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ABSTRACT: In recent years, uncertainty analysis methods have become a research hotspot in the field of Electromagnetic Compatibility
(EMC), and non-intrusive uncertainty analysis methods are widely used in the field of EMC due to their advantages such as easy solver
generalization and easy programming. The proposal of Bayesian optimization-based uncertainty analysis method further enhances the
competitiveness of non-intrusive uncertainty analysis methods in solving complex EMC simulation problems. However, in traditional
Bayesian optimization-based uncertainty analysis methods, Latin hypercube sampling strategy is used to construct the initial Gaussian
process model, which lacks adaptive adjustment capability, and the quality of the initial Gaussian process model has a significant impact
on the efficiency of subsequent calculations and the accuracy of the final results. This defect limits the computational efficiency and
accuracy of Bayesian optimization methods in uncertainty analysis applications. In response to this issue, this paper proposes an active
sampling strategy based on the Stochastic Reduced Order Model (SROM) method. This strategy improves the fitness function used by
the SROMmethod in clustering to enhance the representativeness of the training set to the sampling space. By using this active sampling
strategy instead of Latin hypercube sampling strategy, a higher quality initial Gaussian process model can be constructed, and the accuracy
of Bayesian optimization method uncertainty analysis calculation is improved in the example, verifying the effectiveness of the proposed
initial sampling point selection improvement strategy.

1. INTRODUCTION

In recent years, uncertainty analysis has become a hot researchtopic in the field of EMC. This method significantly improves
the accuracy and reliability of EMC prediction by considering
factors such as parameter variability, model error, and measure-
ment uncertainty [1].
The uncertainty analysis methods can be divided into two

categories based on whether the original solver needs to be
modified: intrusive and non-intrusive. Typical non-intrusive
uncertainty analysis methods include Perturbation Method
(PM) [2], Stochastic Testing Method (STM) [3], and Stochastic
Galerkin Method (SGM) [4]. In practical engineering appli-
cations, to achieve high reliability EMC simulation, it is often
necessary to rely on commercial electromagnetic simulation
software to simulate the actual electromagnetic environment.
However, due to the lack of open-source deterministic sim-
ulation methods in commercial electromagnetic simulation
software, intrusive uncertainty analysis methods lose their
competitiveness. Therefore, non-intrusive uncertainty analysis
methods are more practical for EMC field, as they only require
a stable deterministic solver.
Typical non-intrusive uncertainty analysis methods include

Monte Carlo Method (MCM) [5], Stochastic Collocation

* Corresponding author: Jinjun Bai (baijinjun@dlmu.edu.cn).

Method (SCM) [6], Stochastic Reduced Order Model (SROM)
method [7], Surrogate model method [8], etc. MCM is
based on the Wiener-Khinchin law of large numbers and has
extremely high computational accuracy, but its computational
efficiency is extremely low. It is commonly used as a standard
result to compare with other methods [6–9]. SCM has the
dual advantages of high computational accuracy and high
computational efficiency. However, as the number of random
variables increases, the computational efficiency of SCM will
also exponentially decrease, indicating a curse of dimensional-
ity [10]. SROM does not have a curse of dimensionality, but
can only provide mean and variance predictions in uncertainty
analysis results [7]. Recently, Surrogate model method has
received widespread attention due to its controllable accuracy
and resistance to curse of dimensionality. However, Latin
hypercube sampling strategy is commonly used when training
Surrogate models. This training set selection strategy is
relatively mechanical and passive, and cannot actively adjust
the sampling points according to the specific characteristics
of different simulation situations, which seriously affects the
practical application effect [8]. To solve the above problems,
Bayesian optimization-based uncertainty analysis method is
proposed. This method actively selects sampling points by
maximizing the acquisition function, iteratively updates the
Gaussian process (GP) model, and ultimately obtains uncertain
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analysis results. This method can achieve both computational
efficiency and accuracy, and is adept at solving complex EMC
simulation uncertainty analysis problems [11].
However in Bayesian optimization-based uncertainty analy-

sis methods, the quality of the initial model has a significant
impact on the efficiency of subsequent calculations and the ac-
curacy of the final results. Traditional methods typically use
Latin hypercube sampling to construct the initial GPmodel. Al-
though this sampling method is more efficient than simple ran-
dom sampling, it is essentially a passive space filling strategy
that lacks adaptive adjustment capabilities, resulting in a lack
of initiative in the sampling process, which limits the computa-
tional efficiency and accuracy of Bayesian optimization meth-
ods in uncertainty analysis applications. This paper proposes
an active sampling strategy based on SROMmethod to address
this issue. The fitness function used in SROM method during
clustering is improved to enhance the representativeness of the
training set to the sampling space, replacing Latin hypercube
sampling strategy to improve the quality of the initial GPmodel,
thereby improving the computational performance of Bayesian
optimization-based uncertainty analysis method.
The structure of this paper is as follows. Section 2 introduces

the basic principle of the traditional Bayesian optimization-
based uncertainty analysis method. Section 3 provides a de-
tailed introduction to the improved Bayesian optimization-
based uncertainty analysis method. Section 4 verifies the effec-
tiveness of the algorithm using crosstalk prediction of parallel
cables example and electromagnetic interference of lightning
electromagnetic pulse example. Section 5 summarizes the en-
tire text.

2. BASIC PRINCIPLES OF THE TRADITIONAL
BAYESIAN OPTIMIZATION-BASED UNCERTAINTY
ANALYSIS METHOD
The Bayesian optimization-based uncertainty analysis method
mainly consists of two parts, namely probabilistic surrogate
model and acquisition function [12]. Below is a brief introduc-
tion to the traditional Bayesian optimization-based uncertainty
analysis method.
Assuming that the uncertainty analysis problem can be rep-

resented by the following formula:

yunc(ξ) = fEMC [xC(ξ1), xD(ξ2)] (1)

where fEMC () is a stable EMC simulation solver; xC(ξ1) and
xD(ξ2) are random variables; and ξ1 ∼ pdf(ξ1), ξ2 ∼ pdf(ξ2).
The uncertainty analysis result yunc(ξ) is also a random vari-
able.
In Bayesian optimization, the most commonly used

probabilistic surrogate model is GP model [13], where
each finite subset follows a multivariate normal distri-
bution consisting of a mean function m and a covari-
ance function k. Assuming that the sampling space is
S1,ξ = [x1,ξ(1), x1,ξ(2), · · · , x1,ξ(n1)], n2 small sam-
pling points, S2,ξ = [x2,ξ(1), x2,ξ(2), · · · , x2,ξ(n2)]
can be obtained using Latin hypercube sampling
in S1,ξ, which can be input into fEMC () to obtain
yunc,2 = {fEMC[x2,ξ(1)], fEMC[x2,ξ(2)], · · · , fEMC[x2,ξ(n2)].

For input sample S2,ξ and their corresponding output values
yunc,2, the predicted point {x(∗), y(∗)} satisfies the following
Gaussian distribution:

p [y(∗)|x(∗), S2,ξ, yunc,2] = N [y(∗)|µ∗,Σ∗] (2)

where µ∗ is the mean of the predicted points, and Σ∗ is the
posterior covariance.
The initial GP model can be constructed using training set

R = (S2,ξ, yunc,2):

yGP,U = GPmod,U (xC , xD) ∼ f(xC , xD) (3)

Input a large number of sampling points S1,ξ =
[x1,ξ(1), x1,ξ(2), · · · , x1,ξ(n1)] into yGP,U to obtain yunc,1,
where yunc,1(i) = yGP,U [xC(i), xD(i)] is a random vari-
able that follows a Gaussian distribution. The predicted
points of the GP model also belong to the posterior
probability density and follow a Gaussian distribution
p[y(∗)|x(∗), S2,ξ, yunc,2] = N[y(∗)|µ∗,Σ∗].
The acquisition function is constructed based on the pos-

terior probability distribution N[y(∗)|µ∗,Σ∗] of the observed
sample, and by maximizing the acquisition function, the next
most “promising” evaluation point can be selected [14]. The
purpose of using the acquisition function is to implement an
exploration exploitation trade-off strategy to guide the itera-
tive sampling process of the algorithm. Common acquisition
functions include Probability of Improvement (PI), Expected
Improvement (EI), Upper Confidence Bound (UCB), Expected
Variance (EV), etc. [12]. Traditional Bayesian optimization-
based uncertainty analysis methods combine EI and EV acqui-
sition functions to fully utilize their advantages. The process
framework of Bayesian optimization-based uncertainty analy-
sis method is shown in Figure 1, and the specific steps are as
follows:
(1) Select the next most “promising” evaluation point

x2,ξ(n2 + 1) by maximizing the acquisition function, and
input the selected evaluation point x2,ξ(n2 +1) into fEMC () to
obtain fEMC [x2,ξ(n2 + 1)].
(2) Add the newly obtained input observation pair R(n2 +

1) = [x2,ξ(n2+1), yunc,2(n2+1)] to the historical observation
set R = (S2,ξ, yunc,2). At this point, the training set becomes
Rnew = (Snew2,ξ , ynewunc,2), and the updated probability surrogate
model becomes ynewGP,U = GPnewmod,U (xC , xD). Continuously it-
erate until the number of sampling points in the training set
reaches a certain set value Q, and establish the final GP model
yFinalGP,U .
(3) Input S1,ξ into yFinalGP,U , calculate the mean of the pos-

terior result of the obtained Gaussian distribution to obtain
ySi

= m[xC(i), xD(i)], and obtain the uncertainty analysis
result pdf{fEMC[xC(ξ1), xD(ξ2)]} in the form of a probability
density curve through statistical calculation.
In traditional Bayesian optimization algorithms, Latin hyper-

cube sampling is used to obtain the training set of the initial GP
model. The core idea is to divide the range of each input vari-
able into a finite number of equally probable intervals and ran-
domly select a sample point within each interval [15]. Although
Latin hypercube sampling has higher sampling efficiency than
simple random sampling, this sampling method also uses ran-
dom sampling to sample each layer during the layered sampling
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FIGURE 1. The process framework of Bayesian optimization-based uncertainty analysis method.

process, and the final sampling results are still affected by ran-
domness. Essentially, Latin hypercube sampling is a mechan-
ical and passive sampling method that lacks initiative. When
the input dimension is high, or the nonlinearity of the exam-
ple is large, this sampling method cannot accurately select the
training set that contributes more to the model. When the sin-
gle simulation time is long, it will also waste a lot of computing
resources.
In Bayesian optimization-based uncertainty analysis meth-

ods, the quality of the initial sampling points directly deter-
mines the quality of the initial model, and the quality of the
initial model has a significant impact on the efficiency of subse-
quent calculations and the accuracy of the final results. There-
fore, in order to further improve the computational efficiency
of Bayesian optimization-based uncertainty analysis methods
in dealing with EMC simulation uncertainty analysis problems,
a more proactive sampling strategy needs to be adopted to re-
place Latin hypercube sampling.

3. IMPROVEDBAYESIANOPTIMIZATION-BASEDUN-
CERTAINTY ANALYSIS METHOD

SROM method is a non-intrusive uncertainty analysis method
that aims to approximate the random variables used in the orig-
inal MCM using a finite number of representative samples and
their corresponding probability weights [7]. The flowchart of
the SROM method is shown in Figure 2, and the specific im-
plementation process is as follows:

(1) M large number of discrete sampling points
P = {P1, P2, ..., PM} are randomly generated, and m
samples are randomly selected from them, denoted as
p = {p1, p2, ..., pm}. The value ofm is much smaller thanM .
(2) The sampling space composed of P = {P1, P2, ..., PM}

is divided into m regions, and the ith region is denoted as Γi,
with the center of the region being pi. The points in this area
are those in the sampling space that are closer to the center pi
of the sample than to the centers of other samples. Calculate
the Euclidean distances between sample center pi and all other
points in region Γi and sum them up. The result can be denoted
as di. Repeat this operation to calculate the sum of Euclidean
distances in other regions, and finally obtain {d1, d2, ..., dm}.
Sum {d1, d2, ..., dm} again to obtainD, which is calculated us-
ing the following formula:

D =

m∑
i=1

di (4)

(3) By repeating the previous step, multiple sets ofD values
can be obtained. Genetic algorithm is used to select the small
sample pr = {pr1, pr2, ..., prm} that minimizes the D value as
the optimal representative sampling point. The weight value of
each representative sampling point in pr = {pr1, pr2, ..., prm} is
calculated. Taking the representative sampling point pr1 in the
first region Γ1 as an example, assuming that there are n sam-
pling points in this region and M sampling points in the sam-
pling space, the weight value K1 of pr1 representing the sam-
pling space P = {P1, P2, ..., PM} can be calculated by the
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FIGURE 2. Schematic diagram of the SROM method.

following formula:

K1 =
n

M
(5)

By inputting pr = {pr1, pr2, ..., prm} into the simulation
model, m output results can be obtained, denoted as ySROM =
{yr1, yr2, ..., yrm}. Through statistical calculations, the mean
E(y) and variance σ(y) can be calculated as follows:

E(y) =

m∑
i=1

(yri ×Ki) (6)

σ(y) =

m∑
i=1

{
[yri − E(y)]

2 ×Ki

}
(7)

The fitness function mentioned above is improved in this
section to ensure that the weight values of each representa-
tive sampling point are close, so that the selected representative
sampling points can directly represent a large number of sam-
ples in the overall sampling space. This is the core idea of the
SROM based active sampling strategy. The initial GP model
constructed using this strategy can more accurately describe
the overall characteristics of the system than the GP model
constructed using Latin hypercube sampling. The flowchart
of improved Bayesian optimization-based uncertainty analysis
method is shown in Figure 3, and the specific implementation
process is as follows:
(1) Assuming that there areHξ points in the sampling space,

represented byW = {W1,W2, ...,WHξ
}, where a single point

takes the form of Wi = {W i
ξ1
,W i

ξ2
, ...,W i

ξN}, Kξ represen-
tative sampling points are randomly selected from them. In
genetic algorithm,

{
Num1,Num2, ...,NumKξ

}
represents the

number of sampling points; the Euclidean distance between
two points is L(Wi,Wj); the specific calculation formula is

L(Wi,Wj) =

√∑N
k=1

(
W i

ξk
−W j

ξk

)2

.

(2) The Euclidean distance between each remaining point in
the sampling space and theKξ representative sampling points is
calculated, and its minimum value is defined as Lmin(Wi). The
minimumEuclidean distance is used as the standard to calculate
the weight

{
ω1, ω2, ..., ωKξ

}
of each of the Kξ representative

sampling points in the sampling space. The fitness function of
chromosome

{
Num1,Num2, ...,NumKξ

}
can be calculated as:

Fin (Num, ω) =
Hξ∑
i=1

Lmin(Wi)+ kweight ×
Kξ∑
j=1

∣∣∣∣ωj −
1

Kξ

∣∣∣∣ (8)

where
Hξ∑
i=1

Lmin(Wi) represents the minimum Euclidean dis-
tance of all points, and the smaller the value of

Kξ∑
j=1

∣∣∣ωj − 1
Kξ

∣∣∣
is, the more evenly weighted the selected representative sam-
pling points are. In the clustering process, in order to make the
weights of each sampling point as close as possible and better
cover the entire sampling space, a penalty term kweight needs to
be added to this fitness function. The method to determine the
value of the penalty term kweight is to run the genetic algorithm
once, calculate the fitness function Fin1 at this time, and multi-
ply it by 10 to 50 times to obtain the value of the penalty term.
When the number of sampling points is large (more than 100),
the value of the penalty term is 10 times of Fin1, and when the
number of sampling points is small (less than 10), the value of
the penalty term is 50 times of Fin1. That is, kweight = Fin1

Q ,
where Q ranges from 0.02 to 0.1. When the number of sam-
pling points is large, Q is taken as 0.1, and when the number
of sampling points is small, Q is taken as 0.02, taking values
proportionally.
(3) After the conventional selection, crossover, and mu-

tation operations of genetic algorithm, the optimal represen-
tative sampling point {NumRep

1 ,NumRep
2 , ...,NumRep

Kξ
} can be

obtained, which corresponds to the final representative sam-
pling point WRep = {WRep

1 ,W Rep
2 , ...,W Rep

Kξ
} and its weight

ωbest =
{
ωbest
1 , ωbest

2 , ..., ωbest
Kξ

}
. WRep is input into the EMC

simulation model to obtain the training set R′. Using this train-
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FIGURE 3. Schematic diagram of improved Bayesian optimization-based uncertainty analysis method.

FIGURE 4. Parallel cable crosstalk prediction example in Reference [11].

ing set instead of the training set obtained by the Latin hy-
percube sampling method in traditional Bayesian optimization
methods, the initial GPmodel is trained, and then the operations
in traditional Bayesian optimization algorithm are continued to
obtain uncertainty analysis results.
Through the analysis of the above steps, it can be concluded

that firstly, in terms of spatial coverage, under the same sample
size, the improved SROM method proposed in this paper out-
performs Latin hypercube sampling in terms of spatial cover-
age. The core lies in improving SROMmethod by introducing a
penalty mechanism to actively optimize the spatial distribution
of sample points, thereby achieving more sufficient and uni-
form coverage of the space. The spatial coverage of Latin hy-
percube sampling depends on uniform spatial partitioning, and
its coverage effect is limited by the use of random sampling.
Secondly, in terms of accuracy, the improved SROMmethod

has a higher accuracy in describing the entire probability space
than Latin hypercube sampling. Improving the SROM method
by aggregating a large number of raw sampling points and clus-
tering them based on probability density distribution enables
the sample set to accurately represent the statistical properties
of the original random variables. The spatial coverage of Latin

hypercube sampling cannot be dynamically adjusted with the
distribution pattern. For example, when dealing with Gaus-
sian distributions, and the data are dense in certain areas and
sparse in others, the Latin hypercube sampling method cannot
automatically adjust the density of sample points to match this
non-uniformity due to its fixed, uniform space based partition-
ing method. Improving SROM can adaptively focus by placing
more sample points in high probability areas and fewer sample
points in low probability areas.
Thirdly, the applicability of improving SROM method is

also stronger. The sample generation process of the improved
SROM method is strongly correlated with distribution types,
making it universal for various complex nonuniform distribu-
tions. However, the uniform spatial partitioning mechanism of
Latin hypercube sampling has insufficient applicability in deal-
ing with nonuniform distributions.

4. ALGORITHM VERIFICATION
The crosstalk prediction of parallel cables example shown in
Figure 4 is first adopted in this section to verify the performance
of the improved Bayesian optimization-based uncertainty anal-
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FIGURE 5. Probability density curve results of VdB at 75MHz. FIGURE 6. Lightning current transient current curve within 0–6µs.

ysis method. This example is a standard example from [11],
where the parallel cable height is assumed to be an uncertain
input parameter, described by the following random variable
model: {

h1(ξ1) = 0.045 + 0.005× ξ1 [m]
h2(ξ2) = 0.035 + 0.005× ξ2 [m]

(9)

where h1 and h2 are cable heights, and ξ1 and ξ2 are uniformly
distributed random variables within the interval [−1, 1]. The
horizontal distance between two cables is 0.05m, and the out-
put result is the far end crosstalk voltage VdB in decibels. The
calculation formula for VdB is as follows. V is the near end
voltage of interference source, and VL is the voltage at the far
end of the disturbed source

VdB = 20 log10
|VL|
|V0|

(10)

Figure 5 shows the probability density curve results obtained
by eachmethod at 75MHz in the parallel cable crosstalk predic-
tion example. The MCM conducts 10000 deterministic EMC
simulations, and its uncertainty analysis results are used as stan-
dard data to quantitatively evaluate the effectiveness of each
uncertainty analysis result usingMean Equivalent AreaMethod
(MEAM) [16]. Since this study is based on the model in [11]
and makes improvements, both the improved Bayesian opti-
mization method and traditional Bayesian optimization method
undergo 16 deterministic simulations. According to [16], due to
the simplicity of this example, theMEAM result of 0.9881 from
the traditional Bayesian optimization method is already an “ex-
cellent” result, leaving little room for improvement. Therefore,
the accuracy of the results obtained by the improved Bayesian
optimizationmethod showsminimal improvement compared to
the original method, with the equivalent area result increasing
from 0.9881 to 0.9893.
Then, the performance of the improved Bayesian

optimization-based uncertainty analysis method is veri-
fied using the electromagnetic interference of lightning
electromagnetic pulse example. This example is also a stan-
dard example in [11], and its deterministic electromagnetic

FIGURE 7. Transient simulation results of aircraft surface electric field
at 2.5µs.

simulation model is derived from the official example of
COMSOL [17].
Because lightning only causes significant electromagnetic

interference to aircraft in a short period of time after its occur-
rence, only the lightning current within 0–6µs is modeled. The
transient current curve is shown in Figure 6, and the transient
simulation results of the aircraft surface electric field at 2.5µs
are shown in Figure 7. The initial deterministic simulation re-
sults are shown in Figure 8, and the simulation output is the
induced voltage values of sensitive components inside the air-
craft (replaced with wires in official cases) within 0–6 s under
the conditions of only the front window being unshielded and
completely unshielded. V1 is the absolute value of the max-
imum induced voltage of sensitive components inside the air-
craft when only the front window is unshielded, andV2 is the ab-
solute value of the maximum induced voltage of sensitive com-
ponents inside the aircraft when it is completely unshielded.
Therefore, the electromagnetic shielding effectiveness SE of
the aircraft can be calculated as shown in Equation (11).

SE = 20 lg
|V2|
|V1|

(11)

The x and y coordinate values of lightning location informa-
tion are assumed to be uncertain input parameters, described by
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FIGURE 8. Initial deterministic simulation results in official example. FIGURE 9. Uncertainty simulation results of SEEMC.

TABLE 1. Computational time of two Bayesian optimization methods in case studies.

Methodology/Examples
Sampling

preprocessing
time

Single
deterministic
simulation time

Bayesian
optimization-based

uncertainty analysis time
Total time

Traditional Bayesian
optimization method

in example 1
0.13 s

1.32 s
×16 times

15.41 s 0.61min

Improved Bayesian
optimization method

in example 1
3.82min

1.31 s
×16 times

15.17 s 4.42min

Traditional Bayesian
optimization method

in example 2
0.14 s

6.67min
×15 times

14.82 s 100.30min

Improved Bayesian
optimization method

in example 2
3.53min

6.65min
×15 times

14.76 s 103.53min

the following random variable model:

{
x(ξ1) = −30− 2× ξ1 [m]
y(ξ2) = 8 + 2× ξ2 [m]

(12)

where ξ1 and ξ2 are uniformly distributed random variables in
the interval [−1, 1], and the value to be solved is the aircraft
electromagnetic shielding effectiveness value SEEMC.
Figure 9 shows the probability density curve results calcu-

lated by various methods in the electromagnetic interference
of lightning electromagnetic pulse example. The MCM con-
ducts 2000 deterministic EMC simulations, and the uncertainty
analysis results are also used as standard data. Since this study
is an improvement on the model based on [11], both the im-
proved Bayesian optimization method and traditional Bayesian
optimizationmethodwere subjected to 15 deterministic simula-
tions. At this point, theMEAM result of the Bayesian optimiza-
tion method has increased from 0.9288 (very good) to 0.9528
(excellent), which is a significant improvement and proves the
effectiveness of the improved Bayesian optimization method
proposed in this study.

The computational times of the two Bayesian optimization
methods in the case study are shown in Table 1.
Based on the above calculation results and the data in Ta-

ble 1, it can be concluded that although the total computation
time required by the improved Bayesian optimization method is
indeed slightly increased compared to the traditional Bayesian
optimization method in both examples, the required sampling
preprocessing time remains fixed. As the single deterministic
simulation time and the number of single deterministic simu-
lations increase, the impact of the additional sampling prepro-
cessing time on the computational burden becomes smaller and
smaller, and the computational efficiency becomes higher and
higher. Therefore, it will not affect the overall conclusion of
the study. For example, in example 2 of the improved Bayesian
optimization method, the proportion of sampling preprocessing
time to the total time is 3.53min/103.53min = 3.41%, which
is very small.
The improved Bayesian optimization-based uncertainty

analysis method achieves an improvement in the accuracy
of the calculation results compared to the traditional method
in both examples, proving the effectiveness of the improved
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strategy for selecting initial sampling points proposed in this
paper.

5. CONCLUSION
The non-intrusive uncertainty analysis method has the advan-
tage of obtaining uncertainty analysis results without modi-
fying the original solver and is currently widely used. The
Bayesian optimization-based uncertainty analysis method has
strong nonlinear processing ability and high computational ef-
ficiency and accuracy. The active sampling strategy based on
SROM method is proposed in this paper, replacing the tradi-
tional Latin hypercube sampling strategy in order to solve the
problem of low training efficiency of the initial GP model and
its impact on algorithm computational performance. This pa-
per improves the fitness function used by the SROM method
in clustering to increase the representativeness of the training
set, so that a higher quality initial GP model can be trained, and
the computational accuracy of Bayesian optimization method is
further improved. In the crosstalk prediction of parallel cables
example and the electromagnetic interference of lightning elec-
tromagnetic pulse example, the accuracy of Bayesian optimiza-
tion method uncertainty analysis calculation is improved. Es-
pecially in the electromagnetic interference of lightning electro-
magnetic pulse example, the improved Bayesian optimization-
based uncertainty analysis method increased the equivalent
area quantification result of traditional Bayesian optimization
method uncertainty analysis from 0.9288 to 0.9528 in the same
15 deterministic simulations. This proves that the initial sam-
pling point selection improvement strategy proposed in this pa-
per has a significant improvement on the computational per-
formance of Bayesian optimization-based uncertainty analysis
method.
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