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ABSTRACT: The transfer matrix method (TMM) with scattering matrices has been a valuable tool, facilitating the characterization of
multilayer devices in a very fast, stable, and memory-efficient manner. This paper presents a generalization of TMM with improved
scattering matrices capable of simulating devices with full nine-element material tensors for the layers and any combination of signs
for the real and imaginary parts of the isotropic external regions. The formulation of the bianisotropic transfer matrix method (BTMM)
algorithm is covered in detail, and notes on implementation are provided. Example devices found in literature were used to benchmark
the accuracy of the algorithm. The simulation of the bianisotropic device was corroborated with a finite-difference frequency-domain

(FDFD) algorithm and a finite-element method (FEM).

1. INTRODUCTION

he classic TMM algorithm [1] is a semi-analytical

frequency-domain method which analyzes wave propa-
gation through stratified homogeneous media [2,3]. Most
commonly, TMM has been used to calculate the overall
reflection and transmission from thin film optical filters [2],
although it has also been used in dispersion analysis [4—6],
slab waveguide analysis [7], construction of band dia-
grams [8], transmission line analysis using circuit-wave
equivalence [9], and analyzing effective properties via pa-
rameter retrieval [10,11]. Transfer matrix method serves as
a very fast method for preliminary results before turning to
more sophisticated methods such as rigorous coupled-wave
analysis [12,13], plane-wave expansion method [14], or
finite-difference frequency-domain [15, 16].

The literature contains some work on extending TMM to
handle bianisotropy. However, each has only considered lim-
ited bianisotropy [17-20], assumed simplified tensor symme-
try [17,18,20], or were unstable [21,22]. Yin et al. [21] and
Mackay and Lakhtakia [22] derived the same eigenvalue prob-
lem presented here, but applied it to more constrained config-
urations. The former analyzed radiation characteristics of a
dipole antenna on grounded bianisotropic multilayers [21] and
did not consider total reflection and transmission. The latter
utilized transfer matrices, known to be unstable for thick layers
or media with extreme properties. No TMM formulation sur-
veyed was able to handle full nine-element tensors, regardless
of symmetry, and the effect of complex-valued external regions
in a stable manner.

Outside of TMM, full bianisotropy can be simulated us-
ing finite-element [23, 24] or finite-difference [25] based meth-
ods. While these formulations are more flexible in terms of
allowed geometries, they are significantly more difficult to im-
plement in practice and require substantially higher computa-
tional resources than TMM. This makes fine resolution param-
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eter sweeps over wavelength, incidence angles, and/or polar-
ization for relatively simple geometries more time and memory
consuming than necessary. The comparison of the time and
memory required among the present BTMM algorithm, a bian-
isotropic finite-element method (BFEM), and a bianisotropic
finite-difference frequency-domain method (BFDFD) is dis-
cussed in the benchmarking section. Additionally, demon-
strations of these alternative methods are typically restricted
to skew- or Hermitian-symmetric bianisotropy, purely real or
imaginary bianisotropic coupling, and/or sparse bianisotropic
tensors. To the authors’ knowledge, the present work is the
first bianisotropic-capable method that explicitly showcases a
full tensor simulation without instability or nonphysical results.

The following algorithm is introduced to efficiently and sta-
bly simulate stratified bianisotropic media, like the one illus-
trated in Figure 1. It supports independent and full bianisotropic
tensors without assumptions on symmetry, which is essential
for validating any possible effective parameters from homog-
enized metamaterials [26-28]. It accommodates any combi-
nation of signs for the external regions, enabling the simula-
tion of complex or metamaterial-inspired surrounding media.
Its computational efficiency is practical for extensive param-
eter sweeps, accelerating the design and exploration of novel
bianisotropic metamaterials. The only known limitation of the
algorithm occurs when the system becomes singular, or the real
part of the reflection-side refractive index is zero Re[nyf] = 0,
and one or more layers are considered.

2. FORMULATION

The BTMM algorithm is derived from frequency-domain
Maxwell’s curl equations in bianisotropic media, given by

—

Vx E = —jko (] H+[G] E) (1)

-

VxH
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FIGURE 1. Geometry of the BTMM problem where an incident wave on a stack of bianisotropic layers can reflect, transmit, and/or be absorbed.
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where E is the electric field intensity; H = Uoﬁ is the nor-
malized magnetic field intensity; ko = 27/ ¢ is the free-space
wave number; and j2 = —1. The complex 3 x 3 tensor quan-
tities 1], [er], [¢], and [&] are the relative permeability, per-
mittivity, magneto-electric and electro-magnetic coupling ten-
sors [29], respectively. These equations and material properties
assume the negative sign convention where a wave propagating
in the +2z direction is expressed as exp(—jkonz). The diver-
gence equations are not required in this case since the following
BTMM algorithm only utilizes the transverse components, i.¢.,
x and y, of the electromagnetic wave. If the longitudinal com-
ponents of the electromagnetic wave are desired, they must be
calculated such that the divergence equations are satisfied.

2.1. Layer Eigenvalue Problem

The BTMM algorithm assumes that the device is homogeneous
and infinite in two dimensions, typically the x and y directions.
For this reason, the device along these directions can only con-
tribute to phase accumulation. The partial derivatives with re-
spect to « and y in Egs. (1) and (2) are replaced analytically by
—jky and —j l~cy, respectively. The normalized wavevector is
defined as

- i sin 6 cos ¢
k:?:+m sinfsing |, 3)
0 T cos

with the elevation 6 and azimuthal ¢ angles of incidence de-
fined in Figure 1. After applying these conditions, Maxwell’s
curl equations can be combined to arrive at the following dif-
ferential equation used to calculate the electromagnetic modes
within a bianisotropic layer,

E, Qi1 Q2 Q3 Quu E;
d | By | _—J | Qa1 Q Qaz Qo L,
dz | Hy Qo | Q31 Q32 Q33 Q3 Hy |’
H, Qa1 Q2 Quz Qg H,
—_——— ———
M Q M
4)

where Z = kgz. The € matrix represents a matrix operator that
incorporates the complex interactions between an electromag-
netic wave and bianisotropic materials such that Maxwell’s curl
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equations are satisfied. The €2 matrix components themselves
do not possess any significant physical meaning. Expressions
for each element are easily shown to be

Dt = G+ 2ar {yeCes = 1as (Ro +G,c) }
(Gorth) {6 (et Ge) e}, )
Dz = G0+ oy {sCee — oz (Ra + G, ) |
(G —Fe) {Eer (B +G2) —peec} o 6)
Qs = s1yeQo + iz { € (o + Gz ) = pyzcac |
(6o = k) {yees = pez (e +,2) b )
Qs = 1y Q0+ pzy { s (Ra +Gz) = pyaes |
(&t ) {peCer =z (e +G2) } o ®)
1 = o {paaCor = oz (By = oz ) b = Gea0
(G + ) s (B = Gox) = pimsea ), ©)
Qa2 = ay {ptesCee =tz (By = Goz) } = Gou 20
(G he) {&x (by = o) = paszz ) 10)
Qg = poo {€ex (By = Goz) = iascec p = Haao
(o = hy) {ptases = gz (By = Ga) o an)
Qa1 =ty {€s (By = Gox) = Hastos f =

(& Ee) {paces = pez (By = Goa) o (12)
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In these equations, Q¢ = p,.e,, — &..(,. which implies an
unlikely but possible failure point when ) is zero. This term
originates from an intermediate step when algebraically elimi-
nating the F/, and H, dependence from Eqgs. (1) and (2), result-
ing in the transverse component only system of Eq. (4). When
Qg vanishes, the wave vector in the direction of propagation &,
also vanishes, and the €2 matrix becomes singular. This is not
only an unavoidable numerical limitation of the algorithm, but
a physically observable one as well [30]. The general solution
to Eq. (4) is calculated from the eigenvector W and eigenvalue
D matrices of €2 as

»(3) = [ W% Wi } [expm(DJré) o ]
| Wi Wy 0 expm (D~ 2)
w expm(DZ)
et
. @

where the + or — superscripts indicate forward or backward
propagating modes, respectively; 0 is the zeros matrix; and
expm(DZ) is the matrix exponential. A robust method to deter-
mine the direction of the eigenmodes is from the sign of their
Poynting vector in the z direction. Without sorting these eigen-
modes, the algorithm is unstable.
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2.2. Scattering Matrices

The scattering matrices quantify the coupling between eigen-
modes of adjacent layers. The method described in Ref. [4]
was applied here to obtain the scattering matrix of the ith layer
S defined as

BEEE IR
+ () ) - |
€2 Ss7 Sog €
where the components are
R E R
Ss1 Ssy | | Ags  —Byy —Asr By
(4) @) r
Al Ap I 0 } -1
; S| = _ W, W, (24
Al Al | L0 expm (koD; L;) i Wi, (29
(ORENON r +
B;{ B, expm (—koD L;) 0 } -1
i i = g WZ WQ.(ZS)
By By | | 0 I

The subscripts on A and B represent the 2 x 2 block matrix
row-column indices, and I is the identity matrix. In the im-
proved scattering matrix approach [4], W; and W5 are both
set to the same zero-thickness gap medium W, for each in-
termediate layer. Although the gap medium’s constitutive pa-
rameters are flexible, a convenient choice is y; g = 1 and
Erg =1+ k; + k; which keeps the longitudinal wave vector
component k. , from being zero in a majority of cases. The
only time this fails is the rare scenario when n2;sin® = —1.
A simple fix is to use the previous constitutive parameters, and
only when n2sin® 0 = —1 choose e,y = 4+k2+k2, for exam-
ple. This guarantees k, , # 0 regardless of incidence angle 0.
With the former material choice, the gap medium eigenvector
matrix is

1
W= — —
1+ k2 +k2
kuk, 1+k2 ~koky, - (1 + 12:5)
—(1+k2)  —kyk, 1+k2 kaky | (26)
14 k2 + k2 0 1+ k2 + k2 0
0 14 k3 4k 0 1+ k2 4 k2

These choices of gap medium avoid possible singularities that
can arise while calculating scattering matrices as the algorithm
iterates through the layers. Continuing to follow the scattering
matrix approach in Ref. [4], the reflection and transmission re-
gion scattering matrices are calculated from Egs. (23)—(25) by
setting L; = 0, W; = Wy = Wy, and W1 = Wror L; = 0,
W; = W; = W,, and Wy = Wy, respectively. Once the
scattering matrices for the external regions and all V layers of
the device are known, the global scattering matrix is calculated
according to

stelobal) _ greh) & §()  §?) @ ... @ SV) @stm)

S (device)

@7
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with the Redheffer star product [31] between two adjacent scat-
tering matrices defined in general as

(sﬁm s§3‘3>>:<s§?> ss@)@(sg? s@) o8
st s )T\l s )T\ s s )
SHP = s+ s [1- s sy,

SAP = s [1-sWsB] s,

SHY = s [1- s s,

AB B B A)a®)] ! (A)o®B
i s s i-s@sd]ss. oo

2.3. External Fields
The electric polarization vector of the source is defined as
P = preare + prvamw, (30)

where prg and pryv can be any pair of complex numbers that
describe the polarization state, normalized such that \13 | =1
for numerical stability. The unit vectors arg and aryy are related
to the normalized incident wavevector & via

g = — Sin Gi, + cos Giy, 31)
I? R

iy = o E (32)
k x dTE‘

which is only valid for interfaces in the zy plane. The mode
coefficients of the incident wave ¢;,. are calculated from the
polarization vector P via

Cine = (wgﬁref)f1 [ ];“‘ } , (33)

Y

allowing the reflected c,r and transmitted ¢, mode coefficients
to be calculated as

Cref _ S ggllobal) S (1g210bal) Cinc .
Cimn S égllobal) S éggl()bal) 0 .

From these mode coefficients, the complex amplitudes of the
tangential field components within the external regions are

Wi W
winc = |: Wf,ref ] Cinc, zeref: |: wg,ref ] Cref,

H ref H,ref

w+
1ptrn = l: Wf’tm :|Ctrn~ (35)
H

2.4. Reflection and Transmission

For conventional media, the overall fractions of power reflected
R and transmitted 7" are

R = ‘Re <pzref)
§2z inc
k()
§9z,inc
where G = E x H*/ (2n) is the time-averaged Poynting vec-
tor and is calculated using the incident, reflected, or transmit-
ted fields from Eq. (35). The absolute values in Egs. (36) and
(37) are included to address sign differences that arise when
forward and backward propagating Poynting vectors are com-
pared. These formulas are valid for most cases, including some
exotic negative index external regions. However, some cases
still fail, and the following discussion explains how to mitigate
this.

Resolving the sign of refractive index for all cases of
complex constitutive parameters remains an unsolved prob-
lem [32-34]. This sign ambiguity originates from solving
nfef = [ refErrer for the refractive index, which has two
possible roots. Eq. (3) always assumes the positive root for
simplicity. The consequence of using Eqgs. (36) and (37) with
the wrong root of n.r results in power conservation violations,
where R + T > 1, even in media without gain. This issue
is resolved in either of the two following ways. First, by
rerunning the simulation with nger = — /L refErrer in Eq.

(3), calculate R and T via Egs. (36) and (37). Alternatively,
without rerunning the simulation, compute R and 7" via

; (36)

T

; (37

R = |Re (p) , (38)
§z,ref

T = ‘Re (p“’“> , (39)
§92 ref

which swaps the roles of the incident and reflected fields. The
two methods are equivalent and yield results consistent with the
Fresnel equations [2]. However, the latter approach is preferred
since it avoids additional computational effort. The combina-
tion of Egs. (36) and (37) with Egs. (38) and (39) provides an
effective method to circumvent refractive index sign ambigui-
ties while maintaining accurate calculations of R and 7.

When the real part of refractive index in the reflection re-
gion is zero Re [ngf] = 0 and the device is composed of one
or more layers, Egs. (36)—(39) will also violate conservation to
produce R+ 7T > 1, even in media without gain. This scenario
corresponds to a purely decaying plane-wave source that does
not transport power to the layers. Since there cannot be power
transfer in the longitudinal direction, it renders the concept of
reflected and transmitted power physically meaningless in this
case. Therefore, these cases should be avoided entirely.

3. IMPLEMENTATION

BTMM algorithm is summarized in the block diagram in Fig-
ure 2. The green blocks in the first column are considered the

WWwWw.jpier.org
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FIGURE 2. Block diagram of the BTMM algorithm.

initialization stage of the algorithm. In this stage, key parame-
ters including the wave vector, gap medium eigenvector matrix,
source fields, and global scattering matrix are initialized. The
global scattering matrix is initialized to

Sggllobal) _ S(2g210ba1) —0 and Sgg210bal) _ Ségllobal) =1, (40)

which ensures that when there are no intermediate layers, an
incident wave is fully transmitted without any phase change.
This is particularly useful when simulating single interface scat-
tering between the reflection and transmission regions. Next,
the algorithm processes each layer, if any, corresponding to the
blue blocks in the second column. In this step, the eigenmodes
for each layer are calculated and sorted. A scattering matrix for
the layer is constructed and used to update the global scattering
matrix. Next, the grey blocks in the third column represent the
steps where the interactions with the external regions are incor-
porated into the global scattering matrix. This provides an easy
method of calculating the external fields and determining the
reflection and transmission from the device. If R+7T > 1, the
alternative set of reflection and transmission formulas are used.

4. BENCHMARKING

BTMM algorithm was first benchmarked against single-
interface scattering examples from Ref. [2], an anisotropic
device [35], and an isotropic device with bi-isotropic effective
properties [11].  Then, the following two examples were
selected to showcase the robustness of the BTMM algo-
rithm and provide readers with ones to benchmark their own
implementations.

The first example is of a practical yet limited bianisotropic
device as simulated by the proposed BTMM algorithm. For
the sake of brevity, the readers are directed to Ref. [22] for the
specifics of the material properties and layer thicknesses used,
as they are quite extensive. Although it should be noted that
Mackay and Lakhtakia’s formulation assumes the positive sign
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convention, the material properties must first be conjugated to
fit the model of this paper. The device consists of three layers.
The first is a biaxial bianisotropic layer, the second a uniaxial
dielectric, and the final a Faraday chiral medium. This device
is simulated for § € [0°,90°) and ¢ € [0°, 180°] with a source
wavelength of Ao = 560 nm. The absorption of this device is
shown in Figure 3 for (a) TE and (b) TM polarized light, which
agrees nicely with Ref. [22].

The next example device has a vacuum reflection region
while the transmission region is ey 2.14 — 6.925 and
tn = .21 — 2.27j. The source is defined by the free-space
wavelength \g = 1 mm, elevation and azimuthal angles of inci-
dence 6 = 29° and ¢ = 79°, and a polarization state described
by prg = 0.43 — 0.395 and pry = 1.00 + 0.175. The device
consists of two nonreciprocal biaxial bianisotropic layers, with
thicknesses L1 = Lo = Ag/16. The tensors are rotated such
that they become full and are given by

[ 3.0-43j 03-0.3j —17+0.3;]
[era]=] 0.3-035 21-495 —05-0.2j
| —1.74035 —05-02j 49-48j |
[32-46] —024055 —0.5—0.35]
[&1]=| —0.2+055 22-335 —0.4+0.4j
| —05-0.3j —04+04j 3.6-—4.1j |
[ 32-46] —024055 —0.5—0.35]
[Ga]=| —0.24+055 22-335 —04+04j
| —05-0.35 —04+04j 3.6-4.1j |
29-54j —05+04j —0.2—0.8j
[ra]=| —0.5+045 1.3-5.1j —0.6 , (41)
—0.2- 0.8 —0.6 2.8 — 4.4j
82-58j 034095 —0.140.25
[era]=| 0.34+0.95 87-49j —03-13j
—0.1+0.2j —03-13j 81-72j
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FIGURE 3. Absorption of the bianisotropic device from Ref. [22] for (a) TE and (b) TM polarized light.

[ 9.0 —2.55

—1.3+40.2j

| 13+1.15
[ 9.0 —2.55

—1.340.2j

| 134115

4.8 —8.1j
2.3+0.1j
—0.340.2j

—1.340.2j
5.7—3.5j
0.2 — 1.3
—1.340.2j
5.7—3.5j
0.2 — 1.3
2.3+0.1j
8.0 — 8.2j
2.4 — 0.4

1.341.15]
0.2—1.3j
7.3 - 5.0§ |

1.341.15]
0.2 —1.3j
7.3 - 5.0§ |

—0.3+0.2j
—2.4 — 0.4j
3.2 — 8.7j

. (42)

Simulating this device with the BTMM algorithm gives
R =~ 23.40%, T ~ 2.83%, and overall absorption of A
1 — R —T =~ 73.77% amongst the layers. This simulation was
validated in two ways. First, the loss terms for both layers were
set to zero, and conservation of power was confirmed. Second,
the same device was simulated with completely different nu-
merical approaches, an FDFD algorithm [15, 16] modified to
simulate bianisotropic physics and a FEM solver (MIRaGE),
which all obtained the same result.

To demonstrate the computational efficiency of the BTMM
algorithm, the average run time and peak memory require-
ments for the previous two benchmarking examples with a fixed

source are compared to those of BFDFD and BFEM in Table 1.
It is important to note that direct comparisons between these
methods are challenging since they are based on entirely differ-
ent numerical techniques. Especially since BFDFD and BFEM
require spatial discretization, convergence studies, direct solu-
tions of large linear systems, and several other considerations
are not applicable to BTMM. However, BFDFD can be loosely
compared to BTMM by using one Yee cell in the xy plane with
periodic boundary conditions and as many cells in the z dimen-
sion until convergence is reached. Likewise, BFEM used two
transverse grid points in the xy plane with periodic boundary
conditions. With respect to solving one-dimensional problems,
BTMM is vastly superior to these alternatives both in time and
memory requirements, often by several orders of magnitude.
The BFEM approach, while the most flexible for non-planar ge-
ometries, is accompanied by significantly higher computational
costs due to the 3D tetrahedral meshing of a 1D problem and
reliance on a direct solver. Last, the BFDFD algorithm strikes
a balance between BTMM and BFEM in terms of implemen-
tation ease and more efficient discretization over BFEM. This
offers reasonable accuracy for its simplicity while not requiring
specialized meshing software. All simulations converged and

TABLE 1. Average run time and peak memory for the BTMM, BFDFD, and BFEM algorithms.

BTMM BFDFD BFEM
Example
No. Avg. Peak Avg. Peak No.of | Avg. Peak No. of
Time Memory Time Memory Cells Time Memory Elements
1 1.45ms 16 KB 188.3ms | 2,264KB | 1224 2.28s | 130,948KB 7940
2 1.33ms 24 KB 26.6 ms 36 KB 320 234 ms 19,168 KB 1067
104 WWwWw.jpier.org
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were executed on a machine with an Intel Core 17-10700k CPU
@ 3.8 GHz and 32 GB of RAM.

5. CONCLUSION

This paper presented a generalization of TMM with improved
scattering matrices capable of simulating devices with full nine-
element material tensors for the layers and any combination of
signs for the real and imaginary parts of the isotropic external
regions. A detailed formulation and implementation of the al-
gorithm was covered. Last, two bianisotropic examples were
given for readers to benchmark their own implementations.

The primary purpose of formulating and implementing this
algorithm was to provide the authors and other researchers with
an accurate and stable numerical method for simulating recipro-
cal or nonreciprocal, active or passive bianisotropic layers with
complex-valued external regions. Devices of this nature are of
particular interest in the field of bianisotropic metamaterial re-
search, and having an efficient simulation tool to characterize
them is of vital importance. The algorithm handles the bian-
isotropic tensors separately and does not assume any symme-
tries, as is common with other bianisotropic TMM formulations
found in the literature. The only known potential failure points
of the algorithm are the numerical singularity when ¢ = 0 or
when Re [n,ef] = 0 with one or more layers. Future work on
this algorithm can include addressing the Re [nf] = 0 failure
point (if fixable), nonlinear material properties, and/or allowing
for bianisotropic external regions.
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