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ABSTRACT: This paper investigates the theoretical bounds of geometric dilution of precision (GDOP) in two-dimensional time difference
of arrival (TDOA) positioning systems. The corresponding base station (BS) deployment for a single mobile terminal (MT) is subse-
quently derived. Considering the correlation of time difference measurements, a simplified closed-form expression for GDOP is first
derived, and it is shown that GDOP is independent of the selection of the reference BS. Theoretical bounds for GDOP are rigorously
established, along with the conditions under which these bounds are valid. Based on these boundary conditions, the study demonstrates
that optimal deployment occurs when BSs are grouped, and the azimuths of BSs within each group are evenly distributed around a circle
centered at the MT. For systems with up to five BSs, the optimal deployment is proven to be unique, whereas non-unique solutions
emerge for larger configurations. In contrast, the complete solution set for the worst-case deployment occurs when BSs are collinear and
symmetrically aligned along a specific coordinate origin or axis. Numerical simulations validate the theoretical findings, highlighting the
superiority of uniform angular distributions. These results provide actionable guidelines for enhancing positioning accuracy in cellular
networks and a foundational framework for multi-BS deployment optimization.

1. INTRODUCTION

With the advent of the mobile internet era, cellular position-
ing has become an integral component of mobile commu-

nication systems, supporting a wide range of services such as
real-time navigation [1], security monitoring [2], logistics man-
agement [3], and geofencing [4]. In cellular positioning sys-
tems, the geometric relationship between base stations (BSs)
and mobile terminals (MTs) is a critical factor affecting posi-
tioning accuracy. The geometric dilution of precision (GDOP)
which is based on the Cramer-Rao lower bound (CRLB) [5] is
commonly employed to evaluate the influence of this geometric
relationship on positioning accuracy [6]. A lower GDOP value
signifies a more favorable geometric configuration, resulting
in enhanced positioning accuracy for MTs, and vice versa [7].
Moreover, the theoretical bounds of GDOP and the ideal multi-
BS deployment strategies under known MT positions have at-
tracted considerable interest within the research community [6–
14].
Measuring the signal propagation time between the MT and

BS is a key component of cellular positioning, with existing
methods primarily relying on time of arrival (TOA) and time
difference of arrival (TDOA). Unlike TOA, which relies on ar-
rival time measurements, TDOA uses the time difference as
the measurement and thus does not require strict clock syn-
chronization between the BSs and MT, making it more widely
adopted in practical applications. For TOA, it has been demon-
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strated that the GDOP lower bound and the corresponding op-
timal deployment of the BSs occur when all BSs are positioned
at the vertices of a regular polygon, with the MT located at
the center [8]. However, in TDOA, determining the GDOP
bounds and the corresponding BS deployment is challenging,
primarily due to the introduction of the reference BS concept,
which causes the time difference measurements to be corre-
lated, thereby increasing the complexity of the GDOP calcula-
tion. Paper [9] expresses GDOP using the least squares (LS) es-
timation method, which offers computational simplicity. How-
ever, this is an approximate solution for GDOP and is inaccu-
rate. Since the variance of positioning results obtained with the
LS method exceeds the CRLB [7], the GDOP expressed via LS
is higher than the rigorous CRLB-based GDOP. Some studies
assume that the time difference measurements in TDOA are un-
correlated to simplify the GDOP calculation, but this assump-
tion is unrealistic [10–12]. On the other hand, some research
on TDOA systems better reflects practical scenarios by incor-
porating the correlations in the time difference measurements
into the model. Paper [13] analyzes the impact of measure-
ment value correlations on GDOP, while [14] uses a heuris-
tic optimization algorithm to study the optimal BS deployment
for minimizing the GDOP. However, both of these studies lack
rigorous theoretical derivation. Furthermore, paper [5] theo-
retically proves the optimal sensor deployment for minimizing
the CRLB, while paper [15] theoretically demonstrates the op-
timal sensor deployment for maximizing the Fisher informa-
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tion matrix (FIM). Given that CRLB, FIM, and GDOP share
inherent similarities, the findings in [5, 15] provide valuable
insights into the lower bound of GDOP and the corresponding
optimal BS deployment. However, the analytical approaches in
these two papers are relatively complex, and they do not thor-
oughly discuss the unique characteristics of the optimal deploy-
ment. Moreover, all the aforementioned studies [5, 9–15] offer
no guidance on the upper bound of GDOP or the worst-case
deployment. In contrast, this paper adopts a more intuitive and
concise method by simplifying the GDOP expression and ana-
lyzing its structural form to obtain the GDOP bounds and the
conditions under which these bounds hold. Based on the con-
ditions for the bounds to hold, the optimal and worst-case BS
deployments are correspondingly given, and additional theoret-
ical analysis is performed to prove the unique characteristics of
the proposed BS deployment scheme.
In summary, the contributions of this work are as follows:

1) We obtain a simplified GDOP expression considering the
correlation of time difference measurements. The conclu-
sion that the GDOP value is independent of the choice of
reference BS for a given TDOA system geometry can be
directly derived from the simplified GDOP expression.

2) We derive the lower bound of the GDOP value and the
corresponding optimal BS deployment strategy using a
clearer and simpler method. Using rigorous and consistent
mathematical methods, we prove the uniqueness of the op-
timal BS geometric configuration for up to five BSs, while
also emphasizing the non-uniqueness that arises when the
number of BSs exceeds five.

3) We derive the upper bound of the GDOP value and the
complete solution set for worst-case BS deployment strat-
egy.

Numerical simulations validate the theoretical findings in the
two-dimensional TDOA system and investigate the applicabil-
ity of the proposed BS deployment strategy to other positioning
systems, including two-dimensional TOA and direction of ar-
rival (DOA). We anticipate that the derived lower and upper
bounds on GDOP, along with the corresponding deployment
strategies proposed in this study, will significantly improve the
accuracy of cellular positioning systems.

2. GDOP IN TDOA POSITIONING SYSTEM
Consider a two-dimensional TDOA positioning system that
consists of a single MT andN BSs whereN ≥ 3, as illustrated

FIGURE 1. Geometry of single MT and multiple BSs.

in Fig. 1. Let θ = [x, y]
T implies the position of MT. [xn, yn]

T

represents the position of the nth measurement BS, with n ∈
[1, N ]. Without loss of generality, let [x1, y1]

T represent the
position of reference BS. The observation vector Λ is formu-
lated as

[
∆d2 ∆d3 · · · ∆dN

]
with ∆dn = c∆tn =

d1 − dn + en, where c is the speed of light;∆tn stands for the
time difference measurement; d1 =

√
(x− x1)2 + (y − y1)2;

and dn =
√

(x− xn)2 + (y − yn)2. en denotes a ranging er-
ror that follows a Gaussian distribution with zero mean, and σ
is the root-mean-square error.
Utilizing the best linear unbiased estimator (BLUE), the co-

variance for estimated value θ̂ of θ can be calculated by

var(θ̂) = diag
(
HTQ−1H

)−1
, (1)

where H and Q are the Jacobian matrix and covariance matrix
referring to Λ. According to the conclusion in [16], the CRLB
of the positioning error can be determined by (1). Further, the
GDOP, which serves as a convenient metric based on CRLB, is
defined by [16]

GDOP =
√
G11 +G22, (2)

with

G =
1

σ2

(
HTQ−1H

)−1
, (3)

where G11 and G22 are the diagonal elements of G matrix.
For TDOA system, H can be expressed as:

HTDOA =

 cosα1 − cosα2 sinα1 − sinα2

...
...

cosα1 − cosαN sinα1 − sinαN

 , (4)

where αn ∈ [0, 2π] is the angle between the vector from the
MT to the nth measurement BS and the positive X-axis. α1

denotes the angle referring to the reference BS. If we directly
assume that each ∆dn is uncorrelated, it will result in QTDOA
being an identity matrix, which will simplify the G matrix to
(HTH)−1/σ2. However, since each∆dn includes d1, all these
∆dn are interdependent. Under this condition, the covariance
matrix QTDOA is defined by

QTDOA = σ2


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 · · · 1 2


N−1

, (5)

and its inverse Q−1
TDOA is accordingly given by

Q−1
TDOA =

1

σ2


1− 1

N − 1
N · · · − 1

N

− 1
N 1− 1

N · · · − 1
N

...
...

. . .
...

− 1
N − 1

N · · · 1− 1
N


N−1

. (6)

Substituting (4) and (6) into (2), the GDOP for TDOA position-
ing system is expressed as (7).
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GDOP=

√√√√√√√√√√√√√

∑N
n=2

(
(cosα1 − cosαn)

2 + (sinα1 − sinαn)
2)− 1

N

((∑N
n=2 (cosα1 − cosαn)

)2

+
(∑N

n=2 (sinα1 − sinαn)
)2

)

(∑N

n=2 (cosα1−cosαn)
2− 1

N

(∑N
n=2 (cosα1−cosαn)

)2
)(∑N

n=2 (sinα1−sinαn)
2− 1

N

(∑N
n=2 (sinα1−sinαn)

)2
)

−
(∑N

n=2 (cosα1−cosαn) (sinα1−sinαn)− 1
N

∑N
n=2 (cosα1−cosαn)

∑N
n=2 (sinα1−sinαn)

)2


.

(7)

3. METHODOLOGY

3.1. Primary
As shown in (7), the value of GDOP is influenced by the az-
imuths of all BSs. To facilitate the analysis of this influence,
we make the following substitutions and simplifications:

A =

N∑
n=2

(cosα1−cosαn)
2− 1

N

(
N∑

n=2

(cosα1−cosαn)

)2

=

N∑
n=1

cos2 αn − 1

N

(
N∑

n=1

cosαn

)2

=Nvar(cosαn), (8)

B =

N∑
n=2

(sinα1−sinαn)
2− 1

N

(
N∑

n=2

(sinα1−sinαn)

)2

=

N∑
n=1

sin2 αn − 1

N

(
N∑

n=1

sinαn

)2

= Nvar(sinαn), (9)

C =
∑N

n=2
(cosα1 − cosαn) (sinα1 − sinαn)

− 1

N

∑N

n=2
(cosα1−cosαn)

∑N

n=2
(sinα1−sinαn)

=

N∑
n=1

cosαn sinαn − 1

N

N∑
n=1

cosαn

N∑
n=1

sinαn

= Ncov(cosαn, sinαn), (10)

where var and cov represent variance and covariance opera-
tions, respectively. Subsequently, (7) is simplified to:

GDOPTDOA =

√
A+B

AB − C2
. (11)

Equation (11) is a simplified GDOP expression. Based on
this, a proposition is obtained for the relationship between
GDOP and the choice of reference BS.
Proposition 1. For TDOA positioning system, the value of

GDOP is independent of the choice of reference BS.
Proof. The difference terms cosα1 − cosαn and sinα1 −

sinαn in (7) seem to indicate that the selection of the refer-
ence BS has some impact on the GDOP. However, the simpli-
fied GDOP expression contains terms of A, B, and C which
only depend respectively on the variance of cosαn, the vari-
ance of sinαn, and the covariance between them. Therefore,
for a given set of BS azimuths, the GDOP remains unchanged
regardless of which BS is chosen as the reference.

3.2. The Lowest GDOP Value and Its Conditions
Since A and B are determined by the product of N times the
variance terms, A ≥ 0 and B ≥ 0 are established. The equal-
ity holds if and only if cosα1 = cosα2 = · · · = cosαN or
sinα1 = sinα2 = · · · = sinαN . However, if either of these
equalities holds, it leads to C = 0, AB = 0, and A + B > 0,
which results in an infinite GDOP value (this issue will be dis-
cussed in detail in Section 3.5). Furthermore, if both conditions
hold simultaneously, the matrix G cannot be computed due to
HTDOA = 0, i.e., at this point, (11) represents a degenerate case
of 0/0. This ensures that A > 0 and B > 0 are always sat-
isfied when minimizing GDOP. Based on this, by dividing the
numerator and denominator in the square root of (11) byA+B,
(11) is updated as:

GDOPTDOA =

√
1

D − E
, (12)

with

D =
1

1
A + 1

B

, (13)

E =
C2

A+B
. (14)

According to (12), maximizing D and minimizing E simulta-
neously leads to a minimum GDOP value.
1) Observations on D
According to arithmetic mean-quadratic mean inequality, we

have

2D =
2

1
A + 1

B

≤ A+B

2
. (15)

The equal sign holds if and only if A = B. Meanwhile, A+B
can be simplified as

A+B = N− 1

N

( N∑
n=1

cosαn

)2

+

(
N∑

n=1

sinαn

)2
 . (16)

It is clear that max(A+B) = N occurs only when∑N
n=1 cosαn = 0 and

∑N
n=1 sinαn = 0. Accordingly,

we have max(D) = N/4 based on (15). Under the conditions∑N
n=1 cosαn = 0 and

∑N
n=1 sinαn = 0, and considering

A = B,
∑N

n=1 cos 2αn = 0 is obtained.
2) Observations on E
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Noticing thatA+B ≥ 0 and since the numerator ofE is the
square of a number, it follows that E ≥ 0. Hence, min(E) = 0
occurs when C = 0. Under the condition C = 0 and consider-
ing
∑N

n=1 cosαn = 0 and
∑N

n=1 sinαn = 0,
∑N

n=1 sin 2αn =
0 is then deduced.
3) Minimum GDOP
By simultaneously maximizing D and minimizing E, the

minimum GDOP is achieved:

min(GDOPTDOA) =
√

1
N
4

=
2√
N

. (17)

Proposition 2. For a TDOA positioning system with N
BSs and considering the correlations between various measure-
ments, the lowest GDOP is 2/

√
N .

Proof. As shown above.
It is interesting that the aforementioned minimum value is

identical to the minimum GDOP in the TOA positioning sys-
tem [8].
The conditions for the lowest GDOP aforementioned are{ ∑N

n=1 cosαn = 0,
∑N

n=1 sinαn = 0∑N
n=1 cos 2αn = 0,

∑N
n=1 sin 2αn = 0

. (18)

The conclusions in (18) are consistent with those in [5] and [15],
as the CRLB, FIM, and GDOP are inherently similar in na-
ture. However, the above proof process is based on the sim-
plified GDOP expression provided in this paper, which makes
the overall approach more intuitive and concise. Further, lever-
aging the Euler’s formula ejαn = cosαn+ j sinαn, the condi-
tions can be transformed to

N∑
n=1

ejαn = 0

N∑
n=1

ej2αn = 0

. (19)

That is, when the azimuth angles αn of the BSs satisfy the rela-
tionship in (19), the GDOP reaches its minimum value for the
number of BSs involved in the positioning.

3.3. Optimal BS Deployment Strategy for the Lowest GDOP
Inspired by the form of the sum of a complex exponential se-
quence in (19) the following lemma is presented:
Lemma 1. Orthogonality property of complex sinusoidal se-

quences. For a sequence with a general term ej
2π
N k(n−1), we

have:
N∑

n=1

ej
2π
N k(n−1) =

1− ej
2π
N kN

1− ej
2π
N k

=

{
N, (k = qN, q ∈ Z)

0, otherwise
,

(20)
where Z denotes the set of integers.
Based on (20), α1, α2, ..., αN is defined as an arithmetic se-

quence such that if (19) is satisfied, then the GDOP achieves its
minimum value, given by

αn =
2π

N
(n− 1) + φ, (21)

where φ ∈ [0, 2π] represents a bias variable.
Based on this, a proposition is derived for the optimal de-

ployment of BSs.
Proposition 3. For a TDOA positioning system withN BSs,

all BSs are allocated into M groups where M ≥ 1, satisfy-
ing the condition

∑M
m=1 Nm = N , where Nm represents the

number of BSs in the mth group, and Nm ∈ [3, N ]. For each
group, the azimuth angles of the BSs are deployed in an arith-
metic progression, given by αm

r = 2π(r − 1)/Nm + φ, where
φ represents a bias variable, and r ∈ [1, Nm]. That is, all
BSs involved in positioning can be divided into multiple non-
overlapping groups, and the azimuths of BSs within each group
are evenly distributed around a circle centered at MT. Under
this configuration, the lowest GDOP is achieved.
Proof. Since αm

r = 2π(r − 1)/Nm + φ,
∑Nm

r=1 e
jαm

r = 0
and

∑Nm

r=1 e
j2αm

r = 0 are obtained. Summing over all groups,∑M
m=1

∑Nm

r=1 e
jαm

r = 0 and
∑M

m=1

∑Nm

r=1 e
j2αm

r = 0 are de-
rived which leads to the lowest GDOP.

3.4. Uniqueness of Optimal Deployment for 3∼5 BSs
As shown in Proposition 3, when N ∈ [3, 5], all BSs must be
grouped together, since each group must contain at least three
BSs. Building upon this, in this section, we develop a rigorous
mathematical framework to prove the uniqueness of the geo-
metric structure of the optimal BS deployment for N ∈ [3, 5].
Additionally, the non-uniqueness of the optimal deployment for
N ≥ 6 is demonstrated from a different mathematical perspec-
tive.
Lemma 2. Newton’s identity. Given:

f (x) =

N∏
n=1

(x− xn)

= xN + e1x
N−1 + · · ·+ eN−1x+ eN = 0, (22)

let
Sk = xk

1 + xk
2 + · · ·+ xk

n, (23)
then we have:{

Sk + e1Sk−1 + e2Sk−2 + · · ·+ kek = 0 (1 ≤ k ≤ N)

Sk + e1Sk−1 + · · ·+ kek−N = 0 (k > N)
.

(24)
Lemma 3. Conjugate symmetry of unit complex numbers.

If z is a unit complex number, then:∑N

n=1
(1/zn)

k
=
∑N

n=1
(zn)

k
=
∑N

n=1
(zn)

k
. (25)

where z̄ denotes the complex conjugate of z.
Construct a polynomial:∏N

n=1
(z − zn) = zN + e1z

N−1 + · · ·+ eN−1z + eN

= 0, (26)

where zn = ejαn with |zn| = 1. Let Sk =
∑N

n=1 z
k
n. Based

on Lemma 2, Lemma 3, and (19), clearly:

S1 = S2 = S1 = S2 = 0. (27)
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When k = 1 and k = 2 in (24), we have:{
S1 + e1 = 0

S2 + e1S1 + 2e2 = 0
. (28)

Substituting the condition S1 = S2 = 0 into (28), we have
e1 = e2 = 0. Similarly, when k = N − 2 and k = N − 1
in (24), according to (24), we have:

SN−1 + e1SN−2 + · · ·+ eN−3S2 + eN−2S1

+(N − 2) eN−1 = 0

SN−2 + e1SN−3 + · · ·+ eN−4S2 + eN−3S1

+(N − 2) eN−2 = 0

. (29)

Performing the reduction in order on (26):{
zN−1 + e1z

N−2 + · · ·+ eN−1 + eN/z = 0

zN−2 + e1z
N−3 + · · ·+ eN−2 + eN−1/z + eN/z2 = 0

.

(30)
Substituting all the values of zn where n belongs to 1 to N
into (30) to construct N equations. Based on Lemma 3, af-
ter summing all the N equations, we obtain the following two
additional equations:

SN−1 + e1SN−2 + · · ·+ eN−3S2 + eN−2S1

+NeN−1 + eNS1 = 0

SN−2 + e1SN−3 + · · ·+ eN−3S1 +NeN−2

+eN−1S1 + eNS2 = 0

. (31)

Comparing the structure of (29) and (31) (noting the coeffi-
cients of eN−1 and eN−2) and considering that S1 = S2 = 0,
(29) and (31) will only hold simultaneously when eN−2 =
eN−1 = 0. In conclusion, we have:

e1 = e2 = eN−2 = eN−1 = 0. (32)

Therefore, (26) can be simplified to:

zN + e3z
N−3 + · · ·+ eN−3z

3 + eN = 0. (33)

For the case ofN ∈ [3, 5], (33) can be directly simplified to:

zN = −eN . (34)

Considering the case where |zn| = 1 and solving (34), we get:

zn = ejαn = N
√
−eN = ej(φ+2(n−1)π/N)

(n = 1, 2, · · · , N) , (35)

which confirms the uniqueness of (21) for N ∈ [3, 5].
For the case of N ≥ 6, due to the uncertainty of e3 to eN−3,

(21) is not the unique optimal geometric structure of the deploy-
ment which confirms the existence of the BS grouping situation
as described in Proposition 3.
Proposition 4. For a TDOA positioning system with N

BSs and considering the correlations between various mea-
surements, the geometric configuration for optimal BS deploy-
ment exhibits uniqueness for up to five BSs. However, non-
uniqueness arises when the number of BSs exceeds five.
Proof. As shown above.

3.5. The Highest GDOP Value and Its Conditions
Notably, under the condition that all azimuths are not identical
(note that, as stated in Section 3.2, when the azimuths are iden-
tical, the GDOP becomes undefined), setting the denominator
of (11) to zero results in an infinite GDOP value.
Proposition 5. For a TDOA positioning system with N

BSs and considering the correlations between various measure-
ments, the highest GDOP is infinite.
Proof. As shown above.
Note that AB = C2 leads to the denominator of (11) equal-

ing 0. According to the Cauchy-Schwarz inequality in proba-
bility theory:

var(an)var(bn) ≥ cov2(an, bn), (36)

i.e.,
AB ≥ C2. (37)

From the mathematical structure of (37), the first condition
for equality can be derived: A = 0 or B = 0, i.e.,{

cosα1 = cosα2 = · · · = cosαN

sinα1 = sinα2 = · · · = sinαN
, (38)

when one of the conditions in (38) holds, equality in (37) is
satisfied. From the equality condition of the Cauchy-Schwarz
inequality in probability theory, the second condition for equal-
ity in (37) can be derived: when cosαn and sinαn are lin-
early related, which means that there exists a scalar λ such
that sinαn = λ cosαn, equality holds in (37). In this case,
λ = tanαn, i.e., when

tanα1 = tanα2 = · · · = tanαN , (39)

equality in (37) is satisfied. In conclusion, we have:
cosα1 = cosα2 = · · · = cosαN

sinα1 = sinα2 = · · · = sinαN

tanα1 = tanα2 = · · · = tanαN

, (40)

when one of the conditions in (40) holds, the GDOP reaches its
maximum value of infinity. It is important to note that when
both the first and second conditions hold simultaneously, the
GDOP becomes undefined, resulting in a 0/0 degenerate case.

3.6. Worst-Case BS Deployment Strategy for the Highest GDOP
If one of the conditions in (40) is satisfied, considering the pe-
riodicity of the trigonometric functions and the fact that αn ∈
[0, 2π], the azimuths of the BSs have exactly two possible val-
ues. In conclusion:

αn ∈ {β1, β2} ,
(|β1 − β2| = π or β1 + β2 = kπ, k ∈ {1, 2, 3}) . (41)

When the condition in (41) is satisfied, the GDOP reaches its
maximum value of infinity. This represents the complete solu-
tion set for the worst-case BS deployment strategy.
Proposition 6. For a TDOA positioning system withN BSs,

the highest GDOP is achieved when the azimuths of all BSs
have exactly two distinct values which satisfy the conditions
in (41).
Proof. As shown above.
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(a) (b)

FIGURE 2. BSs deployment and GDOP performance for the case with N = 9. (a) Geometry. (b) GDOP curves under various reference BSs.

4. SIMULATION RESULTS
The simulation results in this section are divided into two parts:
the first part presents various TDOA positioning scenarios de-
signed to validate the propositions put forward in this paper.
The second part discusses the applicability of the optimal de-
ployment strategy proposed in Proposition 3 to other posi-
tioning methods, including TOA and DOA. Additionally, the
GDOP results from the proposed method are compared with
those using the approximation in [9], showing consistently
lower values with our approach.

4.1. Validation of the Propositions

A two-dimensional TDOA positioning scenario involving mul-
tiple BSs and one MT is considered for performance analysis,
where the MT is located at the origin. From (7), it is evident
that the GDOP is solely determined by the azimuthal angles of
the BSs and is independent of the distances between the BSs
and MT. For simplicity, we assume equal distances between
the MT and all BSs, with the BSs deployed on a unit circle.
The analysis begins with N = 9 BSs. Two cases are con-

sidered: uniform and nonuniform, as shown in Fig. 2(a), re-
spectively. Each BS is selected in turn as the reference BS,
and the corresponding GDOP is recorded. The flat curves in
Fig. 2(b) confirm that the choice of reference BS does not af-
fect the GDOP, in accordance with Proposition 1. Addition-
ally, the GDOP values for the uniform deployment are lower
than those for nonuniform deployment.
Also, multiple test cases are designed by varying N from

3 to 9 to validate the GDOP bounds announced in this paper.
The interior-point method (IPM) [17], an effective approach
for solving optimization problems with multiple variables, is
selected for BS assignment and used for comparison. In such a
method, we set (7) as the fitness function and aim to optimize
it to its minimum value. The azimuths of the BSs, denoted as
αn, are treated as a set of optimization variables (with a total of
N variables), where the lower bound of all optimization vari-
ables is 0, and the upper bound is 2π. The results are presented
in Table 1. For the GDOP lower bound, it is observed that for
each N , the lowest GDOP value is almost identical to the ex-
pression 2/

√
N , which corresponds to Proposition 2. More-

TABLE 1. Results of GDOP bounds using IPM.

N Lower bound Upper bound
3 1.154700538 8911830.227
4 1.000000000 316549.8981
5 0.894427191 1061.704283
6 0.816496581 1248.882994
7 0.755928946 16617.44445
8 0.707106781 2955691.221
9 0.666666667 61640.35274

over, the lowest GDOP value decreases as the number of BSs
increases. For the GDOP upper bound, it is observed that the
highest GDOP results of the IPM are very large, although they
do not approach infinity value in Proposition 5.
For the BS deployment pattern, the simulation primarily fo-

cuses on visualization. It starts with the optimal deployment.
The test case with N = 11 BSs is modeled to evaluate the
proposed deployment strategy in Proposition 3. Five strate-
gies, denoted as S1, S2, S3, S4, and S5 are defined, with all BSs
distributed into various groups. For each group, the azimuth
angles of the BSs follow an arithmetic progression, meaning
that the positions of all BSs form a regular polygon. All these
strategies satisfy the conditions in Proposition 3, thereby en-
suring that (7) reaches its minimum value under the condi-
tion of N = 11. Fig. 3 and Table 2 illustrate the definitions
of these strategies. Take S4 for instance, the N = 11 BSs
are divided into M = 3 groups, with each group containing
Nm = 3, 3, 5 BSs, respectively, arranged in the shape of reg-
ular polygons. The bias variables in (21) for each group are
φ = 0.7505, 1.5359, 1.1868, respectively. The azimuth angles
of the BSs for each strategy are substituted into (7), yielding the
corresponding GDOP values, which are recorded in the fourth
column of Table 2. Clearly, the GDOP values for all strategies
are equal and correspond to the lower bound value of 2/

√
11,

as they all satisfy the conditions in Proposition 3, namely, in
each strategy, the N = 11 BSs can be divided into one, two,
or three groups (with no overlap between BSs in each group),
and the azimuths of the BSs within each group follow a uni-
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(a) (b)

(c) (d)

FIGURE 3. BSs deployment for the case with N = 11. (a) S2, (b) S3, (c) S4, (d) S5.

TABLE 2. Definitions and performance of five strategies.

Strategy Assignment M GDOP
S1 Group 1: Regular 11-gon (φ = 0.0000) 1 0.603022689

S2
Group 1: Regular 4-gon (φ = 0.0000)

2 0.603022689
Group 2: Regular 7-gon (φ = 0.5756)

S3
Group 1: Regular 5-gon (φ = 0.2618)

2 0.603022689
Group 2: Regular 6-gon (φ = 0.6632)

S4
Group 1: Regular 3-gon (φ = 0.7505)

3 0.603022689Group 2: Regular 3-gon (φ = 1.5359)

Group 3: Regular 5-gon (φ = 1.1868)

S5
Group 1: Regular 3-gon (φ = 0.0698)

3 0.603022689Group 2: Regular 4-gon (φ = 0.4363)

Group 3: Regular 4-gon (φ = 1.1694)

form distribution. Additionally, Fig. 4 illustrates the example
of each possible scenario in the worst-case deployment solution
set, as presented in Proposition 6, where the GDOP value for
each geometric structure is infinite.

4.2. Generalization of the Propositions

To explore the broader applicability of the proposed BSs
deployment method, we investigate its performance in two-
dimensional TOA and DOA systems. According to [7], the
GDOP in two-dimensional TOA and DOA can be expressed

as:

GDOPTOA =

√
N∑N−1

i=1

∑N
j=i+1 sin

2 (αj − αi)
, (42)

GDOPDOA =

√√√√ ∑N
i=1 d

−2
i∑N−1

i=1

∑N
j=i+1 d

−2
i d−2

j sin2 (αj−αi)
. (43)

It is observed that the GDOP for TOA is independent of the dis-
tances between the BSs and MT, whereas the GDOP for DOA
is distance-dependent. Notably, when the BS-MT distances in
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(a) (b) (c)

FIGURE 4. Complete solution set for the worst-case BS deployment strategy for highest GDOP. (a) Horizontal axis symmetry of BSs. (b) Vertical
axis symmetry of BSs. (c) Origin symmetry of BSs.

TABLE 3. Results of GDOP values for TOA and DOA.

Strategy TOA-1 DOA-1 DOA-2 DOA-IPM
S1 0.603022689 0.603022689 1.405652504
S2 0.603022689 0.603022689 1.315183222
S3 0.603022689 0.603022689 1.431289438 1.312499128
S4 0.603022689 0.603022689 1.534209137
S5 0.603022689 0.603022689 1.462450071

DOA are equal, the GDOP for DOA is simplified to the GDOP
for TOA multiplied by the distance between the BS and MT.
In order to conduct a more comprehensive evaluation, we de-
signed four test cases to calculate the GDOP: TOA-1, DOA-
1, DOA-2, DOA-IPM. TOA-1 is based on the TOA position-
ing method, and DOA-1, DOA-2, and DOA-IPM are based on
DOA positioning method. In both TOA-1 and DOA-1 cases,
the GDOP for the five strategies S1, S2, S3, S4, and S5 is directly
calculated under their respective positioningmethods. In DOA-
2 case, for each of the five strategies S1–S5, the azimuth angles
of each BS remain consistent with Table 2, while the distances
between BS and MT are assigned new values. Specifically, for
each strategy, distances vector dDOA-2 is defined to record BS-
MT distances where dDOA-2 = [8.1472, 9.0579, 1.2699, 9.1338,
6.3236, 0.9754, 2.7850, 5.4688, 9.5751, 9.6489, 1.5761], i.e.,
for each strategy, the distance between the nth BS and MT dn
is equal to the d(n)DOA-2, where d

(n)
DOA-2 refers to the nth element of

the vector dDOA-2. Then, the GDOP values for strategies S1–S5
are calculated under DOA method. In DOA-IPM case, we uti-
lize the IPM to optimize the GDOP under the DOA positioning
method. We select (43) as the fitness function with the goal of
minimizing it. For comparison with DOA-2, the BS-MT dis-
tances in this case are taken from the values in dDOA-2 and are
used as constants in the fitness function. The azimuths of the
BSs αn are treated as a set of optimization variables (with a
total of N = 11 variables), where the lower bound of all opti-
mization variables is 0, and the upper bound is 2π. The results
for TOA-1, DOA-1, DOA-2, and DOA-IPM are recorded in
Table 3. It is first observed that the GDOP in TOA-1 reaches
its minimum value 2/

√
N reported in [8]. Simultaneously, the

GDOP in DOA-1 is equal to those in TOA-1. This equivalence
arises because, in these five strategies S1–S5, the distances be-

tween all BSs and MTs are preset to 1 (with the MT located
at the origin and the BSs deployed on a unit circle). This ge-
ometric configuration results in the equality of (42) and (43).
Consequently, the GDOP for DOA-1 also achieves its mini-
mum value. Furthermore, we observe that the GDOP values
for the five strategies under the DOA-2 configuration differ and
consistently exceed the GDOP result obtained with DOA-IPM,
indicating that the minimum value is not attained. Collectively,
these results demonstrate that the optimal deployment strategy
proposed in Proposition 3 for the TDOA system is also appli-
cable to both TOA and DOA systems with equal BS-MT dis-
tances. However, this strategy does not apply to DOA position-
ing systems characterized by unequal BS-MT distances.
Additionally, for the TDOA scenario, we compare the pro-

posed CRLB-based GDOP estimation method with the LS-
based GDOP approximation. The comparison involves strate-
gies S1, S2, S3, S4, and S5 under equal BS-MT distances con-
dition (with the MT located at the origin and the BSs deployed
on a unit circle). For the LS-based approximation, consider-
ing the unit distance 1 between BSs and MT, we assume that
the variance of all TDOA measurements is 0.001 to simulate a
30 dB signal-to-noise ratio (SNR) environment. Furthermore,
to align with the dimensionless GDOP metric used in our pro-
posed method, we normalize the LS-based GDOP results by
dividing them by the standard deviation of this variance. Each
strategy (S1–S5) is evaluated over 1000 independent trials, with
average results recorded in Table 4. It is observed that the
LS-based GDOP values vary across different strategies and are
consistently higher than the CRLB-based GDOP values. This
indicates that the LS estimation method for expressing GDOP
is inaccurate, demonstrating that the CRLB-based GDOP pro-
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TABLE 4. Results of GDOP using different methods.

Strategy CRLB-based GDOP LS-based GDOP
S1 0.603022689 0.839196935
S2 0.603022689 0.796717028
S3 0.603022689 0.810481415
S4 0.603022689 0.823699297
S5 0.603022689 0.820328505

vides a more reliable metric for evaluating positioning accuracy
across diverse deployment strategies.

5. CONCLUSION
This work investigates the GDOP bounds and the correspond-
ing BS deployment for two-dimensional TDOA-based posi-
tioning systems. The analysis confirms that the uniform angular
distribution of BSs groups around the MT minimizes GDOP.
For systems with three to five BSs, polynomial root analysis
proves the uniqueness of the optimal deployment, while con-
figurations with six or more BSs admit multiple valid solutions
due to increased geometric flexibility. The complete solution
set for worst-case deployment, characterized by collinear or an-
gularly clustered BSs, induces infinite GDOP through geomet-
ric degeneracy. Key advancements include a simplified GDOP
formulation, the invariance of GDOP to reference BS selec-
tion, and a theoretical framework integrating complex number
theory and algebraic theory with GDOP bounds and BS de-
ployment analysis. Numerical simulations validate the theoret-
ical findings for the two-dimensional TDOA system and inves-
tigate the applicability of the proposed BS deployment strat-
egy to other positioning systems, including two-dimensional
TOA and DOA. Future research may extend this work to three-
dimensional environments. The proposed methodology ex-
tends the classical understanding of GDOP and offers theoret-
ical insights for designing high-accuracy cellular positioning
systems.
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