entire
domain.

Compared to Figs. 6(a) and (b), the reconstruction is slightly
distorted by the noise. This distorted reconstruction is then cho-
sen as the new background for subsequent refinement area in-
version, depicted in Figs. 8(c) and (d), respectively. Then, the
reconstructed relative permittivity and conductivity in the re-
finement area are shown in Figs. 8(e) and (f). It can be seen
that the refinement-based inversion can still successfully recon-
struct the electrical properties with accuracy and high resolu-
tion, despite the slight distortion caused by noise. The R, of
the reconstruction under noise is 0.24, indicating good robust-
ness against noise. Comparing Fig. 8(e) with Fig. §(f), the lat-
ter appears less sensitive to noise. This is attributed to the brain
slice’s large loss tangent, where noise has a stronger influence
on permittivity compared to conductivity.
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5. CONCLUSION

In this paper, we propose a novel FE-BI approach for the in-
homogeneous background inversion of MR-EPT. The motiva-
tion behind this approach stems from the fact that in reality,
we often focus on specific domains rather than the entire re-
gion, which can significantly speed up the inversion process
by narrowing the inversion domain. Huygens’ principle in in-
homogeneous background inversion enables us to effectively
narrow down the inversion domain. The concept of inhomo-
geneous background inversion is one of the key components
in the refinement-based inversion algorithm. Compared to ho-
mogeneous background inversion, inhomogeneous background
inversion integrates prior information more effectively, result-
ing in higher reconstruction quality without increasing compu-
tational load. Importantly, the FE-BI formulation of the inho-
mogeneous background inversion allows us to determine the
inversion domain more flexibly. Building upon this flexibil-
ity, the refinement-based inversion is then introduced. It is
stressed that the proposed refinement mechanism with inho-
mogeneous background is significantly different from prevail-
ing refinement mechanism, since the Huygens’ principle is em-
ployed to account for the electromagnetic response of the ex-
ternal inhomogeneous medium. This approach utilizes a coarse
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reconstruction obtained through the inversion of inhomoge-
neous background inversion across the entire FOV to identify
the refinement area and establish a new inhomogeneous back-
ground. The subsequent reconstruction within the refinement
area achieves a comparable quality to inversion using inhomo-
geneous background inversion over the entire FOV while sig-
nificantly reducing computational time. This indicates that the
refinement-based inversion combines the efficiency of the local
method with the imaging quality of the global method, enhanc-
ing the flexibility for clinical applications.

The performance of the proposed FE-BI approach was eval-
uated through numerical experiments on the reconstruction of
a brain slice. The results demonstrated that the inhomogeneous
background inversion, using prior information as an inhomoge-
neous background, outperforms homogeneous background in-
version which uses prior information as an initial guess. Ad-
ditionally, the results also show the feasibility and efficiency
of the refinement-based approach, which exhibits a significant
advantage in terms of computation time. Furthermore, the ro-
bustness against noise of the refinement-based approach was
tested under a 10% noise scenario, demonstrating its stability
in noisy environments. Future work will focus on generaliz-
ing the FE-BI approach to 3D cases and on improving recon-
struction efficiency through machine learning and integration
with other MRI images. It is noteworthy that extending the
method to 3D cases poses significant computational challenges,
and overcoming these bottlenecks will be critical for successful
implementation.

APPENDIX A.

Convert Equation (4) into “weak” form by multiplying a testing
function T" and performing an integration over D

/ (VT - VE: — k2&,(MTE?)ds

= // des—&—j{ 6Ezdf
D op On

The bilinear basis function B for rectangular cells is cho-
sen as both the testing function and expansion function [43].
The domain D is discretized into a total number of N,,esh
rectangular-cell meshes. The number of interior nodes is de-
noted as IN;,,;, and the number of nodes located on the boundary
0D is denoted as Ny,,,. Therefore, we have

(A1)

Nint Nint+Npou

Es,’;*) ZeszntB ,,—,*)_’_ Z

n=Nint+1

s Ba(F)  (A2)

where B,,(7) denotes the basis function centered at node n,
while eZZ”fL and eg"# represent the value of scattered electrical

field in that node. Obviously, the scattered field at the bound-
ary 0D is given by

Nint+Npou

>

n=N;nt+1

Bz (1) = ez Bu(l) (A3)
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Then, the induced current is also expanded by the bilinear
basis function, leading to

Nint+Nbou
w(r) = Wy By, (T)

(A4)

n=1

where w,, denotes the value of induced current in the nth node.
Additionally, let Jb°v
expression for J%°* can be expanded in basis functlon as

Npou

Z JbouB

JPou (1) (AS)

where B,, (1) denotes the piecewise-constant basis function, and
jlou denotes the its coefficient.

Substituting Equations (A2)—(AS5) into Equation (A1) yields
the resulting equation in matrix form

):(int )z'cros,A éz,int
)?cros,B )z'bou ’ éz,bou
Zint Zcros,A (_)
— |- _ T A6
|:Zcros,B Z/bou :| w+ |:Y . ]bou:| ( )

where Xt Xcros:A  Xeros,B and X"t have the common
form

X = / (VB,, - VB, — k2ey(7) B By)ds (A7)
D

= / BBpds
D

Y is given by

(A8)

Yon = B,,B,,d0D
oD

(A9)

As for the boundary integration,
tions (A2)—(AS5) into Equation (6), there is

i . éz,bou +]\:4 .jbou =0

substituting Equa-
(A10)

where the matrices L and M can be found in [43].
Moreover, as for Equation (7), there is

1 (0E; OFE%
i2w<8y _Zax) (Al

where B and By represent the 2 and y components of the scat-
tered magnetic field, respectively. Substituting Equation (A2)
into Equation (A11) and converting it into a matrix form, there

is
_ f)int éint
+,s _ [T . z
b - I:Pbou élzaou

S 1 S - S
B = (B: +iB;) =

(A12)
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where

Nint

= 1 int (O0Bn 0By,

pint = L [Z zint ( i, ) (A13)
n=1 b
Nint+Npou

- oB oB

Pbou — E s,bou ((ZEm TR Al4

12w L_N o Czm ( oy " or ) (Ald)

In order to obtain the inhomogeneous Green’s function Gp
in domain D, we combine Equations (A6) and (A10), and there

1S
)?int )z'cros,A s
|:XCTOS,B )z'bou + ? X ]\:4_1 . E:l €z
éint Zcros,A B
= |:ZC7‘OS,B Zbou :l ’ (AIS)
Therefore, Gp can be obtained by
_ ):(int )z'cros,A -1
Gp = |3 B b v oAr—1. T
Xxcros, Xbou Ly .M . L
Zint écros,A
’ |:Zc’ros,B ébou :| (A16)
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