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ABSTRACT: Hyperspectral images often suffer from various types of noise pollution during acquisition and processing, which can signif-
icantly affect their application. However, existing denoising methods have limitation in fully utilizing the spatial and spectral correlation
of hyperspectral image. In order to take full advantage of the multiscale spatial features and global spectral correlation of hyperspectral
image, a hyperspectral image denoising method based on multiscale spatial-spectral feature fusion in frequency domain is proposed in
this paper. The proposed method utilizes the structural decomposition of multiscale wavelet transform to transfer the denoising of hyper-
spectral image to the frequency domain, not only minimizing information loss, but also decomposing noise into small scales, making it
easier to remove in the frequency domain. Moreover, a cross-multiscale fusion attention is designed to improve the model performance
by considering multiscale information and cross-space learning. A spectral position-aware self-attention module is proposed to more
fully exploit the spectral correlation in hyperspectral image. A multiscale fusion of spatial-spectral feature module is introduced to merge
the different spatial and spectral features, thereby enhancing the denoising performance of the model. The experimental results demon-
strate that the proposed method outperforms mainstream denoising methods in terms of performance. In addition, it exhibits better visual
quality in texture details and edge protection.

1. INTRODUCTION

Hyperspectral images (HSIs) have rich information in space
and spectrum, which makes it widespread in the fields of

material classification, change detection, semantic segmenta-
tion, and object detection [1–4]. However, during the collec-
tion, HSIs are susceptible to noise contamination from various
issues such as temperature change, illumination inconsistency,
atmosphere absorption, and sensor breakdown [5–7]. Noise is
an inevitable factor that can severely impact the quality of ac-
quired HSIs. Therefore, it is of utmost importance for effec-
tively reducing noise in HSIs as it serves as a fundamental re-
quirement for various remote sensing applications.
HSI denoising can be considered as an inverse problem. Its

goal is to restore the original HSI from the observed image cor-
rupted by noise. Traditional denoising methods in HSI rely
on prior knowledge and mathematical formulation to effec-
tively denoise the image. Thesemethods encompass algorithms
such as tensor decomposition [8, 9], local and non-local simi-
larity [10–12], and sparse low-rank techniques [13–15]. These
algorithms have seen continuous refinement and improvement
in recent years. Traditional denoising methods are known for
their interpretability, generative nature, and reduced reliance on
training data. However, these approaches often involve solving
optimization problems, which require time-consuming numer-
ical iterations and parameter tuning to achieve satisfactory de-
noising outcomes. Furthermore, for complex scenarios, it is
challenging to find an accurate model that can effectively as-
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sociate the observed HSI with the desired noise-free HSI. The
absence of a precise model often leads to denoising failure and
limits the effectiveness of traditional denoising methods.
Deep learning has gained significant popularity in the last

few years, particularly in the field of HSI denoising [16–18].
Convolutional neural network (CNN) based approaches
have shown substantial improvement compared to traditional
denoising techniques, marking a significant advancement in
the field. The success and widespread adoption of CNN-based
methods in HSI denoising can be attributed to their robust
learning capacity and enhanced representation capability.
These methods excel at capturing complex data spatial de-
pendency by using the powerful capability of convolutional
filters. Unlike traditional denoising methods, CNN-based
approaches directly model the relationship between noisy
and clean HSI through the learning of convolutional filters.
Chang et al. [19] introduced an HSI denoising method, which
employs a tensor to learn the filters in each layer, thereby
extracting spatial information in the local receiver domain
while maintaining the integrity of the spectral spatial structure.
Nguyen et al. [20] provided an HSI denoising method that
combines the sparse low-order prior with the deep image
prior. The sparse low-order prior is obtained by singular
value decomposition, while the deep prior is provided by a
convolutional neural network to restore the image. Do and
Vetterli [21] proposed the use of wavelet transform for noise re-
moval, but the effectiveness of the wavelet transform is highly
dependent on the choice of the selected wavelet basis function.
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If the selected wavelet basis function is too large, more details
will be retained, but it is not conducive to the removal of low-
frequency noise. However, if the selected wavelet basis func-
tion is too small, the effect of processing low-frequency noise is
better, but the performance in preserving image details is poor,
which is easy to lead to excessive image smoothing and loss of
details. To sum up, experiments are needed to further validate
the size of the wavelet basis function selection.
In addition, due to the particularity of HSI, it is a critical chal-

lenge to conserve the spectral-spatial structure of HSI during
denoising [22–25]. Zhang et al. [22] proposed a spatial-spectral
gradient network (SSGN) method, which uses spatial spectral
gradient learning to better extract intrinsic and deep features of
HSI. However, the network structure is complex and requires
more computing resource and training time. Wang et al. [23]
proposed a novel convolutional network using united octave
and attention mechanism (UOANet). It mainly embeds nega-
tive residualmapping in theUnet architecture to extract features
in frequency space and spectrum, but the network has large
computational cost and long processing time. Pan et al. [25]
designed a spatial spectral quasi-attention recurrent network
(SQAD), whose core objective is to construct a spatial spectral
quasi-recurrent recursive unit to maintain spatial and spectral
information, but ignores non-local similarity across the bands.
Yuan et al. [26] proposed a residual learning based denoising
method for HSI, which considers both spatial and spectral in-
formation, and does not require manual adjustment of hyperpa-
rameters for different HSIs. However, the correlation between
the spectra is not fully utilized, and the use of a small receptive
field neglects the global spatial correlation.
Since there is correlation between different bands in HSI,

transformer model can capture long-range dependency through
self-attention mechanism [27, 28]. It enables effective inter-
action and integration of information between different bands.
Therefore, transformer architectures are adopted for HSI de-
noising. Lai et al. [29] introduced a hybrid spectral denoising
network incorporating guided self-attention mechanism. Li et
al. [30] designed amulti-hierarchical cross transformer network
for HSI denoising, which denoises in the spectral direction us-
ing long-range dependency between bands. Sun et al. [31] de-
signed a multi-scale 3D-2D hybrid convolutional neural net-
work based on a CNN and transformer for feature extraction.
Hu et al. [32] used a combined architecture of convolutional
neural network and transformer to extract global features and
enhance local features.
Xiong et al. [33] used a combination of transformer and re-

current neural network (RNN) to perform recurrent compu-
tation across bands, thus allowing global spectral correlation.
However, the transformer model is complex with more param-
eters and higher computational requirements, and the computa-
tional cost is higher when dealing with large-scale HSI. Mean-
while, although transformer has strong global correlation cap-
turing capability, most of the existing work does not fully con-
sider the close connection between spatial and spectral proper-
ties of hyperspectral images, which may limit its performance
in specific scenes. In summary, existing denoising methods
have limitation in effectively using the spatial and spectral cor-

relation of HSI. Although these methods can achieve good re-
sults in specific noise cases, they lack universality and are dif-
ficult to address the challenge of mixed noise.
In summary, a multiscale spatial-spectral feature fusion

network in frequency domain for HSI denoising is proposed
in this paper, which fully explores multiscale spatial features
and global spectral correlation of HSI. Firstly, a multi-feature
decomposition discrete wavelet transform is performed on
the observed noisy image to obtain different frequency sub-
components, where the low-frequency component contains
most of the energy in the image, while the high-frequency
component usually includes some important detailed informa-
tion such as object edge and texture. Since the low-frequency
component usually contains the overall structure and global
features of the image, we only utilize simple 3 × 3 × 3
convolution and rectified linear unit (ReLU) to remove noise
contained in low-frequency, and this paper primarily focuses on
denoising for the high-frequency part of the HSI. Ultimately,
the complementarity between spatial and spectral features is
enhanced by the multiscale fusion of spatial-spectral feature
module to improve the denoising ability of the model. The
main contributions of this paper are as follows.
(1) In order to take full advantage of the multiscale spatial

features and global spectral correlation of HSI, we introduce an
HSI denoising method based on multiscale spatial-spectral fea-
ture fusion in frequency domain. This method utilizes the struc-
tural decomposition of multi-scale wavelet transform to replace
traditional down-sampling operation, minimizing the informa-
tion loss and decomposing noise into small scales.
(2) A cross-multiscale fusion attention (C-MFA) is proposed

by considering multi-scale information and cross-space learn-
ing. It can better focus on key details in high-frequency com-
ponents and improve image denoising effect.
(3) To effectively utilize spectral correlation, a spectral

position-aware self-attention module (SPA-SA) is designed,
which could capture the relative position relationship between
different spectra and enhance the model ability of long-range
spectral dependency.
(4) A multiscale fusion of spatial-spectral feature module

(Ms-FSS) is designed to facilitate the fusion of different spatial
and spectral features. This module enhances the complemen-
tarity between spatial and spectral features, thereby improving
the denoising performance.

2. PROPOSED DENOISING METHOD
In this section, a novel multiscale spatial-spectral feature fu-
sion network MSF-Net in frequency domain is proposed for
HSI denoising. As shown in Fig. 1, the input noisy image is
first decomposed into low-frequency and high-frequency com-
ponents by Haar wavelet transform. Here, we use wavelet de-
composition instead of down-sampling in traditional network
to obtain multi-scale features. Due to the orthogonality of the
Haar wavelet transform, no information from the original image
is lost during this operation. Meanwhile, the time-frequency
domain gradual segmentation property of wavelet transform
helps to preserve image details and texture information. The
introduction of this structure enables the network to have better
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FIGURE 1. The overall network structure of MSF-Net.

performance and characterization on the task of HSI denois-
ing. Furthermore, the noise can also be decomposed into small
scales, making them easier to remove in frequency domain.
Since the low-frequency components usually contain the

overall structure and basic features of the image, they are de-
noised by simple 3 × 3 × 3 convolution and rectified linear
unit (ReLU) convolution blocks. The different scales of high-
frequency components are fed into the C-MFA module to pre-
serve details and texture information while suppressing the in-
fluence of noise. Then, the enhanced features of the high-
frequency components are fed into the SPA-SA module, which
exploits the spectral correlation in HSI to improve denoising
performance. Later, denoised HSI is obtained by performing
inverse wavelet transform, and an Ms-FSS module is added af-
ter each level of inverse wavelet transform to effectively fuse
different spatial and spectral features of HSI while reducing ar-
tifacts after denoising.

2.1. Cross-Multiscale Fusion Attention Module (C-MFA)
The input hyperspectral image is first subjected to the wavelet
transform because it not only provides a powerful multi-
resolution analysis capability to decompose the signal into
components at different scales, but also efficiently handles
noise in both spatial and spectral dimensions while retaining
important structural information. After wavelet transform and
convolution, the HSI is decomposed into low-frequency and
high-frequency components. The high-frequency component
contains some key detailed information that is essential for
preserving the detailed features of the image. In contrast, the
low-frequency component covers more of the overall structure
and global features of the image. Therefore, when processing
HSI, applying the attention mechanism to low-frequency
component may have less impact on the overall feature
extraction results. We only apply the attention mechanism for
high-frequency component. In addition, traditional methods
often deal with single-scale features, making it difficult to fully
utilize the rich multi-scale information in HSI. Furthermore,
they usually lack effective fusion mechanisms in the feature

FIGURE 2. The structure of cross-multiscale fusion attention module.

extraction process, which affects the denoising results. There-
fore, a cross-multiscale fusion attention (C-MFA) is proposed
in this paper, as shown in Fig. 2. By introducing this module,
the multi-scale information in HSI can be utilized more com-
prehensively, and cross-space contextual information can also
be introduced to improve the perception and representation
of detailed features. The proposed C-MFA module has the
capacity to better focus on the key detailed information in the
high-frequency component, improving the denoising result
and visual quality of the image.
Specifically, the C-MFA module uses a network structure

that includes three parallel branches. For the input feature
map x ∈ RC×D×H×W , C, D, H , and W denote the num-
ber of channels, bands, height and width of the feature map,
respectively. We first divide x into K sub-features by channel
dimension C, where x = [x0, x1, . . . , xk, . . . , xK−1], xk ∈
RC/K×D×H×W . This feature grouping operation could effec-
tively enhance feature learning. Each sub-feature xk is then in-
put into three parallel branches. In the first branch, a 3× 3× 3
convolutional kernel and an average pooling operation com-
bined with a softmax activation function is employed to extract
and weight the spatial features of the HSI. This operation is not
only effective in capturing local details and enhancing the focus
on specific regions, but also lighter on the input data and bet-
ter preserving the detail information in the original data. The
second branch is performed by applying pooling operations in
the H and W directions, respectively, so that the dependency
among all channels can be captured. Subsequently, we normal-
ize and weight the features by applying group normalization
and average pooling operations, combined with a softmax acti-
vation function. This step aims to extract and weight the global
features of the HSI so as to better understand the structure and
content of the whole image. In addition, the global perception
is enhanced by averaging pooling in the vertical and horizon-
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FIGURE 3. The structure of spectral position-aware adaptive attention module.

tal directions, respectively. This approach helps to capture the
dependencies among all channels, thus enhancing the model’s
understanding of the entire image structure. The third branch
employs a 5×5×5 convolutional kernel and an average pooling
operation to extract a wider range of local features from theHSI.
This helps to capture a wider range of contextual information
in the image, which improves the perception and representation
of detailed features.
Next, the C-MFAmodule fuses the output featuremaps of the

three branches by means of cross-space learning. Each branch
is responsible for information extraction at a specific scale,
which is eventually integrated through a fusion layer. This
multi-scale fusion strategy allows the network to adaptively se-
lect the most relevant feature representations based on the char-
acteristics of the input data, thus improving the denoising effect.
Furthermore, in addition to standard three-dimensional con-
volutional operation, the processing specifically for horizontal
and vertical directions can help the model better understand and
remove the noise propagating along specific directions. This
approach enhances the sensitivity of the model to directional
noise, making it effective in removing not only randomly dis-
tributed noise, but also those disturbances with specific direc-
tionality. Such a feature fusion strategy can effectively en-
hance the model ability to perceive subtle changes in a com-
plex scene, capture pixel-level relationships of high-frequency
features, and further improve the discriminative power of fea-
ture representations. The output feature map for C-MFA can be
expressed by

Y1=softmax(avg(conv3×3×3(xk))) (1)
Y2=softmax(avg(GN(xk×sigmoid

(conv1×1×1(avg(xk)))))) (2)
Y3=softmax(avg(conv5×5×5(xk))) (3)
OutputC-MFA=sigmoid((Y1 × Y2 + Y2 × Y3))× xk (4)

where xk is the k-th sub-feature, and avg and GN denote aver-
age pooling and group normalization operations, respectively.
Conv3×3×3, Conv1×1×1, and Conv5×5×5 represent 3 × 3 × 3
convolution, 1× 1× 1 convolution, and 5× 5× 5 convolution,
respectively. Y1, Y2, and Y3 denote the outputs of the three
branches. Overall, the C-MFA module improves denoising in
several ways. The first point is multi-scale feature extraction,
which utilizes convolutional kernels of different sizes to capture
information from local to global. The second point is to ex-
tract global features and weight these features through average
pooling and group normalization operations. The third point
is feature fusion strategy. Fusing feature maps with different
scales provide richer and more detailed feature representation,
and retain the key details of the image while removing noise.

2.2. Spectral Position-Aware Self-Attention Module (SPA-SA)
The spatial attention C-MFA can improve the model perfor-
mance by considering multi-scale information and cross-space
learning, but it does not fully utilize spectral information of
the HSI. Although there has been works that utilize attention
mechanisms to extract feature from the spectral dimension of
HSI [34, 35], they suffer from the drawbacks such as a large
number of parameters and high demand for training data. To
effectively utilize spectral correlation and improve denoising
performance, a spectral position-aware self-attention (SPA-SA)
module is proposed, as shown in Fig. 3. By applying the self-
attention mechanism along the spectral dimension rather than
the spatial or channel dimension, we are able to more fully ex-
ploit the spectral correlation in HSI and enhance the model abil-
ity of long-range spectral dependency. Furthermore, the rela-
tive position encoding is introduced to better capture the inter-
spectral relationships in HSI, which significantly improves the
denoising performance of the model.
In SPA-SAmodule, the input feature map x ∈ RC×D×H×W

first passes through three 3D convolution kernels of size 1×1×
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FIGURE 4. The structure of multiscale fusion of spatial spectrum features module.

1 to obtain Q ∈ RC1×D×H×W , K ∈ RC1×D×H×W , and
V ∈ RC1×D×H×W , where C1 is the number of channels af-
ter the convolution kernel. They are then subjected to reshape
operation for subsequent operation and computation. In order
to better handle the correlation and relative position information
of different spectra in HSI, the relative position coding informa-
tion rQ ∈ RC1×1×1×1 and rK ∈ RC1×1×1×1 are introduced
in SPA-SA module. rQ and rK are multiplied with Q and K
to obtain QTrQ ∈ R1×D×H×W and KTrK ∈ R1×D×H×W ,
respectively. Therefore, the position coding is effectively inte-
grated into the attention mechanism. Relative position coding
is introduced to allow the model to more effectively understand
and utilize the dependency and correlation between different
spectral bands in hyperspectral images, especially when dealing
with remote spectral dependency. This improvement is helpful
for enhancing the overall performance of the model and achiev-
ing better results in denoising tasks. Next, QK are normalized
using softmax to obtain the attention graph A. A multiplied by
QK gives qk. qk is then concatenated with QTrQ and KTrK
in the channel dimension. For V , we only perform the reshap-
ing operation to ensure that the multiplication operation can be
performed correctly in the subsequent computation.
In addition, to stabilize the training process and optimize fea-

ture extraction, residual connection is introduced. The original
input feature is added with the feature encoded by relative po-
sition, so that the module can better retain the original infor-
mation during the learning process and avoid the problem of
gradient disappearance or gradient explosion. This could ef-
fectively improve the training stability and convergence speed
of the model. In general, it improves the model’s ability to
understand and process complex spectral information by effi-
ciently utilizing the spectral properties of hyperspectral images.
Specifically, it is achieved by applying a self-attention mech-
anism along the spectral dimension to capture and utilize the
dependency between different bands. Then, the relative posi-
tion coding is introduced to enhance the ability to model remote

spectral dependency and to better understand the relative rela-
tionship between spectra. Finally, it ensures that the denoising
process does not lose critical spectral details and structural fea-
tures.

2.3. Multiscale Fusion of Spatial-Spectral Feature Module (Ms-
FSS)

Due to the particularity of HSI, it is a critical challenge to main-
tain the spectral-spatial structure of HSI during denoising. The
existing deep learning based denoising methods for HSI may
lack effective feature fusion mechanism, resulting in insuffi-
cient extracted feature information and affecting the denoising
effect. To address this challenge, we design the multiscale fu-
sion of a spatial-spectral feature module (Ms-FSS), which aims
at effectively fusing different spatial and spectral features of
HSI while reducing artifacts after denoising.
The Ms-FSS module is shown in Fig. 4. After processing

the input feature map with inverse discrete wavelet transform
(IDWT), it is first input into the network and processed by
the spatial and spectral feature extraction module (SSFE). The
SSFE consists of convolutional blocks of size 3×3×1, 1×1×3,
and ReLU activation function. The 3 × 3 × 1 convolutional
block is mainly concerned with extracting the spatial informa-
tion of the input feature, while the 1 × 1 × 3 convolutional
block is utilized to extract the spectral information of the in-
put feature. With this design, the SSFE module better captures
and utilizes the spatial and spectral information of hyperspectral
images. It could retain more detailed information and enhance
the overall performance and adaptability of the model. Finally,
non-linearization is performed by ReLU activation function in
the SSFE module to accelerate the model training.
After the feature extraction by the SSFE module, the out-

put of SSFE module and the original input feature are used as
inputs for the next branch, and the receptive field is enlarged
by dilated convolution with a dilation rate of 3 to capture mul-
tiscale contextual information. The choice of dilation rate 3
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is based on experimentally validated results. The results show
that this settingmaximizes the receptive field of themodel with-
out over-sparse the input signal. The main purpose of introduc-
ing this module is to better capture multi-scale contextual in-
formation in hyperspectral images without increasing the com-
putational burden. Next, the original input feature, the feature
extracted from the previous SSFE module, and the feature ex-
tracted from the dilated convolution with a dilation rate of 3
are concatenated together and passed as input to the next SSFE
module for feature extraction. This step fuses features from
different layers to obtain richer and more diverse information,
thereby better capturing key features in the HSIs. In addition,
this structure also promotes information exchange and interac-
tion between features, which helps the model to better learn and
understand the structural and semantic information in the HSIs,
thereby improving the denoising performance. Overall, the
module specifically improves denoising performance in several
ways. Firstly, convolution kernels of different sizes are utilized
to capture information from local to global, and these features
are effectively fused. Secondly, the receptive field is expanded
by dilated convolution to capture long-range dependency while
retaining more detailed information. Finally, SSFE module is
introduced to jointly process spatial and spectral information
to enhance the feature representation and ensure that key spec-
tral details and structural features are retained in the denoising
process.

3. EXPERIMENTS AND ANALYSIS

In this section, various denoising experiments were performed
on both simulated and real datasets. The denoising results were
quantitatively analyzed using evaluation metrics, and typical
denoised images were provided for subjective visual assess-
ment. In addition, ablation studies were conducted to inves-
tigate the effectiveness of individual modules in the proposed
model.

3.1. Datasets

Two datasets of ICVL [36] and Urban [37] were utilized to
evaluate the denoising performance of the proposed MSF-Net
method.
The ICVL dataset is composed of 201 images with a spa-

tial resolution of 1392× 1300 and spectral bands ranging from
400 to 700 nm. 100 of these HSIs are randomly selected as
the training set, 50 HSIs as the test set, and the rest are used
for validation to assure the authenticity of the experiment. In
the experimental procedure, the images in the training set were
uniformly cropped to 1024× 1024 and normalized to [0, 1]. In
addition, to expand the training set, the HSIs in the training set
are processed into multiple overlapping image patches by crop-
ping. The spatial resolution of each image patch is 64×64, and
the spectral resolution is kept constant. At the same time, ro-
tation and other operations were also used to further enhance
the training set. Moreover, the hyperspectral images in the test
set were cropped into 512×512 image patches for better visual
effects.

To further demonstrate the generalization ability of our
model, a real hyperspectral dataset named Urban was also
tested, which consists of hyperspectral image with 307 × 307
pixels and 210 bands.

3.2. Experimental Details
The MSF-Net was implemented on the PyTorch platform and
the network was trained by NVIDIA GeForce RTX 3060. The
network parameters were initialized by Kaiming, and the net-
work was optimized using the Adam optimizer. The number of
epochs was set to 80. The initial learning rate was set to 0.001
and the batch size set to 8.
Furthermore, peak signal-to-noise-ratio (PSNR), structural

similarity (SSIM), and spectral angular mapping (SAM) are
used as the corresponding evaluation metrics to assess the per-
formance.

3.3. Evaluation on the ICVL Dataset

3.3.1. Results on the Hyperspectral Image with Gaussian Noise

In this experiment, the noisy observations were obtained by
adding i.i.d Gaussian noise with different variances to the hy-
perspectral image. To evaluate the performance of the proposed
MSF-Net in the task of hyperspectral image denoising, the com-
parative analysis was conducted against several existing de-
noising methods, including KSVD [38], BM4D [12], MStSVD
[14], LTDL [15], SST [30], DIP-SLR [20], andD2Net [23]. For
most methods, the study replicated their implementation using
publicly available source code, along with the provided param-
eters or training models from the respective authors. However,
for the SST method, we re-implemented it within a PyTorch
based framework based on available source code and model pa-
rameters, and retrained it using synthetic data.
The proposed MSF-Net method is quantitatively compared

with other methods on the ICVL dataset, and the results are
shown in Table 1. The best results are shown in bold, while the
second-best results are indicated by an underline. Among the
comparison methods, the first four methods are based on tradi-
tional method, while the last four methods rely on deep learn-
ing. From Table 1, it is obvious that in the comparison of per-
formance indexes, the denoising methods based on deep learn-
ing are significantly superior to that of the traditional methods.
MSF-Net method can outperform all the other methods when
the noise variance σ is 30. Even the variance σ increases to 70,
MSF-Net can still robustly remove noise and obtain the high-
est PSNR and SSIM. Especially in blind noise scenarios, i.e.,
the HSI is contaminated by Gaussian noise with randomly dis-
tributed variance between 10 and 70, and the noise distribu-
tion is different in different bands. The proposed MSF-Net still
achieves the best performance in all the metrics. These results
show that MSF-Net method can yield good results under low
noise condition, demonstrating its robustness and superior de-
noising ability.
In order to better evaluate the performance of the proposed

MSF-Net method in HIS denoising, we show the denoising re-
sults of various algorithms on noisy HSI under different noise
conditions. Fig. 5 presents the denoising results under i.i.d
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(a) Clean (b) Noisy (c) KSVD (d) BM4D (e) MStSVD

(g) SST (h) DIP-SLR (i) D2Net (j) Ours(f) LTDL

FIGURE 5. The denoising results on the ICVL dataset under Gaussian noise with variance σ = 30.

TABLE 1. Comparison of denoising performance for Gaussian noise with different variances on ICVL dataset.

σ Index Noisy KSVD BM4D MStSVD LTDL SST DIP-SLR D2Net Ours
PSNR 18.58 29.65 36.41 38.35 39.80 42.35 42.13 42.51 43.86

30 SSIM 0.121 0.630 0.917 0.938 0.950 0.991 0.947 0.962 0.994
SAM 31.013 9.172 4.242 2.981 2.350 1.973 2.183 1.840 1.741
PSNR 13.15 28.23 35.35 37.30 38.88 40.93 38.51 40.83 41.33

50 SSIM 0.042 0.537 0.891 0.928 0.944 0.984 0.952 0.974 0.989
SAM 56.637 18.859 7.452 5.217 3.439 3.271 3.310 3.581 3.169
PSNR 11.27 25.89 32.05 34.03 35.26 39.44 39.31 39.64 40.28

70 SSIM 0.035 0.491 0.844 0.906 0.918 0.987 0.947 0.950 0.991
SAM 53.885 13.758 6.707 4.643 3.210 3.107 3.271 3.260 3.186
PSNR 16.83 29.79 38.20 40.33 41.54 42.24 40.73 42.01 43.28

Blind SSIM 0.103 0.514 0.903 0.939 0.955 0.958 0.943 0.990 0.995
SAM 72.516 33.936 13.873 9.172 5.847 3.011 3.270 3.105 2.833

Gaussian noise with variance σ = 30, and Fig. 6 presents
the denoising results under i.i.d Gaussian noise with variance
σ = 50. From Figs. 5 and 6, it can be observed that the KSVD
algorithm causes serious distortion of the texture information
in the image, which results in poor image quality.
The BM4D, MStSVD and DIP-SLR algorithms have bet-

ter noise reduction effects, but they have limitation in pre-
serving the details of the image. The LTDL, SST and D2Net
algorithms preserve the detailed information of the image as
much possible, but there may be prominence in some subtle
edge parts. Compared with other methods, our proposed al-
gorithm has better noise suppression and detail preservation
ability for hyperspectral image. This is mainly because the
cross-multiscale fusion attention module and spectral position-
aware self-attention module can effectively utilize cross-space
contextual information and spectral correlation to enhance the
noise suppression capability. Meanwhile, the multi-scale fu-
sion of spatial-spectral feature module is introduced to effec-
tively fuse different spatial and spectral features of HSI.

3.3.2. Results on the Hyperspectral Image with Complex Noise

In order to provide additional validation for the performance of
the introducedMSF-Net method under various complex noises,
the denoising performance comparison of our MSF-Net with
other excellent denoising methods in four complex noise cases
is given in Table 2. In Table 2, noise cases 1 to 4 represent
non-i.i.d Gaussian noise, stripe noise, deadline noise, and their
mixed noise, respectively. It can be clearly seen from Table 2
that the proposed MSF-Net method outperforms all the other
methods in the stripe and mixture noise cases. In the non-i.i.d
Gaussian noise case, the proposed MSF-Net has the highest
PSNR and SSIM, and second best SAM. The comparison of
the above experimental results proves the robustness and appli-
cability of the hyperspectral denoising method proposed in this
paper.
To demonstrate the superiority of the proposed method over

other methods, Fig. 7 presents the noise reduction results of hy-
perspectral image in the stripe noise using different methods. It
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TABLE 2. Comparison of denoising performance for complex noise on ICVL dataset.

Case Index Noisy KSVD BM4D MStSVD LTDL SST DIP-SLR D2Net Ours
PSNR 17.86 26.78 34.73 36.46 37.51 42.53 42.03 42.56 42.91

Case1 SSIM 0.175 0.538 0.881 0.913 0.925 0.984 0.970 0.989 0.996
SAM 36.211 18.564 4.526 3.151 2.577 2.074 3.192 3.108 2.430
PSNR 17.30 26.91 25.95 36.05 37.21 38.66 35.49 39.95 41.13

Case2 SSIM 0.159 0.509 0.569 0.914 0.947 0.965 0.970 0.972 0.987
SAM 47.384 8.361 6.986 6.532 5.157 2.539 4.103 3.174 2.372
PSNR 18.86 26.93 28.06 32.17 33.92 37.83 38.62 40.54 40.16

Case3 SSIM 0.214 0.566 0.645 0.829 0.872 0.948 0.961 0.973 0.985
SAM 56.924 18.965 17.532 6.646 5.500 2.462 3.101 2.516 2.355
PSNR 13.99 20.38 22.44 28.60 32.30 38.78 36.15 38.97 39.25

Case4 SSIM 0.108 0.363 0.551 0.701 0.840 0.947 0.926 0.959 0.989
SAM 48.04 47.039 27.158 6.307 5.146 2.836 2.639 2.851 2.582

(a) Clean (b) Noisy (c) KSVD (d) BM4D (e) MStSVD

(g) SST (h) DIP-SLR (i) D2Net (j) Ours(f) LTDL

FIGURE 6. The denoising results on the ICVL dataset under Gaussian noise with variance σ = 50.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(a) Clean (b) Noisy (c) KSVD (d) BM4D (e) MStSVD

(g) SST (h) DIP-SLR (i) D2Net (j) Ours(f) LTDL

FIGURE 7. The denoising results for stripe noise on the ICVL dataset.
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FIGURE 8. Comparison of PSNR and SSIM for all bands of hyperspectral image after stripe noise reduction.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(a) Noisy (b) KSVD (c) BM4D (d) MStSVD

(f) SST (g) DIP-SLR (h) D2Net (i) Ours

(e) LTDL

FIGURE 9. Noise reduction results of pseudo-color images synthesized by different methods for the real dataset Urban.

can be seen from Fig. 7 that the results of KSVD and DIP-SLR
still have obvious noise traces. BM4D, MStSVD, LTDL and
SST do not have obvious stripe noise, but the overall and local
details are more blurred. Compared with other methods, D2Net
and our proposed method have better noise suppression abil-
ity. However, our proposed method is clearer in local areas.
Overall, these results demonstrate that our method has excel-
lent denoising performance for hyperspectral image. To further
quantify the denoising performance of the proposed method,
the comparison of PSNR and SSIM for all bands of hyperspec-
tral image after stripe noise reduction is plotted in Fig. 8. From
Fig. 8, it can be seen that compared to other methods, the pro-
posed method has better performance. It is evident that the pro-
posed MSF-Net method exhibits robustness for noise reduction
in the spectral dimension.

3.4. Evaluation on the Real Dataset

To comprehensively validate the performance of the proposed
method, the hyperspectral image denoising experiments con-
ducted on Urban dataset with real-world noise are shown in this
section.
Due to the lack of clear images in the real dataset Urban,

the effectiveness of the proposed method on the Urban dataset
is intuitively evaluated by comparing the pseudo-color images
before and after denoising. The denoising results are presented
in Fig. 9. As can be seen from Fig. 9, our proposed method
can effectively suppress mixed noise while recovering the de-
tailed information in HSI such as edges and texture, which con-
firms the superiority of the proposed method in mixed noise re-
moval. Furthermore, to quantitatively compare the denoising
performance of the proposed method with other methods, we
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FIGURE 10. Comparison of PSNR and SSIM for all bands of hyperspectral image after noise reduction on real dataset.

TABLE 3. The ablation experiment results on ICVL dataset.

Baseline C-MFA SPA-SA Ms-FSS PSNR SSIM SAM
√

- - - 29.85 0.643 5.381
√ √

- - 38.57 0.714 4.514
√

-
√

- 40.31 0.970 3.172
√

- -
√

41.65 0.979 2.946
√ √ √ √

43.28 0.995 2.833

compared the PSNR and SSIM for all bands of hyperspectral
image after noise reduction in Fig. 10. From Fig. 10, it is clear
that the proposed method significantly improves PSNR perfor-
mance in all bands, and the SSIM of the proposed method is
superior to all other methods. This demonstrates the advantage
of our model in HSI denoising.

3.5. Ablation Experiment
To demonstrate the impact of the proposed modules within the
network, this section explores the ablation experiment imple-
mented using the ICVL dataset.

3.5.1. Validity of Each Sub-Module

In each ablation experiment, independent identically dis-
tributed Gaussian noise with randomly distributed variance
σ between 10 and 70 is added in the hyperspectral images.
The ablation experiment results are presented in Table 3. In
Table 3,

√
represents including the module and — represents

not including the module. In Table 3, the baseline model is
denoised using only the basic wavelet transform and inverse
wavelet transform. The PSNR, SSIM, and SAM values of the
baseline model are calculated. Then, the performance metrics
under each sub-module are analyzed. Firstly, it can be seen that
the PSNR is 29.85 dB, SSIM 0.643 and SAM 5.38 under the
baseline model. In the following, the sub-modules are added in
order. The C-MFA module is first added. From Table 3, it can

be seen that the PSNR improves by 8.72 dB; SSIM improves
by 0.071; and SAM decreases by 0.867, which shows that it has
a better denoising effect for the space. Secondly, the SPA-SA
sub-module is added. From Table 3, we can see that the SAM
is significantly reduced to 3.172, which shows that this module
has a better denoising effect for the spectral dimension. Then,
the Ms-FSS module is added. From Table 3, it can be seen
that the SSIM is getting closer to 1, which means that our
image is getting closer to the original image after the denoising
model. Finally, according to the results in Table 3, it is evident
that the proposed method, incorporating cross-multiscale
fusion attention, spectral position-aware self-attention, and
multi-scale fusion of spatial-spectral feature, yields superior
denoising outcomes. It improves the PSNR from 29.85 dB
to 43.28 dB, increases SSIM from 0.643 to 0.995 when the
modules are added. The experimental results validate the
effectiveness of each proposed module.

3.5.2. Effect of Different Dilation Rates in Ms-FSS

Table 4 shows the comparative experiments of dilated convolu-
tion on ICVL dataset for different dilation rates. From Table 4,
it can be seen that when the dilation rate= 1, this is the standard
convolution. When the dilation rate = 2, the receptive field is
slightly enlarged. When the dilation rate = 3, this is the opti-
mal equilibrium, which both enlarges the receptive field and is
able to retain the details of the image better. When the dilation
rate = 4, the receptive field is further enlarged, but it may lead
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TABLE 4. Comparative experiments of dilated convolution on ICVL
dataset for different dilation rates.

Dilation rate PSNR (dB) SSIM SAM
1 35.2 0.92 3.4
2 37.5 0.94 3.3
3 38.6 0.96 2.9
4 37.8 0.95 3.1

to excessive smoothing. Therefore, the choice of the dilation
rate of 3 is the best practice based on experimental validation
and can effectively improve the denoising performance of the
model.

4. CONCLUSION
In this paper, a multiscale spatial-spectral feature fusion net-
work in frequency domain for HSI denoising is proposed.
It effectively separates the signal and noise features through
multi-scale discrete wavelet cascade decomposition. The pro-
posed method utilizes the structural decomposition of multi-
scale wavelet transform to replace traditional down-sampling
operation, which could decompose noise into smaller scales,
making it easier to remove in the frequency domain while
minimizing information loss. In the network structure, cross-
multiscale fusion attention C-MFA is introduced to improve
the model performance by considering multiscale information
and cross-space learning. And spectral position-aware self-
attention module SPA-SA is designed to more fully exploit the
spectral correlation in HSI and enhance the model ability of
long-range spectral dependency. Furthermore, the multiscale
fusion of spatial-spectral feature module Ms-FSS is proposed
to effectively fuse different spatial and spectral features of HSI,
thereby improving the denoising performance. Experimental
results confirm that the proposed method outperforms main-
stream denoising methods in terms of denoising performance
and provides clearer visual results, such as texture details and
edges.
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