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ABSTRACT: To address the problems of difficulty in adjusting weight coefficients in model predictive torque control of permanent magnet
synchronous motors and the large influence of parameters on the motor control performance, a no weighing factor model predictive torque
control based on a composite sliding mode disturbance observer is proposed. Firstly, the parallel structure of torque and magnetic chain
is designed. The weighting factors are eliminated by choosing a common optimal voltage vector. Secondly, a composite sliding mode
perturbation observer is designed to reduce the dependence on an accurate model of the motor. An improved variable gain approximation
rate is introduced to eliminate observer jitter. A power exponential term is added to improve the exponential approximation term and
increase the convergence speed of the system state. Finally, the experimental results show that the proposed strategy not only eliminates
the cumbersome tuning work of the weight coefficients but also improves the control performance of themotor under parameter mismatch.

1. INTRODUCTION

Permanent magnet synchronous motors (PMSMs) are exten-
sively applied in industrial production, aerospace, and other

utilizations because of their great efficiency, small size, and
power density [1]. The control methods primarily include field-
oriented control (FOC) and direct torque control (DTC) [2].
FOC selects voltage vectors according to torque and magnetic
chain errors through a pre-given switching table, which is a sim-
ple control method but has limited optional voltage vectors, re-
sulting in large torque and magnetic chain pulsations [3]. To
address the issue of large magnetic chain and torque pulsation
in DTC, scholars have tried to introduce model predictive con-
trol (MPC) into DTC and achieved some success. MPC is gen-
erally used in power electronics which can be separated into
continuous control set MPC and finite control set MPC (FCS-
MPC) [4]. In PMSM drive system, FCS-MPC methods can
be categorized into model predictive current control and model
predictive torque control (MPTC) based on different control ob-
jectives [5].
MPTC performance is closely related to motor parameters

and weighting factors (WF). When the actual parameters of
the motor are affected by temperature rise, magnetic field sat-
uration, and improperly selected weighting coefficients, the
PMSM torque and chain prediction models produce errors,
which deteriorate the control performance [6, 7]. To address
the above problems, scholars have done a lot of research and
proposed various solutions.
To address the problem that the prediction model of MPTC

is affected by the accuracy of weighting factors, scholars have
conducted the following studies. In [8], a torque and flux pre-
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dictive control of an induction machine drive fed by a three-
phase two-level voltage source inverter is proposed. The strat-
egy replaces a single cost function with a multi-objective op-
timization based on a ranking method. This method does not
require adjustment of the weighting factors, but it is difficult
to achieve global optimization in terms of the total harmonic
distortion of the current. In [9], a numerical WF processing
strategy based on state normalization and variable sensitivity
balancing is proposed. The method simplifies the construction
of the objective function and the correction of the weighting co-
efficients, but the model’s generality is limited, making it hard
to adapt to diverse system structures and parameters. In [10],
an AC motor torque and flux control strategy is proposed. The
method is based on MPC using one cost function for torque
and a separate cost function for flux control. This avoids the
need to design weight coefficients. However, the dual cost
function architecture makes the algorithm more complex and
increases the computational load, which affects the real-time
performance of the system. In [11], a direct voltage-vector
selection-based model-predictive direct-speed control method
is proposed. The method constructs a cost function by uti-
lizing this reference voltage vector. The design of weighting
coefficients is avoided, but this direct voltage vector selection
method limits the system’s dynamic response performance in
complex operating conditions and reduces real-time calculation
efficiency. In [12], an improved unweighted coefficient predic-
tive torque control method is proposed. The method constructs
a cost function based on the stator chain vector tracking error
to avoid WF design, but this method needs really accurate real-
time measurements of the stator chain vector. In [13], a chaotic
variant-based dynamic reorganization multiple swarm particle
swarm algorithm realizing self-tuning of weighting coefficients
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is proposed. This method realizes the self-adjustment of weight
coefficients, but the frequent switching of operating states may
lead to unstable PMSM control performance.
To address the issue that the control effect of MPTC is af-

fected by the accuracy of motor parameters, scholars have con-
ducted the following studies. In [14], an improved deadbeat
(DB) predictive current control based on multi-parameter iden-
tification is proposed. The scheme effectively solves the cou-
pling problem in multi-parameter identification by construct-
ing a current prediction error model. The ability of motor pa-
rameter identification is improved. However, the calculation is
large. In [15], a parameter identification method for obtaining
important motor parameters such as flux and inductance using
online particle swarm optimization is proposed. The proposed
method can identify both stator inductance and magnetic flux,
but the complexity of the algorithm is high. In [16], a slid-
ing mode observer based mechanical parameter estimation al-
gorithm for permanent magnet synchronous motor drive sys-
tem is proposed. The smoothed output of the observer can
be directly used for parameter estimation, but this algorithm
is super dependent on how the sliding surface is designed, and
if it is not done right, it can mess up how well the observer
works. In [17], a model predictive current control based on slid-
ing mode observer is proposed. The sliding mode disturbance
observer designed by this method can compensate and predict
lumped disturbances such as parameter mismatch and unmod-
eled dynamic disturbances in the model, but the parameters of
the observer are difficult to be designed. In [18], an improved
DB prediction controller for PMSM drive systems is proposed.
It can eliminate the effects of parameter mismatches such as in-
ductance, resistance, and flux linkage. However, the design of
the controller parameters relies on experience. In [19], a novel
technique based on a sliding mode perturbation observer is pro-
posed. The method eliminates internal PMSM demagnetiza-
tion faults affected by stator parameter mismatch, but there is
a certain delay. In [20], a fractional-order sliding mode control
strategy based on higher-order nonlinear disturbance observers
is proposed. The proposed method can estimate the matching
perturbation and mismatch perturbation. However, the stator
current harmonics may be distorted.
To deal with the problem of MPTC control performance in

PMSMwhich is subject to weighted realignment and motor pa-
rameters, a no weighing factor model predictive torque con-
trol based on a composite sliding mode disturbance observer
(CSMDO-NWFMPTC) is proposed. Compared with the con-
ventional MPTC, it omits the design of WF and improves the
control performance of the motor under parameter mismatch.
When the motor parameters are changed, the method still ob-
tains better control performance. The major contributions of
this paper are as follows:
1) The proposed no weighting factors model predictive

torque control (NWFMPTC) eliminates the cumbersome
weight factor adjustment process in traditional methods by
selecting a common optimized voltage vector through the
design of a parallel structure between torque and flux linkage.
2) The proposed CSMDO-NWFMPTC design employs a

composite sliding mode disturbance observer (CSMDO). By

introducing improved variable gain approximation rate and
power index terms, observer chatter is effectively suppressed,
disturbance estimation accuracy improved, and system conver-
gence speed enhanced. This improves the control performance
of the motor when parameters are mismatched.
The rest of the paper is organized as follows. Section 2 intro-

duces the mathematical model of PMSM. Section 3 introduces
the fundamentals of MPTC and the sliding mode disturbance
observer (SMDO). Section 4 introduces the basic principles of
CSMDO-NWFMPTC. Section 5 introduces the experimental
validation and simulation analysis. Finally, Section 6 briefly
summarizes the paper.

2. MATHEMATICAL MODEL OF PMSM
In this paper, surface-mounted PMSM is studied, and the volt-
age andmagnet flux linkage equations in the two-phase rotating
dq coordinates system are as follows:{

ud = Rsid +
dψd
dt − ωeψq

uq = Rsiq +
dψq
dt + ωeψd

(1)

{
ψd = Lsid + ψf

ψq = Lsiq
(2)

The electromagnetic torque equation is as follows:

Te =
3

2
pψf iq (3)

where ud, uq are the dq-axis components of stator voltage vec-
tor; id, iq are the dq-axis components of stator current vector;
ψd, ψq , and ψf are the dq-axis components of the stator and the
rotor magnetic flux linkage vector; Rs and Ls are stator resis-
tance and stator inductance; and ωe is the rotor angular velocity
of the motor.
The MPTC is constructed based on a mathematical model

of the PMSM, which describes the time-domain relationships
of stator voltage, magnetic chain, and torque through mathe-
matical modeling. The model is usually calculated iteratively
using the Eulerian method for the discretized state equations
to predict the torque and chain values at future moments. The
prediction equations for current, torque, and magnetic chain are
shown as follows.
The prediction model for the current is as follows:
id(k+1)= id(k)−RsTs

Ls
id(k)+Tsωeiq(k)+

Ts
Ls
ud(k)

iq(k+1)= iq(k)− RsTs
Ls

iq(k) + Tsωeid(k)

− Ts
Ls
ψ
f
ωe(k) +

Ts
Ls
uq(k)

(4)

The prediction model for the torque is as follows:

Te(k + 1) =
3

2
pψf iq(k + 1) (5)

The prediction model for the magnetic chain is as follows:

|ψs(k + 1)|=
√

(Lsid(k + 1) + ψf )2 + (Lsiq(k + 1))2 (6)
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FIGURE 1. The schematic diagram of MPTC.

where x(k) represents the value of x at the current moment, and
x(k+1) represents the predicted value of x at the next moment.
x can represent current, torque, and magnetic chain.

3. THE BASIC PRINCIPLE OF MPTC AND SMDO

3.1. The Basic Concept of Weighting Factors in MPTC
The schematic block diagram of MPTC is shown in Fig. 1. The
steps are as follows: First, the seven fundamental voltage vec-
tors are brought into (4) to derive the predicted values of current
after one control cycle Ts for each fundamental voltage vector.
Based on the predicted values, the predicted values of torque
and magnetic chain are derived. Next, the predicted values are
substituted into the cost function, and the voltage vector with
the smallest cost function is taken as the optimal voltage vec-
tor. Finally, the switching state corresponding to the optimal
voltage vector is applied to the inverter to generate symmetri-
cal three-phase currents to control the PMSM.
TheMPTC takes the optimization of the torque andmagnetic

chain as the control objective, and since the two have different
magnitudes it is often necessary to add aweighting factor before
the magnetic chain error when setting the cost function.

g =
∣∣T ref
e − Te(k + 1)

∣∣+ λ
∣∣ψref
s − |ψs(k + 1)|

∣∣ (7)

where T ref
e represents the reference value of the electromagnetic

torque,ψref
s the reference value of the stator magnetic chain, and

λ the weighting factor, which is usually set empirically.
In the model predictive torque control architecture of a per-

manent magnet synchronous motor, the speed reference value
ωref
e is input into a proportional-integral (PI) controller, which

calculates it and outputs the torque reference value T ref
e . Since

the motor’s actual operating speed dynamically changes due to
load variations, speed regulation requirements, and other oper-
ational conditions, the torque reference value T ref

e must be ad-
justed in real-time to align with the precise control objectives
under different operational conditions. Therefore, the torque
reference value T ref

e , as the output of the PI controller, exhibits
time-varying characteristics.
There are many ways to set the weight factor such as fixed

weight method, dynamic adjustment method, and no weighing
method. Each method has its own advantages and disadvan-
tages, and the commonly used method is fixed weight method.

Fixed-weight method is based on empirical settings, which is
simple and easy to implement, but the dynamic adjustment
is poor and only applicable to systems with small parameter
changes and steady state conditions [21, 22]. Dynamic regula-
tionmethod is highly adaptable and is often applied in situations
such as sudden load changes and variable speeds, but it requires
a huge amount of computational resources.
Comparative analysis shows that no weighting factors

method is more suitable for the improvement of motor control
performance. Therefore, from this perspective, this paper
investigates how to eliminate the weighting coefficients of
torque and magnetic chain by mathematical derivation. This
in turn improves the control performance of the motor in
high-precision and low-pulsation occasions.

3.2. The Basic Concept of SMDO

Sliding mode control belongs to an important control method
in the theory of variable structure control. Its core feature is
that the control law has discontinuity. Compared with the tradi-
tional continuous control method, this characteristic makes the
system structure switch with the time evolution. When certain
conditions are met, the state of the motor system will generate
high-frequency, small-amplitude oscillations along the vicinity
of a preset trajectory. This motion can be engineered indepen-
dent of the parameters and perturbations of the system.
By introducing sliding mode control into the observer, one

obtains SMDO. It is a nonlinear observer combining sliding
mode control theory and disturbance estimation technique [23].
The core principle lies in the design of a sliding mode surface
and disturbance compensation mechanism to realize the real-
time estimation and dynamic suppression of the disturbance of
the motor system.
SMDO consists of three basic links, which are categorized

into the design of sliding mode observer, the reconstruction and
compensation of perturbations, and the dynamic adjustment of
the jitter. These three basic links are described as follows:
1) The design of sliding mode observer: It is the core of

SMDO, which is designed to control the target by designing a
sliding mold surface to make the state of the system slide along
the sliding mold surface.
2) The reconstruction and compensation of perturbations:

There are few PMSM systems that are free of perturbations.
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FIGURE 2. The schematic diagram of CSMDO-NWFMPTC.

In order to minimize the effects of its own parameters and the
external environment on the system, they often need to be con-
sidered perturbations. Therefore, through means such as re-
configuration and compensation, the impact of disturbances on
system control performance can be effectively reduced.
3) The dynamic adjustment of the jitter: The design of the

convergence rate in the design of the sliding mold surface in-
cludes the jitter phenomenon caused by the high and flat switch-
ing. So in order to avoid the increase of state estimation er-
ror and the decrease of motor efficiency caused by this phe-
nomenon, it is often necessary to dynamically adjust and com-
pensate for the jitter.

4. THE BASIC PRINCIPLE OF CSMDO-NWFMPTC
The control block diagram of the proposed composite sliding
mode disturbance observer based no weighting factor MPTC
(CSMDO-NWFMPTC) strategy is shown in Fig. 2. It firstly
utilizes a composite sliding mode disturbance observer to ac-
curately estimate parameter variations and other external dis-
turbances, and compensates them to the control system in real
time. The accuracy of the system motor prediction model un-
der parameter mismatch is improved. Then, the traditional
cost function with weighting factors is transformed into an un-
weighted factor form with stepwise evaluation in MPTC. The
electromagnetic torque and stator chain errors are evaluated
separately in turn, reducing the computational effort and avoid-
ing complex weighting factor design. Finally, the voltage vec-
tor that minimizes the torque and chain error is selected to act
on the motor based on the real-time calculation of the predic-
tion model. The control accuracy and control performance are
improved.

4.1. The Design of NoWeighing Factor Model Predictive Torque
Control

As can be seen from (5), (6), and (7), in a conventional MPTC,
the determination of the cost function allows the pulsation am-
plitudes of the electromagnetic torque and stator flux to track

their respective reference values. However, when the ambient
temperature causes the motor parameters to change, the origi-
nally fixed weight coefficients will lead to an improper selec-
tion of voltage vectors and deterioration of system control per-
formance. To address this problem, a noweighting factormodel
predictive torque control (NWFMPTC) strategy is proposed to
eliminate the influence of weighting factor (WF) design on mo-
tor performance.
The NWFMPTC strategy sets an improved cost function. It

not only tracks the error at the current moment but also inte-
grates the accumulated error in the past. The expressions for the
proportional integral form of the tracking errors of the torque
and the magnetic chain are as follows:{

ST = eT (t) +KT

∫ t
0
eT (τ)dt+ eT (0)

Sψ = eψ(t) +Kψ

∫ t
0
eψ(τ)dt+ eψ(0)

(8)

where eT (t) = T ref
e − Te(t) and eψ(t) = ψref

s − ψs(t) are the
tracking errors of the torque and magnetic chain; KT and Kψ

are the gain coefficients of the torque and the magnetic chain.
The system is stabilized when the torque and magnetic chain

follow the corresponding given values, and the tracking errors
of the torque and magnetic chain satisfy the following equation.{

ST = dST
dt = 0

Sψ =
dSψ
dt = 0

(9)

To perform the error accumulation correctly and rationally,
the torque and chain tracking errors are updated according to the
torque and chain errors at the next moment. The updated (9)
is introduced into the MPTC so that the torque and magnetic
chain at the next moment can accurately track their correspond-
ing given values thus improving the robustness of the parame-
ters. From that point of view, it is first necessary to design an
appropriate cost function, because the setting of the cost func-
tion has a great influence on the performance of motor control.
Introducing the proportional-integral link into the cost function
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FIGURE 3. The schematic diagram of NWFMPTC.

can integrate the past cumulative error arrivals to ensure the
stability of the proposed strategy. The equation is as follows:

ST (k) = ST (k − 1)− (eT (k)− eT (k − 1))

+KT eT (k)Ts

Sψ(k) = Sψ(k − 1)− (eψ(k)− eψ(k − 1))

+Kψeψ(k)Ts

(10)

Combine (10) while considering the effect of delay. The pro-
portional integral form of the tracking error can be expressed in
the following equation:

ST (k+2) = ST (k + 1)+(eT (k + 2)−eT (k + 1))

+KT eT (k + 2)Ts

Sψ(k+2) = Sψ(k + 1)+(eψ(k + 2)−eψ(k + 1))

+Kψeψ(k + 2)Ts

(11)

Therefore, the cost function can be expressed as follows:

g = |ST (k + 2)|+ λ |Sψ(k + 2)| (12)

To analyze the improved robustness of the proposed strategy,
(12) is updated as follows:

g = gT (k) + gψ(k) =

∣∣∣∣∣T ref
e − Te(k + 2) +KTTs

k+2∑
i=1

eT (i)

∣∣∣∣∣
+λ

∣∣∣∣∣ψref
s − ψs(k + 2) +KψTs

k+2∑
i=1

eT (i)

∣∣∣∣∣ (13)

The torque and magnetic chain in the cost function are de-
fined as follows:{

gT (k) = T̃e(k + 2)− Te(k + 2)

gψ(k) = ψ̃s(k + 2)− Te(k + 2)
(14)

where T̃e(k + 2) and ψ̃s(k + 2) are the exact torque and chain
predictions at moment k + 2.

Each of the candidate voltage-voltage vectors has a corre-
sponding gT (k) and gψ(k). KT andKψ can be set to compen-
sate the accumulated error. Combining (11) with (12), the cost
function of the proposed strategy can be designed as follows:

g =

∣∣∣∣∣T ref
e − Te(k + 2) + gT (k) +KTTs

k+2∑
i=1

eT (i)

∣∣∣∣∣
+λ

∣∣∣∣∣ψref
s − ψs(k + 2) + gψ(k) +KψTs

k+2∑
i=1

eT (i)

∣∣∣∣∣ (15)
For avoiding the cumbersome design of the weighting coef-

ficients, the cost function is one part in two and expressed as
follows:

g = g1 + g2 = |ST (k + 2)|+ |Sψ(k + 2)| (16)

The torque term cost function g1 and chain term cost func-
tion g2 in Eq. (16) both use eight voltage vectors for optimiza-
tion. First, the voltage vectors are brought into g1. Then they
are sorted in ascending order, and the top four are named as
torque-voltage vector group. Similarly, the voltage vectors are
brought into g2. Then, they are sorted in ascending order, and
the top four are named as chain voltage vector groups. The
common voltage vector of the torque vector group and volt-
age vector group is the optimal voltage vector, and the optimal
voltage vector selected in this way is one of the first four volt-
age vectors in the two groups. So this method minimizes the
cost function while eliminating the need to use weighting coef-
ficients. The control block diagram of the proposed strategy is
shown in Fig. 3.

4.2. The Design of a Composite Sliding Mode Disturbance Ob-
server
SMDO is effective in estimating and suppressing disturbances
in a motor control system, but its inherent jitter phenomenon
leads to large fluctuations in the observation results. The accu-
racy is insufficient, and the robustness is reduced when facing
complex, multi-source disturbances and parameter variations.
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FIGURE 4. The schematic diagram of CSMDO.

Thus, to further improve the accuracy and stability of pertur-
bation observation, a composite disturbance sliding mode ob-
server (CSMDO) is proposed in this section tomitigate the jitter
effect and enhance the system integrated suppression capabil-
ity for multiple perturbations. The control block diagram of the
CSMDO is shown in Fig. 4.
Considering the variation of motor parameters, the voltage

equation is rewritten according to (4) as follows:

{
ud = Rsid + Ls

did
dt − Lsωeiq + fd

dfd
dt = Fd

(17)

{
uq = Rsiq + Ls

diq
dt + ωeLsid + ψfωe + fq

dfq
dt = Fq

(18)

where fd and fq denote the disturbances caused by parameter
mismatches, which vary with a value of rate zero.
When a mismatch occurs in the motor parameters, the pa-

rameter perturbation term is shown as follows:

{
fd = ∆L̃s

did
dt +∆R̃sid −∆L̃sωeiq

fq = ∆L̃s
diq
dt +∆R̃siq +∆L̃sωeid +∆ψ̃fωe

(19)

Because the observer is designed to estimate the total pertur-
bation of the stator current and parameter set, the combination
of (17) and (18) allows it to be designed as follows:



ud = Rsîd + Ld
dîd
dt − Lsωeiq + f̂d + Uds

df̂d
dt = gdUds

uq = Rsîq + Lq
dîq
dt + ωeLsid + ψfωe + f̂q + Uqs

df̂q
dt = gqUqs

(20)

where f̂d, f̂q , îd, îq denote the estimated values. gd, gq denote
the control coefficients of the sliding mode observer. Uds, Uqs
denote the corresponding control functions.

Combining (19) and (20), the error equation can be expressed
as follows: 

de1
dt = −−Rs

Ls
e1 +

1
Ls
e2 +

1
Ls
Uds

de2
dt = gdUds − Fd
de3
dt = −−Rs

Ls
e3 +

1
Ls
e4 +

1
Ls
Uqs

de4
dt = gdUqs − Fq

(21)

where e1 and e3 denote the estimation error of the current, and
e2 and e4 denote the estimation error of the disturbance term.
The sliding mode control theory is designed based on sur-

faces and control functions. It can adjust the input signals of
the control system to make the trajectory of the system to con-
verge to the selected sliding mode surface quickly and stably.
The selected sliding mode surface is shown below:{

sd = e1 = îd − id

sq = e3 = îq − iq
(22)

The observation accuracy depends on the design of the
convergence rate. In this case, the exponential convergence
method is realized by adjusting the rate of state change of the
motor drive system. It is formulated as follows:

ds

dt
= −ke1s− ke2 sgn(s) (23)

However in the exponential convergence method, there is an
increase in observer jitter due to fixed gain. Therefore to solve
this problem, the new exponential convergence method is im-
proved as follows:

ds

dt
= −ke1 |s|

α −
k2In

(
eδ|s|

)
(1− δ)e−β|s| + δ

sgn(s) (24)

where k1 > 1, k2 > 0, 0 < α < 1, β > 1, 0 < δ < 1.
When the motor operates normally, its trajectory is

close to the surface of the slide mold. The gain term
k2In(eδ|s|)/

[
(1− δ)e−β|s| + δ

]
converges to 0, and the jitter

of the system observer is suppressed. The approximate speed
of the motor system is further enhanced as the trajectory moves
away from the surface, and the variable gain term tends to
infinity. The exponential convergence rate is accelerated by
adding an exponential power term |s|α, thereby improving the
system’s convergence behaviour.
In order to ensure the estimation accuracy of errors e1, e3

and disturbance estimation errors e2, e4, a Lyapunov function
is introduced to verify the stability of the system and improved
convergence rate, as shown below:

V =
1

2
s2 (25)

The first order differential equation of the above equation can
be expressed as follows:

dV

dt
= s

ds

dt
= −k1s |s|α
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−
sk2In

(
eδ|s|

)
(1− δ)e−β|s| + δ

sgn(s)
dy

dx
≤ 0 (26)

When parameters k1 > 0, k2 > 0, β > 0, 0 < α < 1, 0 <
δ < 1, the convergence of the exponential convergence method
satisfies the stability condition.
The substitution of (22) into (24) yields:


de1
dt = −k1 |e1|α − k2In(eδ|s|)

(1−δ)e−β|e1|+δ
sgn(e1)

de3
dt = −k1 |e3|α − k2In(eδ|s|)

(1−δ)e−β|e3|+δ
sgn(e3)

(27)

Taking e2 and e4 as disturbance values. The control function
function is designed as follows:


Uds=Ls

[
k1 |e1|α+

k2In(eδ|s|)
(1−δ)e−β|s|+δ sgn(e1)

]
−Rse1

Uqs=Ls

[
k1 |e3|α+

k2In(eδ|s|)
(1−δ)e−β|s|+δ sgn(e3)

]
−Rse3

(28)

The current estimation error is needed to ensure that the mo-
tor is in a converged state during its operation. To fulfill the
above conditions, the observer is set up as follows:

{
dVd
dt = sd

dsd
dt ≤ 0

dVq
dt = sq

dsq
dt ≤ 0

(29)

Taking Vd as an example, the stability conditions are recast
on the basis of the above analysis as follows:

dVd
dt

= − 1

Ls
e1e2 − k1e1 |e1|α

−
e1k2In

(
eδ|s|

)
(1− δ)e−β|s| + δ

sgn(e1) ≤ 0 (30)

The system parameters k1 and k2 need to satisfy the follow-
ing equations when the system is in stable operation:

{
k1 > 0

k2 >
1
Ls

|e2|
(31)

So the parameters of the observer that need to be satisfied are
set as follows:

{
k1 > 0

k2 > max
[

1
Ls

|e2| , 1
Ls

|e4|
] (32)

According to the above analysis, when the optimal voltage
vector applied at moment k−1 is a zero vector, the perturbation
value calculated from sampling at moment k is directly related

to the current error. On this basis, the discrete form equation of
the composite observer is shown below:

îd(k) = îd(k − 1)
[
1− RsTs

Ls

]
+ ud(k − 1) TsLs

+iq(k−1)Tsωe(k−1)+f̂d(k−1) TsLs+Uds(k−1) TsLs

îq(k) = îq(k − 1)
[
1− RsTs

Ls

]
+ uq(k − 1) TsLs

−id(k − 1)Tsωe(k − 1)− ωe(k − 1)
Tsψf
Ls

+f̂q(k − 1) TsLs + Uqs(k − 1) TsLs
f̂d(k) = Uds(k − 1)gdTs + f̂d(k − 1)

f̂d(k) = Uqs(k − 1)gqTs + f̂q(k − 1)

(33)

where îd and îq denote the observed values of stator current at
moment k. f̂d and f̂q denote the observed values of parameter
perturbation at moment k.
The discretized expression for the control function is shown

below:

Uds(k−1)=Lsk1 |e1(k−1)|α + Ls tanh(e1(k−1))

k2In(eδ|s|)
(1−δ)e−β|e1(k−1)|+δ

−Rse1(k − 1)

Uqs(k−1)=Lsk1 |e3(k−1)|α + Ls tanh(e1(k−1))

k2In(eδ|s|)
(1−δ)e−β|e3(k−1)|+δ

−Rse3(k − 1)

(34)

In order to effectively reduce the predicted current ripple
caused by the sign function, this section uses a smooth continu-
ous hyperbolic tangent function instead of the sign function. A
smoother transition characteristic is realized, which effectively
reduces the current ripple.
The parameter perturbations in (35) are substituted into the

prediction equations:

îd(k + 1) = îd(k)
[
1− RsTs

Ls

]
+ ud(k)

Ts
Ls

+iq(k)Tsωe(k) + f̂d(k)
Ts
Ls

+ Uds(k)
Ts
Ls

îq(k + 1) = îq(k)
[
1− RsTs

Ls

]
+ uq(k)

Ts
Ls

−id(k)Tsωe(k)− ωe(k)
Tsψf
Ls

+f̂q(k)
Ts
Ls

+ Uqs(k)
Ts
Ls

f̂d(k + 1) = Uds(k)gdTs + f̂d(k)

f̂d(k + 1) = Uqs(k)gqTs + f̂q(k)

(35)

The predicted values of stator currents and parameter pertur-
bations are obtained through the prediction equations. Thus,
the reference value of the dq axis of the voltage vector can be
expressed as follows:

ud =
Ls
Ts

(
irefd − id(k − 1)

[
1− RsTs

Ls

]
−Tsωeîd(k + 1)

)
uq =

Ls
Ts

(
irefq − iq(k − 1)

[
1− RsTs

Ls

]
−Tsωeîq(k + 1) +

Tsψfωe(k)
Ls

)
(36)
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(a) (b)

FIGURE 5. (a) The diagram of RT-LAB semi-physical simulation platform. (b) The schematic diagram of the RT-LAB hardware.

Combining (35) and (36), the predicted total parameter per-
turbations a and b are compensated as compensation voltages
into the reference voltage vector as follows:

{
ucomd (k + 1) = f̂d(k + 1) + urefd

ucomq (k + 1) = f̂q(k + 1) + urefq
(37)

where ucomd and ucomq denote the compensated reference voltage
vectors.
To address the jitter problem and insufficient multi-source

disturbance suppression capability of the SMDO in the control
of PMSM, the CSMDO proposed in this paper improves the
performance of the system through the following steps:
1) The disturbance observation model is reconstructed based

on the motor voltage equations under parameter mismatch, and
the disturbance terms caused by parameter changes are included
in the total disturbance estimation.
2) A new exponential convergence law with variable gain

characteristics is designed to achieve jitter vibration suppres-
sion near the sliding mode surface with fast convergence away
from it by introducing dynamic adjustment coefficients.
3) Ljapunov stability theory is further employed to rigorously

derive the observer parameter constraints to ensure that the sys-
tem is globally stable.
4) Smooth switching is achieved by replacing the tradi-

tional sign function with hyperbolic tangent function, and the
complete predictive compensation control architecture is con-
structed by combining the discretization design. This compos-
ite design retains the strong robustness of the sliding mode con-
trol and significantly improves the control performance of the
motor under system parameter mismatch through.

5. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the correctness and effectiveness of the
proposed strategy CSMDO-NWFMPTC, the simulation
experiments of strategy MPTC, strategy NWFMPTC, and
strategy CSMDO-NWFMPTC are carried out on an RT-LAB
semi-physical simulation platform based on TMS320F2812
controller. The RT-LAB semi-physical simulation platform
is shown in Fig. 5(a), the RT-LAB hardware-in-the-loop
schematic shown in Fig. 5(b), and the PMSM parameters are
shown in Table 1.
The experimental conditions are organized as follows

TABLE 1. The parameters of PMSM system.

Parameter Symbol Value
Number of pole pairs np 4
Stator inductance Ls 8.5mH
Stator resistance Rs 2.875Ω

Magnet flux linkage ψf 0.3Wb
DC voltage Udc 380V
Rated torque Te 12N·m
Rated speed N 750/min
Rated power PN 1 kW

Inertia J 0.00816 kg·m2

1) The parameter mismatch types are: 25% mismatch of the
magnetic chain, 25% mismatch of the magnetic chain and in-
ductance at the same time, 125% mismatch of the magnetic
chain, and 125% mismatch of the magnetic chain and induc-
tance at the same time.
2) The operating conditions are set as follows: themotor runs

at 750 r/min; the motor speed rises to 1000 r/min in 0.3 s. Load
setting: the motor runs at 7N·m with load; the load rises to
12N·m in 0.4 s. The motor speed is set at 1000 r/min.

5.1. The Dynamic Analysis of dq-Axis Current
Figures 6, 7, and 8 show the dq-axis current waveforms when
parameter mismatch occurs in the motor for the three strategies.
For ease of analysis, the dq axis current pulsation amplitudes
are organized into Table 2.
The strategy NWFMPTC reduces the d-axis current pulsa-

tion value by 24.20% and the q-axis current pulsation value
by 22.83% compared to the strategy MPTC. The strategy
CSMDO-NWFMPTC reduces the d-axis current pulsation
value by 50.49% compared to the strategy MPTC. q-axis
current pulsation value is reduced by 46.38%. The dq-axis
current pulsation values are shown in Table 2. It can be seen
that when the motor parameters are mismatched, the strategy
CSMDO-NWFMPTC reduces the dq axis current pulsation
value of PMSM at MPTC.

5.2. The Dynamic Analysis of Speed and Torque
Figure 9 through Figure 11 show the speed and torque wave-
forms when parameter mismatch occurs in the motor for the
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TABLE 2. Table of dq axis current pulsation amplitude.

Type of mismatch
MPTC NWFMPTC CSMDO-NWFMPTC

iq (A) id (A) iq (A) id (A) iq (A) id (A)
0.75ψf 1.531 2.319 1.133 1.809 0.903 1.394

0.75Ls, 0.75ψf 1.413 3.103 1.088 2.421 0.735 1.861
1.25ψf 1.631 3.431 1.284 2.573 0.791 2.195

1.25Ls, 1.25ψf 1.251 2.313 0.988 1.688 0.688 1.272

(a) (b)

(c) (d)

FIGURE 6. The dq-axis current waveform of MPTC. (a) 0.75ψf , (b) 0.75Ls, 00.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

(a) (b)

(c) (d)

FIGURE 7. The dq-axis current waveform of NWFMPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .
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(a) (b)

(c) (d)

FIGURE 8. The dq-axis current waveform of CSMDO-NWFMPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

(a) (b)

(c) (d)

FIGURE 9. The speed and torque waveforms of MPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

TABLE 3. The speed start-up response time and torque pulsation value.

Type of mismatch
MPTC NWFMPTC CSMDO-NWFMPTC

t (s) Te (N·m) t (s) Te (N·m) T (s) Te (N·m)
0.75ψf 0.0823 2.141 0.0793 1.692 0.0764 1.392

0.75Ls, 0.75ψf 0.0813 2.531 0.0765 1.974 0.0722 1.671
1.25ψf 0.0531 3.152 0.0529 2.522 0.0521 2.112

1.25Ls, 1.25ψf 0.0473 1.986 0.0482 1.549 0.0431 1.311
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(a) (b)

(c) (d)

FIGURE 10. The speed and torque waveforms of NWFMPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

(a) (b)

(c) (d)

FIGURE 11. The speed and torque waveforms of CSMDO-NWFMPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

TABLE 4. The result of stator current amplitude and its THD value.

Type of mismatch
MPTC NWFMPTC CSMDO-NWFMPTC

ia (A) THD (%) ia (A) THD (%) ia (A) THD (%)
0.75ψf 18.2133 6.74 18.2126 5.39 18.2123 4.18

0.75Ls, 0.75ψf 182142 6.91 182131 5.46 182125 4.27
1.25ψf 11.2335 6.37 11.2329 5.09 11.2326 3.94

1.25Ls, 1.25ψf 11.2329 6.43 11.2325 5.68 11.2321 3.99
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(a) (b)

(c) (d)

FIGURE 12. The waveform of the stator current under MPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

(a) (b)

(c) (d)

FIGURE 13. The waveform of the stator current under NWFMPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

three strategies. The speed and torque values are organized into
Table 3 for ease of analysis.
The improvement of rotational speed: The response time,

overshoot, and drop values of rotational speed under the three
strategies are approximately the same. The electromagnetic
torque improvement: the strategy NWFMPTC reduces the
torque pulsation value by 21.37% compared to the strategy
MPTC. The strategy CSMDO-NWFMPTC reduces the torque
pulsation value by 33.98% compared to the strategy MPTC.
Therefore, it can be concluded that the proposed strategy
CSMDO-NWFMPTC can reduce the torque pulsation value of
the motor when the PMSM is parameter mismatched.

5.3. The Dynamic Analysis of Stator Currents and Its Total Har-
monic Distortion (THD)

The waveforms of stator current when parameter mismatch oc-
curs in the motor under the three strategies are shown in Fig. 12
through Fig. 14. In order to facilitate the analysis, the relevant
data are organized into Table 4.
When parameter mismatch occurs, the magnitude of the sta-

tor current ia is approximately the same for all three strate-
gies, with the difference being the THD value of the stator cur-
rent. The strategy NWFMPTC reduces the stator current THD
value by 18.19% compared to the strategy MPTC. The strat-
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(a) (b)

(c) (d)

FIGURE 14. The waveform of the stator current under CSMDO-NWFMPTC. (a) 0.75ψf , (b) 0.75Ls, 0.75ψf , (c) 1.25ψf , (d) 1.25Ls, 1.25ψf .

egy CSMDO-NWFMPTC reduces the stator current THD by
38.07% compared to the strategy MPTC. Therefore, the pro-
posed strategy CSMDO-NWFMPTC effectively reduces the
THD value under parameter mismatch conditions.

6. CONCLUSION

To address the difficulty of adjusting weight factors and the sen-
sitivity of control performance to motor parameters in MPTC, a
no weighting factor MPTC strategy based on a composite slid-
ing mode disturbance observer (CSMDO-NWFMPTC) is pro-
posed. Based on the experimental results and theoretical anal-
ysis, the following conclusions can be drawn:
1) The parallel structure of torque and magnetic chain is de-

signed in the no weighting factor MPTC (NWFMPTC) strat-
egy. The weighting factors are eliminated by selecting the
common optimal voltage vector, which avoids the cumbersome
rectification of weighting factors. Compared with the conven-
tional MPTC strategy, the d-axis current pulsation value is re-
duced by 24.20%, the q-axis current pulsation value reduced by
22.83%, the torque pulsation value reduced by 21.37%, and the
stator current THD reduced by 18.19%.
2) A composite sliding mode disturbance observer

(CSMDO) is added and designed to suppress the jitter
vibration and enhance the estimation compensation capability
for the disturbance. The control performance of the motor
under parameter mismatch is improved. Compared to the
MPTC strategy, CSMDO-NWFMPTC reduces the d-axis
current pulsation value by 50.49%, the q-axis current pulsation
value by 46.38%, the torque pulsation value by 33.98%, and
the stator current THD by 38.07%.
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